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Chapter

Recent Advancements in 
Commercial Integer Optimization 
Solvers for Business Intelligence 
Applications
Cheng Seong Khor

Abstract

The chapter focuses on the recent advancements in commercial integer 
optimization solvers as exemplified by the CPLEX software package particularly 
but not limited to mixed-integer linear programming (MILP) models applied to 
business intelligence applications. We provide background on the main underlying 
algorithmic method of branch-and-cut, which is based on the established opti-
mization solution methods of branch-and-bound and cutting planes. The chapter 
also covers heuristic-based algorithms, which include preprocessing and probing 
strategies as well as the more advanced methods of local or neighborhood search 
for polishing solutions toward enhanced use in practical settings. Emphasis is 
given to both theory and implementation of the methods available. Other consid-
erations are offered on parallelization, solution pools, and tuning tools, culmi-
nating with some concluding remarks on computational performance vis-à-vis 
business intelligence applications with a view toward perspective for future work 
in this area.

Keywords: integer programming, valid inequalities, local branching, relaxation 
induced neighborhood search (RINS), evolutionary algorithms, solution polishing

1. Introduction

The ongoing drive on Industrial Revolution 4.0 particularly to take advantage 
of big data analytics has impacted business intelligence applications significantly 
spanning various areas including resource assessment, corporate development, and 
advanced technology R&D research and development [1]. A key enabler supporting 
the transformation to digitalization is optimization technology which encompasses 
the established methodologies of linear and nonlinear programming with exten-
sions to discrete or integer programming. This chapter focuses on recent advance-
ments in commercial optimization solvers notably the industry-leading software 
package of IBM ILOG CPLEX [2] as applied to variants of integer programming 
problems particularly mixed-integer linear programming (MILP) models.

This chapter aims to contribute towards highlighting the growing and maturing 
capability of integer optimization especially in the last decade or so towards 
addressing, solving, analyzing, and eliciting insights from practical business intel-
ligence applications. With rapid developments in the realm of big data analytics 
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Figure 1. 
Historical background of IBM ILOG CPLEX integer optimization solver.

as spurred by Industry Revolution 4.0, advancement in optimization technology 
including integer optimization is imperative to support if not spearhead the 
changes at the forefront of the transformation taking place. The rest of the chapter 
is organized as follows. Section 2 gives an overview of the present role of integer 
optimization in business intelligence applications. Major solution methods and 
algorithms with certain enhanced features typically available in standard integer 
optimization solvers are detailed in Section 3 including those intended to exploit 
model formulations. Section 4 describes and discusses several real-world use 
cases on practical business intelligence applications that illustrate the applicability 
and strengths of integer optimization solvers. Finally, concluding remarks on the 
salient features of standard integer optimization solvers for business intelligence 
applications are offered including perspectives for future research directions.

2. Overview of integer optimization in business intelligence applications

Numerous business intelligence applications can be posed as mathematical pro-
gramming problems that can be handled by commercial optimization solvers such 
as CPLEX, Gurobi [3], or KNITRO [4]. The problems can be formulated as models 
that include linear programming (LP), mixed-integer linear programming (MILP), 
quadratic programming (QP), mixed-integer quadratic programming (MIQP), qua-
dratically-constrained programming, and mixed-integer quadratically-constrained 
programming. Such solvers are also used in tandem with other appropriate opti-
mization solvers to handle other mainly nonlinear problems such as mixed-integer 
nonlinear programming (MINLP) models or in general, mixed-integer programs 
(MIP) [5].

2.1 Computational performance of commercial integer optimization solvers

The actual computational performance of a commercial optimizer (or opti-
mization package) such as CPLEX results from a combination of improvement 
in several aspects. They include LP solvers with capability and features including 
preprocessing, algebra for sparse systems, solution methods (primal or dual simplex 
and barrier), and techniques to overcome degeneracy and numerical difficulties [6]. 
Equally important is the use of cutting planes as valid inequalities in solving prob-
lems that bridges the gap from theory to practice [7]. Further improvement involves 
applying heuristics including node heuristics (e.g., local branching, guided dives) 
and relaxation-induced neighborhood search, invoking evolutionary algorithms for 
solution polishing; and implementing parallelization for efficient computations [8].
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2.2 A commercial success story: CPLEX integer optimization solver

CPLEX is a state-of-the-art commercial integer optimization solver currently 
marketed by IBM. It represents an early commercial success story of an optimiza-
tion package with various acquisitions and a spin-off solver (called Gurobi) which 
is now a success story of its own. Figure 1 presents brief historical facts of CPLEX 
while Table 1 summarizes the software release history.

3. Solution methods and algorithms

3.1 Integer optimization algorithms

A suite of algorithms is available in various integer optimization solver to exploit 
the underlying problem structure of a business intelligence application towards 
achieving efficiency and accuracy. Table 2 summarizes the typical main algorithms 
employed by CPLEX according to the problem type identified together with 
remarks on the enhancement provided to increase computational performance [9].

3.2 Branch-and-bound

A general structure of mixed-integer program is given by:

minimize
Tc x

 (1)

=
subject to

Ax b  (2)

Year Activity/accomplishment

1988 Develops LP solver (CPLEX 1.0)

1992 Offers simple branch and bound with limited cuts (CPLEX 2.0)

1998 Incorporates simple heuristic; provides faster dual simplex (CPLEX 6.0)

1999 Introduces five node heuristics and six cutting plane types (CPLEX 6.5)

2000 Caters for semi-continuous and semi-integer variables; stipulates dual simplex as default LP 

solution method; introduces preprocessing; improved cuts (CPLEX 7.0)

2002 Introduces new LP method of sifting, concurrent optimization, new QP capabilities, and 9 

cutting plane types (CPLEX 8.0)

2003 Introduces quadratic constraint programming (QCP) and relaxation induced neighborhood 

search (RINS) (CPLEX 9.0)

2006 Improved MIQP, changes in MIP start, feasible relaxation; introduces indicators and solution 

polishing features

2007 CPLEX 11.0 incorporates solution pool, tuning pool, and parallel mode

2010 Offers faster MILP solution; introduces multicommodity flow cuts; enhanced heuristics and 

dynamic search (in CPLEX 12.2)

2017 Enables faster MILP solution; enhanced CP Optimizer; new callback framework (in CPLEX 

12.8)

2019 Includes handling of multiobjective problems; provides modeling assistance (in CPLEX 12.9)

Table 1. 
Software release history of IBM ILOG CPLEX integer optimization solver.



E-Business - Higher Education and Intelligence Applications

4

 ≤ ≤l x u  (3)

 some are integers.x  (4)

Branch-and-bound is a base algorithm to solve MIP which uses LP as a subrou-
tine [10]. The key strategies of a branch and bound procedure involve splitting 
(i.e., branching) the solution space into disjoint subspaces, bounding the objective 
function values for all solutions in the subspaces, and pruning or fathoming nodes 
of branches that cannot yield better solutions. Although it is provably exponential 
in time, tricks are available to accelerate its search which mostly apply to a subset of 
models with a suite of algorithms available.

The branching strategies are performed on the integer variables and comprise 
two main steps: (1) Choose an integer variable as a branching variable ,

j
x  (2) Split 

the problem into two submodels: ≤jx i  or ≥ + 1jx i  where for the special case of 
binary variables, the problem becomes 0=jx  or 1.=jx

The bounding problem given by the continuous (LP) relaxation to determine a 
lower bound 

L
IPz  on the objective function value of the original MIP problem can be 

described as follows: minimize
 

( )=T L
IPc x z  subject to = ,Ax b  ≤ ≤l x u  (simple 

bounds), and some jx are integers. The continuous relaxation problem gives 
solution of an optimal objective value of 

L
IPz , which is a lower bound on the objec-

tive function value of the original MIP problem by relaxing the integrality restric-
tion. There are two useful properties of continuous relaxation: (1) If its solution 
satisfies integrality restrictions, there is no need to further explore the subspace;  
(2) It offers natural branching candidates as the integer variables with fractional 
values in a relaxation solution.

Key steps in the branch-and-bound procedure are summarized in Figure 2. As 
described in Figure 2, node selection in step 1 involves a tradeoff between achieving 
feasibility and optimality. The options available for node selection include depth 
first, breadth first, best first, limited discrepancy, and best estimate. When exploring 
nodes deep in a search tree, one is more likely to find integer feasible solutions and 
explore nodes that would be pruned by later feasible solutions. The method called 
plunging (as combined with those aforementioned) always choose a child node of 
previously explored node.

In step 2, the node relaxation step is ideally suited to dual simplex method. It 
involves only a small change from the parent relaxation solution (at the root node) 
and gives a new bound on the branching variable while maintaining dual feasibility 
of the previous basis. Thus, the solution is likely to be close to the previous basis. 

Solver/optimizer Algorithm Model 

type

Remark

Simplex Primal, dual, 

network

LP, QP Reoptimization with simplex algorithms is 

faster when starting from a previous basis

Barrier Interior-point LP, QP, 

QCP

Explore multiple threads presence Barrier 

optimizer cannot start from advanced basis—

limited application in B&B for MILP

Mixed-integer 

optimizers

Branch and 

cut, dynamic 

search

MILP, 

MIQP, 

MIQCP

IBM proprietary/trade secret methodology to 

solve MIP (some user callbacks cannot be used)

Table 2. 
Algorithms available in IBM ILOG CPLEX integer optimization solver.



5

Recent Advancements in Commercial Integer Optimization Solvers for Business Intelligence…
DOI: http://dx.doi.org/10.5772/intechopen.93416

Typically, a few dual simplex iterations are sufficient to restore optimality, and the 
cost per node is quite small. The subsequent step 3 entails generating cutting planes 
as needed to obtain a continuous (LP) relaxation solution.

Step 4 involves variables fixing using reduced cost. If the following condition as 
given by Eq. (5) holds at a branch-and-bound node:

 ∗+ ≥LP jz D z  (5)

where LPz  = objective value of LP relaxation solution at the root node, 
∗z  = objective value of an incumbent (i.e., best known integer feasible solution), 

and 
jD  = reduced cost (marginal cost of releasing a variable from its bound), then 

we apply the strategy of fixing jx  to its current value in this subtree of the search. 
The goal here as described by step 5 is to obtain integer feasible solutions which are 
similar to the relaxation solution.

Selecting an appropriate branching variable can significantly affect the search tree 
size, which is emphasized in the subsequent step 6. In this regard, the guiding princi-
ples are to make the important decisions early (as modeled by the integral branching 
variables) by being aware of the impact of both branching directions. To illustrate by 
using a factory building problem, such a decision involves whether to build a factory 
first while the decision on the number of lines to be placed in the factory can be made 
later. In general, we can predict the impact of a branch by considering variables that 
are furthest from their bounds which indicate maximum infeasibility. Thus, the 
impact for each branching candidate can be measured to allow for strong branching 
to be performed, e.g., by using historical information such as pseudo-costs.

Finally, in step 7, the main idea in propagating implications logically is to fix the 
binary variables to possible values during tree exploration and determine the binary 
variable values. Bound strengthening is used to tighten variable bounds.

Practical considerations render implementing branch-and-bound to be unsuit-
able for large scale problems chiefly because the number of iterations grows 

Figure 2. 
Key steps in the branch-and-bound procedure [9].
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Figure 3. 
Branch and cut algorithm (CPLEX).

exponentially with number of variables. Therefore in practice, a commercial 
business intelligence solver such as CPLEX uses a branch-and-cut procedure as a 
modification which applies model reformulation by using presolve strategies and 
adding cutting planes (or cuts) as shown in Figure 3 with possible enhancement in 
practice around the root node computations [11].

3.3 Presolve and cutting planes

The original MIP formulation can be improved by tightening it with fewer 
constraints and variables thus entailing less data handling requirement (yet with 
the same solution quality). A tighter formulation also leads to a smaller differ-
ence between the space of the feasible continuous and feasible integer solutions, 
hence relying less on branching to refine the continuous relaxation computation. 
Two techniques are used: (1) presolve which combines preprocessing and probing 
strategies [12, 13]; and (2) cutting planes [14].

Presolve generates a new tighter improved model without size increase that is 
independent of the relaxation solution. Preprocessing aims to identify feasibility 
and redundancy while improving bounds (e.g., through rounding) while that of 
probing improves coefficients by fixing the binary variable values while checking 
for their logical implications. In both cases, we achieve a tighter model reformu-
lation using similar steps of adding or replacing constraints that maintain the 
same integer solutions but with fewer continuous relaxation solutions. Adding a 
single constraint can produce an exponential number of tighter constraints. Such 
tighter constraints dominate the existing constraints without creating a larger 
problem. Note that reformulation solution is different from that of relaxation.

In contrast, we add a cutting plane (or valid inequality) to an existing model 
(typically the presolve-reformulated model) to remove a relaxation solution—this 
feature constitutes an important difference between the two techniques. Therefore, 
cutting planes introduce tighter constraints that cut off a particular relaxation solu-
tion and in so doing, achieves focused growth in model size.

In summary, presolve is vital in solving MIP as there is significant scope to 
improve most model formulations through reducing problem sizes (by more than 
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5 times is not uncommon) or runtimes (similarly by up to 10 times). On the other 
hand, cutting planes are available in numerous varieties with many valid types 
applicable for a particular model. Thus we need to identify relevant ones which 
serve to cut off appealing relaxation solutions. There is a need to strike a balance in 
terms of how many cuts to generate for a relaxation solution. Since we need to cut 
off relaxation solution only once, and it is expensive to resolve in obtaining a new 
relaxation solution for each cut added, we conduct multiple rounds of cutting plane 
generation while limiting the number of cuts per round in view of the increased 
model size [15].

3.4 Heuristics

Heuristics for solving MIP aims to produce good and possibly feasible solutions 
quickly without relying on branching in satisfying user demands for a problem. 
Thus, heuristics avoid exploring unproductive subtrees (in a branch-and-cut 
scheme) while exploring parts of tree that a solver typically will not. In doing so, 
heuristics help to prove optimality explicitly by pruning nodes more efficiently as 
well as implicitly by giving integer solutions [16].

Heuristics can be classified into two classes as available in a solver like CPLEX: 
(1) plunging (diving) heuristics, and (2) local improvement heuristics which 
explore interesting neighborhoods around potential solutions using search strate-
gies such as local branching, relaxation induced neighborhood search (RINS), 
guided dives, and evolutionary algorithms for solution polishing. Plunging heuris-
tics maintains linear feasibility in trying to achieve integer feasibility while local 
improvement heuristics operate conversely [17]. A typical strategy for heuristics 
applied at the root node involves the sequence shown in Figure 4.

Some considerations in applying plunging heuristics include tradeoffs of how 
many variables to fix per computation round and in what order. While it is compu-
tationally inexpensive to fix all variables rather than a few variables, LP relaxation 
solutions in the latter (not needed in the former) can guide later choices (e.g., on 
variable values and reduced costs). Variations in variable fixing order can be useful 
for diversification. On the other hand, a high-level structure of local improvement 
heuristics involves choosing integer values for all the integer variables, which 
produces linear infeasibility; iterating over the integer variables; and applying 
infeasibility metrics [16].

The effectiveness of heuristics is evidenced in that feasible solutions are found 
for most models before branch-and-bound is performed. Approximately 10% 
improvement in computational time to proven optimality has been reported [16]. 
Furthermore, heuristics often get solutions not obtained by branching.

3.5 Combined local search and heuristics

A combination of local search and heuristics offers a powerful optimiza-
tion framework to solve difficult MIP or combinatorial optimization problems. 
Examples of local search methods include simulated annealing, tabu search, and 
genetic algorithms. Local search methods consist of the key strategies of neighbor-
hood (i.e., considers a set of solutions in the vicinity of current solution); intensi-
fication (i.e., temporary focus on part of solution space), and diversification (i.e., 
mechanism to change focus occasionally). In applying local search to MIP, gener-
ally neighborhoods are based on the problem structure, e.g., nodes and edges in 
graphs with no high level structural information available in arbitrary MIP models 
[16]. A question that arises is how we can generate and explore an interesting 
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neighborhood given an incumbent solution. In this regard, two methods are avail-
able, namely local branching [18] and relaxation induced neighborhood search 
(RINS) [19].

3.6 Parallelization

Parallelization is available in an integer optimization solver such as CPLEX, 
which encompasses the MIP solution engine, barrier algorithm, and concurrent 
optimization techniques for solving LP and QP problems. In the instance of CPLEX, 
parallelization involves launching several optimizers to solve the same problem—
the process stops when the first solver reaches a solution. Within a branch and 
bound scheme, parallelization involves solution of the root node and nodes as well 
as strong branching in parallel [20].

3.7 Solution pools

The motivation to consider solution pools lies in the value of having more than 
one solution due to inaccurate data, approximations in model formulations, or 
inability of a model to capture the full essence of a problem. Thus, solution pools 
aim to generate and keep multiple solutions by using various options and tools that 
involve collecting solutions within a given percentage of optimal solution or those 
with diverse solutions and properties. However, difficulty is noted in implementing 
solution pools with the strategy of rolling horizon decompositions [17].

3.8 Tuning tools

As MIP solvers have multiple algorithm parameters which dictate their perfor-
mance, the objective of tuning tool is to identify solver parameters that improve 
the performance for a given problem set. While default parameter values of MIP 
solvers are defined to work well for a large collection of problems, there is no such 
guarantee for a specific user problem [21].

4. Use cases

This section presents three use cases of applying commercial integer opti-
mization solvers to implement and improve or enhance business intelligence 
applications. The model formulations for the use cases are implemented on GAMS 
modeling platform (and available in GAMS Model Library) from which the CPLEX 
solver is accessed.

4.1 Use case 1: energy optimization

The first use case presents a practical application of CPLEX as a standard solver 
for an energy business portfolio optimization problem for an electric utility company. 
For such electricity distribution public service, the problem involves to determine the 
amount to produce internally (i.e., in one’s own power plant) and that to purchase 

Figure 4. 
Heuristics at root node.
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externally (i.e., from the spot market or load following contracts). The problem for-
mulation leads to a medium-to-large scale MILP model with size and computational 
statistics as described in Table 3. To accelerate solution convergence, several compu-
tational options are invoked including priority branching within a branch-and-bound 
procedure and multiple processing through parallelization (i.e., techniques introduced 
in the foregoing section). The computational results and implications as discussed in 
the cited reference demonstrates the applicability of the solver as an effective tool for 
1-day ahead planning within a real-world electricity market in Germany.

4.2 Use case 2: financial optimization

The second use case involves financial optimization of risk management with 
commercial implications . The problem is amenable to be posed as an integer opti-
mization model to capture an extensive set of rules and regulations that governs 
the delivery and settlement of mortgage-backed securities. The availability of 
reliable, robust, and efficient commercial integer optimization solvers alongside 
computing technology developments have facilitated the deployment and valida-
tion of such models with the computational statistics summarized in Table 4. The 
advancement achieved has led to optimization models including (if not particu-
larly) integer programs to become essential omnipresent tools in current financial 
operations, which is comparable to the application of operations research and 
management science models in the domains of manufacturing, transportation, 
and logistics.

Computing platform GAMS 24.2.3 on laptop with Intel Core i7-8550U 1.80 (up to 1.99) GHz, 

8 GB of RAM

No. of continuous 

variables

1260

No. of discrete variables 773

No. of constraints 2178

No. of iterations 2,799,216

CPU time 408.234 second

Objective function value EUR266,793 (for optimality gap = 0%)

Table 3. 
Model size and computational statistics for use case 1.

Computing platform GAMS 24.2.3 on laptop with Intel Core i7-8550U 1.80 (up to 1.99) GHz, 

8 GB of RAM

No. of continuous 

variables

255

No. of discrete variables 199

No. of constraints 487

No. of iterations 238

CPU time 0.157 second

Objective function value 36.96 (for optimality gap = 1 × 10−4%)

Table 4. 
Model size and computational statistics for use case 2.
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4.3 Use case 3: manufacturing optimization

The third use case concerns production planning for a manufacturing facility . 
The application can be formulated as a standard integer optimization model of an 
uncapacitated lot-sizing problem. The objective function seeks to minimize produc-
tion cost in meeting market demand constraints with cost components on produc-
tion, stocking, and machine setups. Table 5 gives the model size and computational 
statistics for the largest problem instance solved for this use case.

5. Conclusions

Performance variability across commercial integer optimization solvers applied to 
business intelligence applications (such as that for the use case in Section 4) occurs due 
to opportunistic parallelization, use of heuristics particularly by invoking polishing 
option (which involves random seed), or simply numerical reasons. Variability may be 
observed in computational time, performance in terms of number of nodes and itera-
tions, or solution quality. A main limitation of the applicability of integer optimization 
solvers typically pertains to the number of integer variables that can be handled within 
acceptable computational load or solution time. Therefore, it is worthwhile for future 
research in this area to consider further improvement in the mentioned areas [22, 23] 
towards achieving acceptable performance levels that are requisite and crucial for 
business intelligence applications.
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