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Abstract

The success of plant breeding is based on the accessibility of genetic variation, 
information about desired traits with well-organized approach that make it likely to 
develop existing genetic resources. Food security demands to break the yield barrier 
through increasing new cultivars which can adapt to wide range of environment. It 
is especially important to observe the character association for yield along with its 
components before recognizing novel technique to break the yield barrier. There 
are numerous methods for improved exploiting of the inherent genetic makeup 
of crops with heritable variations. It is recommended that recognized parental 
resources can also be induced to mutate for unmasking novel alleles of genes that 
organize the traits suitable for the crop varieties of the 21st century world. Chemical 
mutagens have extensively been applied to make genetic changes in crop plants for 
breeding investigation as well as genetic studies. Ethyl methane sulphonate (EMS) 
is the most frequently applied as chemical agents in plants. EMS normally induces 
GC → AT transitions in the genome causing mutated protein that performed dif-
ferent functions rather than normal. It is exposed that the utilization of EMS is an 
efficient approach for developing novel gene pool.

Keywords: ethyl methane sulphonate, mutation, genetic variability, singe nucleotide 
polymorphism

1. Introduction

Plant breeding involved in rapid introduction of genetic variability in plants, to 
divulge them with desirable characteristics, through genetic mutation. Plant evolu-
tion and genetic breeding depends on the genetic variation that, not all come from 
spontaneous mutation rather it comes by genetic recombination within popula-
tion and their interactions with environmental factors [1]. Conventional breeding 
depends on prevailed environmental genetic variations in wild and cultivated 
plants that require a large-scale backcrossing to incorporate it and stabilize it while, 
new mutation breeding strategy is less time consuming and easy that enhances the 
selection of desirable mutants [2]. Mutation breeding is an advancement of plant 
breeding where the induction of physical and chemical mutagens cause genetic 
variation. These variations are transferred to next generation through recombinant 
hybridization in meiosis [3]. Selection of breeding individuals only probable when 
there is a significant genetic variability exists [4]. Mutation breeding depends upon 
the transfer and stabilization of heritable characters that cause the variability [5]. 
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Spontaneous and Induced mutations are the primary source of all variations exists 
in an organisms that may be plants or animals [6]. Genetic variability endorses the 
differences among the same species and its existence in population is essential for its 
survival with changing environment. Induced mutation with specific mutagens gen-
erates the individuals with desirable characters that can be further exploit in breed-
ing to generate new verities in plants [7, 8]. Mutation was first recognized in the late 
nineteenth century by Hugo de Varies, when he was working on the ‘rediscovery’ 
of Mendel’s laws of inheritance [6]. Chemical mutagens are less harmful and easily 
available for work. In plants, widely used chemical mutagen is EMS that is very effec-
tive in causing point mutation in genome [9]. Mutation approaches produces huge 
and minute effect on all types of phenotypic traits [6]. Induced mutation is helpful 
in growing novel cultivars of plants as seedless grapes and edible bananas [3, 10] also 
it bring out the novel color variants of tuber and root crops [11]. Mutagenesis also 
apply to improve dwarfness, early growth, resistance to biotic and abiotic stresses, 
and yield improvement as well as quality enhancements in plants [12–15].

Novel breeding techniques based on biological mutagenic agent are widely 
introduce in plants for targeted variation is also known as targeted genome edit-
ing [16]. These genome editing techniques cause the specific and precise genome 
mutations. It introduce targeted mutation by either insertion, deletion that disturbs 
the function of gene. CRISPER/Cas9 is a novel technique that introduce desired 
targeted mutation permanently inside the genome [17].

2. Brief description of induced mutation

Mutation breeding carried out through three types of mutation as induced 
mutation, site-directed mutation and insertion mutation [1]. Induced mutation is 
a tool of generating variability artificially [18]. Mutagenesis is sudden and heri-
table changes in genetic sequence that stimulated by some mutagens like physical, 
chemical as well as biological agents [19]. Mutagenesis became well-known in 1950s 
when various crop species were largely induced through irradiation to enhance trait 
divergence [20]. Natural mutants are typical type of spontaneous mutations that 
generate modern phenotypes without human beings interference such as seed dis-
persal, thin seed coat, seed dormancy and reduced seed length. Heritable mutants 
are appropriate for human utilization for example loss of bitterness in various types 
of nuts, almonds, watermelons, potatoes, lima beans, egg plants as well as cabbages. 
Dwarfing genes exploited to increase grain yield in 1960s. It was completed with the 
introgression of natural mutant alleles into rice as well as wheat genome. The main 
disadvantage of this mutation is the loss of numerous wild features in crops [21].

Physical and chemical mutations are collectively called as induced mutation. 
Induced mutations have a record of 83 years as the first reported [22, 23] in plants. 
In 1927, Muller illustrated that X-ray induction could enhance the mutation rate 
in a Drosophila up to 15,000% [22] then Stadler examined a powerful phenotypic 
divergence in barley and maize by induction of X-rays and radium [23]. Induced 
mutations in plants originated directly from X-rays, radioactivity as well as 
radioactive elements through Roentgen (1895), Becquerel (1896) as well as Marie 
with Pierre Curie (1898) respectively. The Nobel Prize was awarded to Roentgen, 
Becquerel, Marie and Pierre Curie for successful mutation induction [24]. Nitrogen 
mustard is composed of poisonous mustard gas that applied in World Wars I and 
II. It is a chemical mutant that exposed to introduce mutations in cells [25]. Agents 
that cause artificial mutation are called mutagens that includes physical mutagens 
(X-ray, Gamma rays, Neutrons, Alpha/beta particles) and chemical mutagens 
(Alkylating agents, Azide, Hydroxylamine, Antibiotics, Nitrous acid) [1].
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2.1 Physical mutagens

Radiation is described as energy transfer in the sort of particles and waves [26]. 
These radiations are types of the electromagnetic (EM) spectrum that generates ions 
so it is also called as ionizing radiation. Ionizing radiations are the most frequently 
used physical mutagens [27]. Approximately, seventy percent of mutant varieties 
were generated by action of ionizing radiations in past eighty years [27]. These 
radiations consist of cosmic, gamma (γ) as well as X-rays [28]. Practical mutations by 
cosmic radiation have been reported in rice, cotton, wheat, tomato, sesame and pep-
per [29] as well as in maize [30]. The most universally applied physical mutagens are 
gamma and X-rays [27]. X-rays were the primary mutagens that applied to stimulate 
mutations [26]. However, gamma rays have gained popularity when these rays were 
accessible by the in several developing countries [31]. Gamma rays are less harmful 
produce point mutations with minute deletions while, fast neutron produces chro-
mosome losses, translocations with huge deletions [32]. Additional physical agents 
are subatomic particles known as alpha (α), beta (β) particles, neutrons as well as 
protons. These particles are ionizing agents [26]. Ultraviolet (UV) rays are non-ioniz-
ing. These rays have potential of tissue penetrability for mutagenesis. Recently, plant 
materials have been thrown out into space for analysis of mutagenesis. Nevertheless, 
information about genetics of space induction is so far insufficient [1].

2.2 Chemical mutagens

Researchers search for another source for producing mutations due to the 
high chromosomal irregularity from ionizing emission. Consequently, a group 
of chemical induction has been exposed [33]. There are some chemical mutagens 
namely alkylating agents, base analogues as well as intercalating agents [25]. 
Alkylating agents were the primary group of chemical mutagens to be exposed by 
Auerbach and Robson [34] when they discovered the mutagenic result in mustard 
gas throughout World War II. Chemical mutagens consist of nitrogen mustards, 
sulfur mustards, ethyl methane sulphontes, ethyleneimines, epoxides, alkyl meth-
ane sulphonates, ethyleneimides, alky lnitrosoamines and alkyl nitrosoureas [35]. 
Chemical mutagens are more applicable for introduction of in-vitro mutation as 
compared to radiation approaches [36]. Chemical mutagens introduces single base 
pair (SNPs) change as compared to translocations and deletions as occurred in 
physical induction that induce more damage with harshly decrease viability. They 
are simple to apply rather than physical agents [32]. However, undesirable changes 
are usually high in chemical induction as compared to physical induction [26]. 
However, these mutagens are usually carcinogenic. Mustard gas, ethyl methane 
sulfonate (EMS), methyl methane sulfonate (MMS) as well as nitrosoguanidine are 
powerfully carcinogenic that should be used carefully [37].

2.2.1 Introduction and mode of action of ethyl methane sulfonate (EMS)

Ethyl methane sulfonate is the most frequently applied in plants among chemical 
mutagens [37] due to its efficiency and accessibility [38]. It has capability to generate 
the high and stable nucleotide substitution in diverse genomes of organisms [39, 40]. 
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This chemical generates a huge quantity of point mutations in relatively little mutant 
population. This chemical is enough to develop the genome mutations [40]. EMS has 
major role in forward genetic for screening of various organisms. It is also applied in 
model animal and plant for mutagenesis named Drosophila melanogaster as well as 
Arabidopsis thaliana respectively. EMS is extraordinarily reliable due to similar levels 
of induction have been attained in model organisms for example base replacement 
are analogous for Arabidopsis seeds immersed in EMS [41, 42] as well as EMS-fed 
males Drosophila [43]. EMS causes suitable levels of lethality as well as sterility 
[40]. Genome size does not show to be a significant issue in EMS mutagenesis. 
Nevertheless, EMS toxicity may differ from species to species [44]. It is also applied 
in high throughput selection such as TILLING populations [37] in plants.

Ethyl methane sulfonate forms an abnormal base of O−6-ethyl guanine due to 
alkylation of guanine bases. During DNA duplication, it located a thymine residue 
above a cytosine residue result in an accidental point mutation. Approximately 
70–99% alterations in EMS-treated populations are due to GC → AT base pair 
conversion [37, 40].

2.2.2 Dose of mutagen

LD50 is the percentage of test material that are killed by a specific dosage of 
chemical or radiation mutagen in which half test material will be die. Fixation of 
LD50 is important before the start of an experiment in induced mutation. These 
doses vary according to fluctuation in treatments duration, quantity, pH as well 
as solvent used. Mutagen dose can be caused low or high mutation frequency as 
a result of ignoring the importance of LD50 [45–47]. Doses lower than LD50 favor 
plant’s recovery after treatment, while the use of high doses increases the prob-
ability to induce mutation either in positive or in negative direction. The efficiency 
of mutation is determined by concluding the accurate doses of mutagens if the dose 
is random it creates higher number of harmful mutations in each plant [48]. The 
mutation quality of practical mutation is not absolutely correlated to dose rate. High 
mutagen doses did not produced the excellent results of yield [26]. Seeds of Oryza 
sativa L. spp. Indica cv. MR219 were mutagenized to different doses of EMS from 
0.25–2%. Seeds were incubated for ten to twenty hours for establishment of kill 
curve as well as sensitivity of the tested genotypes [49].

2.3 Mutagenesis with biological agents

Insertion mutageneis with biological agents involved in insertion or deletion 
of some sequence in genome. It may cause random mutation at genome as transfer 
DNA, retro-transposon and transposon. Also the insertion mutations can be site 
specific or targeted that cause genomic variation at specific site included the novel 
genome editing techniques.

Transfer DNA (T-DNA) insertion mutation helps in identification of gene func-
tion in plant genome. This insertion mutagenesis cause loss or gain of gene function 
that can be observed by phenotypic response [50]. It can also identified through 
whole genome sequencing or using the Agrobacterium tumefaciens machinery that 
insert the T-DNA at specific flanking sites.

2.3.1 Mutation by genome editing tools

Plant breeding relies on incorporation of genetic variation for desired traits. The 
innovative strategies are exploited from many years to reduce the off-target random 
mutations caused by physical and chemical mutagens [16]. These technologies 
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includes: site-directed nucleases, RNA-dependent methylation, oligonucleotide 
directed mutagenesis, agro infiltration, cisgenec/intragenic and reverse genetics. 
Site-directed nucleases including Zinc finger nucleases (ZFN) [51], transcription 
activator-like effector nucleases (TALEN) [52] and Clustered regularly inter-
spaced short palindromic repeats (CRISPER) and CRISPER-associated nuclease 9 
(CRISPER/Cas9) [53] system had revolutionized the mutation breeding strategy 
by introducing targeted genome editing. TALEN and CRISPER/Cas techniques 
precisely and permanently incorporate the desired DNA into the genome and hence 
cause genetic variation [54].

CRISPR system is a well settle defense system that generate acquired immune 
response for resistance to bacteria, fungi and phages [55]. It was originated from 
bacteria and consist of repetitive DNA genetic codes as well as proto-spacer DNA 
(defensive genetic codes formed during exposure to pathogens) [56, 57]. Cas9 is an 
endonuclease that generate double stranded break in DNA through its two active 
domains [58]. Cas9 creates the break at targeted site by utilizing the guided RNA 
sequence. The CRISPER/Cas system recognized the specific site at genome through 
guide RNA (gRNA) [59] and at targeted site Cas9 creates a double stranded break 
(DSB). These break are repaired by DNA repairing system that ultimately cause 
mutation by either non-homologous end joining (NHEJ) or homologous recombi-
nation system [HR] [60, 61]. Specific base-pair change occur during DNA repair 
system as Cytosine to thymine (C/T) [62] and Adenine to guanine (A/G) [63] 
that observed in several crop plants as canola, rice, tomato, wheat and corn [57]. 
CRISPR/Cas9 system was used in rice to generate semi-dwarf mutants in rice from 
T2 to T4 generation. Stable indels passed through generation producing homo-
zygous mutant [64]. In plants, CRISPR/Cas system generates induced mutation 
through gene knockouts, insertion or generating single nucleotide polymorphism 
(SNP) in plants [56, 57]. Some latest gene editing mutations using CRISPR machin-
ery enlisted in Table 1.

Gene 

targeted

Vector: promoter Transformation 

method: 

promoter

Plant variety Mutation 

nature

Reference

BnaMAX1s Gateway 100 

vectors; BGK01 

vector: 35S promoter

Agrobacterium 

GV3101

Rapeseed 

RS862

Knockout 

mutation

[65]

GmFT2a; 

G,FT5a

pTF101.1: 35S 

promoter

Agrobacterium 

strain EHA101

Soybean jack 

variety

(Glycine max)

Knockout 

by CRISPR

[66]

OsRR22 pYLCRISPR/

Vas9Pubi-H; Cas9-

OsRR22-gRNA: 

OsU6 promoter

Agrobacterium 

EHA105: OsU6

Rice japonica 

WPB106

Knockout 

mutation

[67]

MaGA20ox2 pYLCRISPR/

Cas9Pubi-H vector: 

U3 promoter

Agrobacterium 

strain EHA105

Banana cultivar 

Gro Michel)

(Musa 

acuminate)

Mutation 

as insertion 

and 

deletion

[68]

Exon of SD1 

gene

pBIN-sgR-Cas9-

OsU3 vector: 35S 

PROMOTER

Agrobacterium 

strain LBA4404, 

EHA105

Rice variety

9815B, 

JIAODA138, 

HUAIDAO1055

On target 

and off 

target 

mutations

[64]

BnSFAR4; 

BnSFAR5

pCas9-TPC:

pMP90RK

Agrobacterium 

GV3101

Rapeseed

RS306

Knockout 

mutation

[69]
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3. Identification of mutagenic site through molecular marker

Markers have been used for cultivar recognition as the first light of forward 
genetics. Markers fall into three major categories as visually measurement of traits, 
gene product as well as DNA test known as morphological markers, biochemical 
markers as well as molecular markers respectively [75]. Classical breeding can be 
fast-tracked using molecular marker approaches for identification of mutagenic 
regions and to access the variations inside genome [76]. These markers lies inside 
the genetic region or nearby it. Newest genotyping approaches like genotyping by 
sequencing (GBS) made it easier to identify even a single base pair change as single 
nucleotide polymorphism (SNP).

3.1 Morphological markers

Most of the induced mutants have been released as cultivars by selection through 
morphological markers. These markers based upon agronomic traits such as maturity, 
height, early flowering, fruit appearance, seed quality as well as resistance to diseases 
that can be monitored easily as a result of their epiphytotic character. Huge morpho-
logical, physiological as well as ecological differences has been existed in cultivated rice 
genomes. It is a general approach employed to determine genotypic relationship [77].

Detection of morphological traits is performed by statistically method. 
Multivariate methods have statistical approaches that widely used in telling the 
intrinsic variation among various crop genotypes. Multivariate analysis has been 
reported for study of genetic diversity in numerous crops such as barley [78], 
sorghum [79], wheat [80], peanut [81] and rice [82].

3.2 Genetic markers

Mutant phenotypes were usually recognized depend upon their morphological 
characteristic. But morphological markers are not steady due to less heritability 

Gene 

targeted

Vector: promoter Transformation 

method: 

promoter

Plant variety Mutation 

nature

Reference

63 immunity 

associated 

genes

P201N-Cas9: U6 

promoter

Agrobacterium 

ID1249 strain

Tomato 

RG-PtoR or 

RG-prf3

Short 

Indels

[70]

VvMLO3; 

VvMLO4

pYLCRIPSR/Cas9-N 

vector: AtU3b and 

AtU6–1 promoter

Agrobacterium 

strain GV3101

Grape wine 

PN40024

(Vitis vinifera)

Short 

Indels

[71]

HvITPK1 pYLsgRNA-OsU6

pYLCRISPR/

Cas9Pubi-H: U6 

promoter

Agrobacterium 

strain AGL1

Barley model 

cultivar Golden 

Promise

Insertion 

mutation

[72]

Clpsk1 pRGEBB320cas9-

gRNA-Clpk1: AtU6 

promoter

Agrobacterium 

strain EHA105

Watermelon 

Sumi 1

Lnockout [73]

GhCLA and 

GhPEBP

pRGEB32-GhU6.7: 

cotton U6 promoter

Agrobacterium 

strain GV3101

Cotton Jin668

(Gossypium 

hirsutum)

Point 

mutation

[74]

Table 1. 
Induced mutation in plants using targeted genome editing method CRISPR/Cas9.
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along with complex genetic nature [83]. Then novel method have been developed 
depend upon genetic information of DNA. This procedure is a faster and more reli-
able as compared to other methods. Molecular markers depend upon genetic variant 
in the genome [84]. DNA-based markers have basically replaced previous biochemi-
cal markers as importance of DNA analysis has been reported in plants [85]. DNA 
markers are largely scattered across the entire genome due to larger in quantity [75]. 
Genetic markers perform main role for reorganization of heritable traits in plant 
breeding as well as genetics [86].

3.2.1 Types of genetic marker

Numerous types of molecular markers have been utilized. Molecular markers 
include restriction fragment length polymorphism (RFLP) [87], random amplified 
polymorphic DNA (RAPD) [88], amplified fragment length polymorphism (AFLP) 
[89], inter-simple sequence repeat (ISSRs) [90], microsatellite or simple sequence 
repeats (SSRs) [91] and single nucleotide polymorphisms (SNPs) [92] are currently 
accessible to evaluate the diversity and variability at the DNA level.

3.2.1.1 SSRs as a sequence based marker

These markers are group of tedious DNA chain typically two to six base pairs. It is 
a form of VNTRs (Variable Number Tandem Repeats) [93]. These markers are well-
known as STRs (short tandem repeats). The rate of different STRs length is feature 
of microsatellite loci in rice [75]. They consist of dinucleotide; trinucleotide as well as 
tetranucleotide repeats for genetic analysis. Dinucleotides are the key form present in 
most vertebrates. Trinucleotide repeat are rich in plants [94]. Microsatellite markers 
are believed to be suitable over different array of markers due to following reasons. 
These are scattered all over the genome of extremely conserved region. These markers 
have various qualities of simplicity, high polymorphism, rapidity as well as stability. 
These markers have been model for examination of germplasm, genetic diversity [95], 
heterosis, purity test, gene mapping, fingerprints assembly, phylogenetic comparison 
as well as marker aided selection [75, 95]. A random collection of SSRs assist in esti-
mation of rice genetic diversity and rice cultivar classification without mistakes [96]. 
Particularly SSRs markers have been extensively employed in rice genetic analysis for 
high allelic detection [97]. Microsatellite exposed unreliable level of genetic relation-
ship among the domesticated as well as wild collection of rice [98].

3.2.1.2 SNPs as genetic markers from high-throughput sequencing

SNPs (single nucleotide polymorphisms) signify a strong group of genetic mark-
ers [99] among different categories of molecular markers due to following reason 
[100]. These markers detect single-base pair location depend upon sequence varia-
tion in genomes [101]. SNPs markers offer a huge marker density in genomes [102]. 
SNPs markers have achieved significant importance in plant genetic analysis due 
to their brilliant genetic qualities, genetic diversity, evolutionary interaction [103], 
high throughput genetic mapping [104], population substructure [105], genome-
wide linkage disequilibrium [106] as well as association mapping [107]. Availability 
of high quality reference genome sequence made it easier to scan out mutation by 
re-sequencing the species genotypes through next generation sequencing (NGS) 
approaches and to identify the variation in targeted genotype through mapping 
techniques as genome-wide association mapping [108].

Classically, a quite large sequencing attempt is faithful to recognize polymor-
phic location in a genome among a set of various breeding lines [109]. A precise 
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multiplexed SNPs genotyping analysis is necessary to utilize the huge SNPs source 
for high-throughput genetic test in rice [110]. It will become routine to re-sequence 
the plants genome with current SNPs platforms as the price of genome sequencing 
keep on to reduce [111].

SNPs genotyping have been applied in many organism including rice [112–114], 
Arabidopsis [115], maize [116], soybean [117] and wheat [118]. The high class order 
of the rice genome has offered genome-wide SNPs source [119]. Polymorphic loci 
(5.41 million) were detected between the two main domesticated rice subspecies 
(Indica and Japonica) by SNPs genotyping [120].

A complete map of rice genome builds 6,119,311 SNPs variants for 1529 genome 
orders. SNPs (213,188) were located in Indica and Japonica rice. Asian and African 
rice were established 9595 SNPs [121]. Three thousand rice genomes project [122] 
submit for rice clustering of aus/boro genotypes. Only 208 accessions are catego-
rized as aus/boro depends upon SNPs markers of 200,000. It is also exposed from 
further study that aus group was genetically related by 376,000 SNPs markers [123].

4. Conclusions

The considerable amount of phenotypic variability can be identified by employ-
ing highly sophisticated Molecular approaches like SSR and SNPs within the mutant 
populations. These genetic changes indicated that EMS might be helpful for the 
development of desired genetic changes in crop plants. It was also recommended 
that current SSRs and SNPs markers could be suited in further analysis for estima-
tion of genetic diversity of rice mutants.
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