
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

136,000 170M

TOP 1%154

5,500

1

Chapter

Recent Advancements in
Commercial Integer Optimization
Solvers for Business Intelligence
Applications
Cheng Seong Khor

Abstract

The chapter focuses on the recent advancements in commercial integer
optimization solvers as exemplified by the CPLEX software package particularly
but not limited to mixed-integer linear programming (MILP) models applied to
business intelligence applications. We provide background on the main underlying
algorithmic method of branch-and-cut, which is based on the established opti-
mization solution methods of branch-and-bound and cutting planes. The chapter
also covers heuristic-based algorithms, which include preprocessing and probing
strategies as well as the more advanced methods of local or neighborhood search
for polishing solutions toward enhanced use in practical settings. Emphasis is
given to both theory and implementation of the methods available. Other consid-
erations are offered on parallelization, solution pools, and tuning tools, culmi-
nating with some concluding remarks on computational performance vis-à-vis
business intelligence applications with a view toward perspective for future work
in this area.

Keywords: integer programming, valid inequalities, local branching, relaxation
induced neighborhood search (RINS), evolutionary algorithms, solution polishing

1. Introduction

The ongoing drive on Industrial Revolution 4.0 particularly to take advantage
of big data analytics has impacted business intelligence applications significantly
spanning various areas including resource assessment, corporate development, and
advanced technology R&D research and development [1]. A key enabler supporting
the transformation to digitalization is optimization technology which encompasses
the established methodologies of linear and nonlinear programming with exten-
sions to discrete or integer programming. This chapter focuses on recent advance-
ments in commercial optimization solvers notably the industry-leading software
package of IBM ILOG CPLEX [2] as applied to variants of integer programming
problems particularly mixed-integer linear programming (MILP) models.

This chapter aims to contribute towards highlighting the growing and maturing
capability of integer optimization especially in the last decade or so towards
addressing, solving, analyzing, and eliciting insights from practical business intel-
ligence applications. With rapid developments in the realm of big data analytics

E-Business - Higher Education and Intelligence Applications

2

Figure 1.
Historical background of IBM ILOG CPLEX integer optimization solver.

as spurred by Industry Revolution 4.0, advancement in optimization technology
including integer optimization is imperative to support if not spearhead the
changes at the forefront of the transformation taking place. The rest of the chapter
is organized as follows. Section 2 gives an overview of the present role of integer
optimization in business intelligence applications. Major solution methods and
algorithms with certain enhanced features typically available in standard integer
optimization solvers are detailed in Section 3 including those intended to exploit
model formulations. Section 4 describes and discusses several real-world use
cases on practical business intelligence applications that illustrate the applicability
and strengths of integer optimization solvers. Finally, concluding remarks on the
salient features of standard integer optimization solvers for business intelligence
applications are offered including perspectives for future research directions.

2. Overview of integer optimization in business intelligence applications

Numerous business intelligence applications can be posed as mathematical pro-
gramming problems that can be handled by commercial optimization solvers such
as CPLEX, Gurobi [3], or KNITRO [4]. The problems can be formulated as models
that include linear programming (LP), mixed-integer linear programming (MILP),
quadratic programming (QP), mixed-integer quadratic programming (MIQP), qua-
dratically-constrained programming, and mixed-integer quadratically-constrained
programming. Such solvers are also used in tandem with other appropriate opti-
mization solvers to handle other mainly nonlinear problems such as mixed-integer
nonlinear programming (MINLP) models or in general, mixed-integer programs
(MIP) [5].

2.1 Computational performance of commercial integer optimization solvers

The actual computational performance of a commercial optimizer (or opti-
mization package) such as CPLEX results from a combination of improvement
in several aspects. They include LP solvers with capability and features including
preprocessing, algebra for sparse systems, solution methods (primal or dual simplex
and barrier), and techniques to overcome degeneracy and numerical difficulties [6].
Equally important is the use of cutting planes as valid inequalities in solving prob-
lems that bridges the gap from theory to practice [7]. Further improvement involves
applying heuristics including node heuristics (e.g., local branching, guided dives)
and relaxation-induced neighborhood search, invoking evolutionary algorithms for
solution polishing; and implementing parallelization for efficient computations [8].

3

Recent Advancements in Commercial Integer Optimization Solvers for Business Intelligence…
DOI: http://dx.doi.org/10.5772/intechopen.93416

2.2 A commercial success story: CPLEX integer optimization solver

CPLEX is a state-of-the-art commercial integer optimization solver currently
marketed by IBM. It represents an early commercial success story of an optimiza-
tion package with various acquisitions and a spin-off solver (called Gurobi) which
is now a success story of its own. Figure 1 presents brief historical facts of CPLEX
while Table 1 summarizes the software release history.

3. Solution methods and algorithms

3.1 Integer optimization algorithms

A suite of algorithms is available in various integer optimization solver to exploit
the underlying problem structure of a business intelligence application towards
achieving efficiency and accuracy. Table 2 summarizes the typical main algorithms
employed by CPLEX according to the problem type identified together with
remarks on the enhancement provided to increase computational performance [9].

3.2 Branch-and-bound

A general structure of mixed-integer program is given by:

minimize
Tc x

 (1)

=
subject to

Ax b (2)

Year Activity/accomplishment

1988 Develops LP solver (CPLEX 1.0)

1992 Offers simple branch and bound with limited cuts (CPLEX 2.0)

1998 Incorporates simple heuristic; provides faster dual simplex (CPLEX 6.0)

1999 Introduces five node heuristics and six cutting plane types (CPLEX 6.5)

2000 Caters for semi-continuous and semi-integer variables; stipulates dual simplex as default LP

solution method; introduces preprocessing; improved cuts (CPLEX 7.0)

2002 Introduces new LP method of sifting, concurrent optimization, new QP capabilities, and 9

cutting plane types (CPLEX 8.0)

2003 Introduces quadratic constraint programming (QCP) and relaxation induced neighborhood

search (RINS) (CPLEX 9.0)

2006 Improved MIQP, changes in MIP start, feasible relaxation; introduces indicators and solution

polishing features

2007 CPLEX 11.0 incorporates solution pool, tuning pool, and parallel mode

2010 Offers faster MILP solution; introduces multicommodity flow cuts; enhanced heuristics and

dynamic search (in CPLEX 12.2)

2017 Enables faster MILP solution; enhanced CP Optimizer; new callback framework (in CPLEX

12.8)

2019 Includes handling of multiobjective problems; provides modeling assistance (in CPLEX 12.9)

Table 1.
Software release history of IBM ILOG CPLEX integer optimization solver.

E-Business - Higher Education and Intelligence Applications

4

 ≤ ≤l x u (3)

 some are integers.x (4)

Branch-and-bound is a base algorithm to solve MIP which uses LP as a subrou-
tine [10]. The key strategies of a branch and bound procedure involve splitting
(i.e., branching) the solution space into disjoint subspaces, bounding the objective
function values for all solutions in the subspaces, and pruning or fathoming nodes
of branches that cannot yield better solutions. Although it is provably exponential
in time, tricks are available to accelerate its search which mostly apply to a subset of
models with a suite of algorithms available.

The branching strategies are performed on the integer variables and comprise
two main steps: (1) Choose an integer variable as a branching variable ,

j
x (2) Split

the problem into two submodels: ≤jx i or ≥ + 1jx i where for the special case of
binary variables, the problem becomes 0=jx or 1.=jx

The bounding problem given by the continuous (LP) relaxation to determine a
lower bound

L
IPz on the objective function value of the original MIP problem can be

described as follows: minimize

()=T L
IPc x z subject to = ,Ax b ≤ ≤l x u (simple

bounds), and some jx are integers. The continuous relaxation problem gives
solution of an optimal objective value of

L
IPz , which is a lower bound on the objec-

tive function value of the original MIP problem by relaxing the integrality restric-
tion. There are two useful properties of continuous relaxation: (1) If its solution
satisfies integrality restrictions, there is no need to further explore the subspace;
(2) It offers natural branching candidates as the integer variables with fractional
values in a relaxation solution.

Key steps in the branch-and-bound procedure are summarized in Figure 2. As
described in Figure 2, node selection in step 1 involves a tradeoff between achieving
feasibility and optimality. The options available for node selection include depth
first, breadth first, best first, limited discrepancy, and best estimate. When exploring
nodes deep in a search tree, one is more likely to find integer feasible solutions and
explore nodes that would be pruned by later feasible solutions. The method called
plunging (as combined with those aforementioned) always choose a child node of
previously explored node.

In step 2, the node relaxation step is ideally suited to dual simplex method. It
involves only a small change from the parent relaxation solution (at the root node)
and gives a new bound on the branching variable while maintaining dual feasibility
of the previous basis. Thus, the solution is likely to be close to the previous basis.

Solver/optimizer Algorithm Model

type

Remark

Simplex Primal, dual,

network

LP, QP Reoptimization with simplex algorithms is

faster when starting from a previous basis

Barrier Interior-point LP, QP,

QCP

Explore multiple threads presence Barrier

optimizer cannot start from advanced basis—

limited application in B&B for MILP

Mixed-integer

optimizers

Branch and

cut, dynamic

search

MILP,

MIQP,

MIQCP

IBM proprietary/trade secret methodology to

solve MIP (some user callbacks cannot be used)

Table 2.
Algorithms available in IBM ILOG CPLEX integer optimization solver.

5

Recent Advancements in Commercial Integer Optimization Solvers for Business Intelligence…
DOI: http://dx.doi.org/10.5772/intechopen.93416

Typically, a few dual simplex iterations are sufficient to restore optimality, and the
cost per node is quite small. The subsequent step 3 entails generating cutting planes
as needed to obtain a continuous (LP) relaxation solution.

Step 4 involves variables fixing using reduced cost. If the following condition as
given by Eq. (5) holds at a branch-and-bound node:

 ∗+ ≥LP jz D z (5)

where LPz = objective value of LP relaxation solution at the root node,
∗z = objective value of an incumbent (i.e., best known integer feasible solution),

and
jD = reduced cost (marginal cost of releasing a variable from its bound), then

we apply the strategy of fixing jx to its current value in this subtree of the search.
The goal here as described by step 5 is to obtain integer feasible solutions which are
similar to the relaxation solution.

Selecting an appropriate branching variable can significantly affect the search tree
size, which is emphasized in the subsequent step 6. In this regard, the guiding princi-
ples are to make the important decisions early (as modeled by the integral branching
variables) by being aware of the impact of both branching directions. To illustrate by
using a factory building problem, such a decision involves whether to build a factory
first while the decision on the number of lines to be placed in the factory can be made
later. In general, we can predict the impact of a branch by considering variables that
are furthest from their bounds which indicate maximum infeasibility. Thus, the
impact for each branching candidate can be measured to allow for strong branching
to be performed, e.g., by using historical information such as pseudo-costs.

Finally, in step 7, the main idea in propagating implications logically is to fix the
binary variables to possible values during tree exploration and determine the binary
variable values. Bound strengthening is used to tighten variable bounds.

Practical considerations render implementing branch-and-bound to be unsuit-
able for large scale problems chiefly because the number of iterations grows

Figure 2.
Key steps in the branch-and-bound procedure [9].

E-Business - Higher Education and Intelligence Applications

6

Figure 3.
Branch and cut algorithm (CPLEX).

exponentially with number of variables. Therefore in practice, a commercial
business intelligence solver such as CPLEX uses a branch-and-cut procedure as a
modification which applies model reformulation by using presolve strategies and
adding cutting planes (or cuts) as shown in Figure 3 with possible enhancement in
practice around the root node computations [11].

3.3 Presolve and cutting planes

The original MIP formulation can be improved by tightening it with fewer
constraints and variables thus entailing less data handling requirement (yet with
the same solution quality). A tighter formulation also leads to a smaller differ-
ence between the space of the feasible continuous and feasible integer solutions,
hence relying less on branching to refine the continuous relaxation computation.
Two techniques are used: (1) presolve which combines preprocessing and probing
strategies [12, 13]; and (2) cutting planes [14].

Presolve generates a new tighter improved model without size increase that is
independent of the relaxation solution. Preprocessing aims to identify feasibility
and redundancy while improving bounds (e.g., through rounding) while that of
probing improves coefficients by fixing the binary variable values while checking
for their logical implications. In both cases, we achieve a tighter model reformu-
lation using similar steps of adding or replacing constraints that maintain the
same integer solutions but with fewer continuous relaxation solutions. Adding a
single constraint can produce an exponential number of tighter constraints. Such
tighter constraints dominate the existing constraints without creating a larger
problem. Note that reformulation solution is different from that of relaxation.

In contrast, we add a cutting plane (or valid inequality) to an existing model
(typically the presolve-reformulated model) to remove a relaxation solution—this
feature constitutes an important difference between the two techniques. Therefore,
cutting planes introduce tighter constraints that cut off a particular relaxation solu-
tion and in so doing, achieves focused growth in model size.

In summary, presolve is vital in solving MIP as there is significant scope to
improve most model formulations through reducing problem sizes (by more than

7

Recent Advancements in Commercial Integer Optimization Solvers for Business Intelligence…
DOI: http://dx.doi.org/10.5772/intechopen.93416

5 times is not uncommon) or runtimes (similarly by up to 10 times). On the other
hand, cutting planes are available in numerous varieties with many valid types
applicable for a particular model. Thus we need to identify relevant ones which
serve to cut off appealing relaxation solutions. There is a need to strike a balance in
terms of how many cuts to generate for a relaxation solution. Since we need to cut
off relaxation solution only once, and it is expensive to resolve in obtaining a new
relaxation solution for each cut added, we conduct multiple rounds of cutting plane
generation while limiting the number of cuts per round in view of the increased
model size [15].

3.4 Heuristics

Heuristics for solving MIP aims to produce good and possibly feasible solutions
quickly without relying on branching in satisfying user demands for a problem.
Thus, heuristics avoid exploring unproductive subtrees (in a branch-and-cut
scheme) while exploring parts of tree that a solver typically will not. In doing so,
heuristics help to prove optimality explicitly by pruning nodes more efficiently as
well as implicitly by giving integer solutions [16].

Heuristics can be classified into two classes as available in a solver like CPLEX:
(1) plunging (diving) heuristics, and (2) local improvement heuristics which
explore interesting neighborhoods around potential solutions using search strate-
gies such as local branching, relaxation induced neighborhood search (RINS),
guided dives, and evolutionary algorithms for solution polishing. Plunging heuris-
tics maintains linear feasibility in trying to achieve integer feasibility while local
improvement heuristics operate conversely [17]. A typical strategy for heuristics
applied at the root node involves the sequence shown in Figure 4.

Some considerations in applying plunging heuristics include tradeoffs of how
many variables to fix per computation round and in what order. While it is compu-
tationally inexpensive to fix all variables rather than a few variables, LP relaxation
solutions in the latter (not needed in the former) can guide later choices (e.g., on
variable values and reduced costs). Variations in variable fixing order can be useful
for diversification. On the other hand, a high-level structure of local improvement
heuristics involves choosing integer values for all the integer variables, which
produces linear infeasibility; iterating over the integer variables; and applying
infeasibility metrics [16].

The effectiveness of heuristics is evidenced in that feasible solutions are found
for most models before branch-and-bound is performed. Approximately 10%
improvement in computational time to proven optimality has been reported [16].
Furthermore, heuristics often get solutions not obtained by branching.

3.5 Combined local search and heuristics

A combination of local search and heuristics offers a powerful optimiza-
tion framework to solve difficult MIP or combinatorial optimization problems.
Examples of local search methods include simulated annealing, tabu search, and
genetic algorithms. Local search methods consist of the key strategies of neighbor-
hood (i.e., considers a set of solutions in the vicinity of current solution); intensi-
fication (i.e., temporary focus on part of solution space), and diversification (i.e.,
mechanism to change focus occasionally). In applying local search to MIP, gener-
ally neighborhoods are based on the problem structure, e.g., nodes and edges in
graphs with no high level structural information available in arbitrary MIP models
[16]. A question that arises is how we can generate and explore an interesting

E-Business - Higher Education and Intelligence Applications

8

neighborhood given an incumbent solution. In this regard, two methods are avail-
able, namely local branching [18] and relaxation induced neighborhood search
(RINS) [19].

3.6 Parallelization

Parallelization is available in an integer optimization solver such as CPLEX,
which encompasses the MIP solution engine, barrier algorithm, and concurrent
optimization techniques for solving LP and QP problems. In the instance of CPLEX,
parallelization involves launching several optimizers to solve the same problem—
the process stops when the first solver reaches a solution. Within a branch and
bound scheme, parallelization involves solution of the root node and nodes as well
as strong branching in parallel [20].

3.7 Solution pools

The motivation to consider solution pools lies in the value of having more than
one solution due to inaccurate data, approximations in model formulations, or
inability of a model to capture the full essence of a problem. Thus, solution pools
aim to generate and keep multiple solutions by using various options and tools that
involve collecting solutions within a given percentage of optimal solution or those
with diverse solutions and properties. However, difficulty is noted in implementing
solution pools with the strategy of rolling horizon decompositions [17].

3.8 Tuning tools

As MIP solvers have multiple algorithm parameters which dictate their perfor-
mance, the objective of tuning tool is to identify solver parameters that improve
the performance for a given problem set. While default parameter values of MIP
solvers are defined to work well for a large collection of problems, there is no such
guarantee for a specific user problem [21].

4. Use cases

This section presents three use cases of applying commercial integer opti-
mization solvers to implement and improve or enhance business intelligence
applications. The model formulations for the use cases are implemented on GAMS
modeling platform (and available in GAMS Model Library) from which the CPLEX
solver is accessed.

4.1 Use case 1: energy optimization

The first use case presents a practical application of CPLEX as a standard solver
for an energy business portfolio optimization problem for an electric utility company.
For such electricity distribution public service, the problem involves to determine the
amount to produce internally (i.e., in one’s own power plant) and that to purchase

Figure 4.
Heuristics at root node.

9

Recent Advancements in Commercial Integer Optimization Solvers for Business Intelligence…
DOI: http://dx.doi.org/10.5772/intechopen.93416

externally (i.e., from the spot market or load following contracts). The problem for-
mulation leads to a medium-to-large scale MILP model with size and computational
statistics as described in Table 3. To accelerate solution convergence, several compu-
tational options are invoked including priority branching within a branch-and-bound
procedure and multiple processing through parallelization (i.e., techniques introduced
in the foregoing section). The computational results and implications as discussed in
the cited reference demonstrates the applicability of the solver as an effective tool for
1-day ahead planning within a real-world electricity market in Germany.

4.2 Use case 2: financial optimization

The second use case involves financial optimization of risk management with
commercial implications . The problem is amenable to be posed as an integer opti-
mization model to capture an extensive set of rules and regulations that governs
the delivery and settlement of mortgage-backed securities. The availability of
reliable, robust, and efficient commercial integer optimization solvers alongside
computing technology developments have facilitated the deployment and valida-
tion of such models with the computational statistics summarized in Table 4. The
advancement achieved has led to optimization models including (if not particu-
larly) integer programs to become essential omnipresent tools in current financial
operations, which is comparable to the application of operations research and
management science models in the domains of manufacturing, transportation,
and logistics.

Computing platform GAMS 24.2.3 on laptop with Intel Core i7-8550U 1.80 (up to 1.99) GHz,

8 GB of RAM

No. of continuous

variables

1260

No. of discrete variables 773

No. of constraints 2178

No. of iterations 2,799,216

CPU time 408.234 second

Objective function value EUR266,793 (for optimality gap = 0%)

Table 3.
Model size and computational statistics for use case 1.

Computing platform GAMS 24.2.3 on laptop with Intel Core i7-8550U 1.80 (up to 1.99) GHz,

8 GB of RAM

No. of continuous

variables

255

No. of discrete variables 199

No. of constraints 487

No. of iterations 238

CPU time 0.157 second

Objective function value 36.96 (for optimality gap = 1 × 10−4%)

Table 4.
Model size and computational statistics for use case 2.

E-Business - Higher Education and Intelligence Applications

10

4.3 Use case 3: manufacturing optimization

The third use case concerns production planning for a manufacturing facility .
The application can be formulated as a standard integer optimization model of an
uncapacitated lot-sizing problem. The objective function seeks to minimize produc-
tion cost in meeting market demand constraints with cost components on produc-
tion, stocking, and machine setups. Table 5 gives the model size and computational
statistics for the largest problem instance solved for this use case.

5. Conclusions

Performance variability across commercial integer optimization solvers applied to
business intelligence applications (such as that for the use case in Section 4) occurs due
to opportunistic parallelization, use of heuristics particularly by invoking polishing
option (which involves random seed), or simply numerical reasons. Variability may be
observed in computational time, performance in terms of number of nodes and itera-
tions, or solution quality. A main limitation of the applicability of integer optimization
solvers typically pertains to the number of integer variables that can be handled within
acceptable computational load or solution time. Therefore, it is worthwhile for future
research in this area to consider further improvement in the mentioned areas [22, 23]
towards achieving acceptable performance levels that are requisite and crucial for
business intelligence applications.

Acknowledgements

This work is completed partly under support from UTP-UCTS private grant no.
015MD0-037.

Computing platform GAMS 24.2.3 on laptop with Intel Core i7-8550 U 1.80 (up to 1.99) GHz,

8 GB of RAM

No. of continuous

variables

81

No. of discrete variables 8

No. of constraints 73

No. of iterations 15

CPU time 0.016 second

Objective function value 36.96 (for optimality gap = 04%)

Table 5.
Model size and computational statistics for use case 3.

11

Recent Advancements in Commercial Integer Optimization Solvers for Business Intelligence…
DOI: http://dx.doi.org/10.5772/intechopen.93416

Author details

Cheng Seong Khor1,2

1 Chemical Engineering Department, Universiti Teknologi PETRONAS,
Perak Darul Ridzuan, Malaysia

2 Centre for Process Systems Engineering, Institute of Autonomous Systems,
Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia

*Address all correspondence to: chengseong.khor@utp.edu.my;
khorchengseong@gmail.com

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

12

E-Business - Higher Education and Intelligence Applications

[1] Tsay C, Baldea M. 110th anniversary:
Using data to bridge the time and length
scales of process systems. Industrial
& Engineering Chemistry Research.
2019;58(36):16696-16708

[2] IBM. IBM ILOG CPLEX
Optimization Studio V12.9.0. 2020.
Available from: https://www.ibm.
com/support/knowledgecenter/
SSSA5P_12.9.0/ilog.odms.studio.
help/Optimization_Studio/topics/
COS_home.html

[3] Gurobi Optimization. Gurobi
Optimizer Reference Manual.
Beaverton, Oregon: Gurobi Inc.; 2020

[4] Byrd RH, Nocedal J, Waltz RA.
KNITRO: An integrated package for
nonlinear optimization. In: Pillo GD,
Roma M, editors. Large-Scale Nonlinear
Optimization. Springer; 2006. pp. 35-59

[5] Jünger M et al. 50 Years of Integer
Programming 1958-2008: From the Early
Years to the State-of-the-Art. Berlin
Heidelberg: Springer-Verlag; 2010. p. 804

[6] Rardin RL. Optimization in
Operations Research. New Jersey:
Prentice-Hall; 1998

[7] Williams HP. Model Building in
Mathematical Programming. 4th ed.
Chichester, West Sussex, England: John
Wiley & Sons; 1999

[8] Danna E. Performance variability
in mixed integer programming.
In: Workshop on Mixed Integer
Programming 2008 (MIP 2008). New
York City, NY: Columbia University; 2008

[9] Rothberg E. The CPLEX library:
Mixed integer programming. In: 4th
Max-Planck Advanced Course on the
Foundations of Computer Science
(ADFOCS 2003). Saarbrücken,
Germany: Max-Planck-Institut für
Informatik; 2003

[10] Land AH, Doig AG. An
automatic method of solving discrete
programming problems. Econometrica.
1960;28(3):497-520

[11] Lima RM, Grossmann IE. On the
solution of nonconvex cardinality
Boolean quadratic programming
problems: A computational study.
Computational Optimization and
Applications. 2017;66(1):1-37

[12] Savelsbergh MWP. Preprocessing
and probing techniques for mixed
integer programming problems.
ORSA Journal on Computing.
1994;6(4):445-454

[13] Wolsey LA. Integer Programming.
Wiley-Interscience Series in Discrete
Mathematics and Optimization.
Chichester: Hoboken, NJ: Wiley; 1998.
pp. 203-258

[14] Nemhauser G, Wolsey L. The theory
of valid inequalities. In: Integer and
Combinatorial Optimization. Hoboken,
NJ: Wiley; 1988. pp. 203-258

[15] Rothberg E. The CPLEX library:
Presolve and cutting planes. In: 4th
Max-Planck Advanced Course on the
Foundations of Computer Science
(ADFOCS 2003). Saarbrücken,
Germany: Max-Planck-Institut für
Informatik; 2003

[16] Rothberg E. The CPLEX library:
MIP heuristics. In: 4th Max-Planck
Advanced Course on the Foundations
of Computer Science (ADFOCS 2003).
Saarbrücken, Germany: Max-Planck-
Institut für Informatik; 2003

[17] Rothberg E. An evolutionary
algorithm for polishing mixed
integer programming solutions.
INFORMS Journal on Computing.
2007;19(4):534-541

References

13

Recent Advancements in Commercial Integer Optimization Solvers for Business Intelligence…
DOI: http://dx.doi.org/10.5772/intechopen.93416

[18] Fischetti M, Lodi A. Local
branching. Mathematical Programming.
2003;98(1):23-47

[19] Danna E, Rothberg E, Pape CL.
Exploring relaxation induced
neighborhoods to improve MIP
solutions. Mathematical Programming.
2005;102(1):71-90

[20] Lima R. IBM ILOG CPLEX: What
is inside of the box? In: Enterprise-
Wide Optimization (EWO) Seminar.
Pittsburgh, PA: Carnegie Mellon
University; 2010

[21] IBM. CPLEX Performance Tuning
for Mixed Integer Programs. 2019.
Available from: https://www.ibm.com/
support/pages/cplex-performance-
tuning-mixed-integer-programs

[22] Bixby R et al. MIP: Theory and
practice—Closing the gap. In: System
Modelling and Optimization: Methods,
Theory, and Applications. Boston, MA:
Kluwer Academic Publishers; 2000.
pp. 19-49

[23] Bixby R, Rothberg E. Progress
in computational mixed integer
programming—A look back from
the other side of the tipping point.
Annals of Operations Research.
2007;149(1):37-41

