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The research into Surface Acoustic Wave (SAW) devices began in the early 1970s 

and led to the development of high performance, small size, rigorous and high 

reproducibility devices. SAW devices have been recognized for their versatility and 

efficiency in controlling and processing of electrical signals. Much research has now 

been done on the application of such devices to consumer electronic, communication 

systems and process function, such as delay lines, filters, resonator, and pulse 

compressors. 

The use of novel material, such as Gallium phosphate (GaPO4), extends the operating 

temperature of the SAW elements. In this thesis SAW devices based on this new 

material, operating at resonance frequency of 433.92 MHz been studied for passive 

wireless application. The SAW devices consist of interdigital transducer (IDT) with 

1.4 µm finger gap ratio of 1:1 of platinum and under-layer of chromium metallization. 

A modeling using lumped equivalent circuit (LEC) of the device and finite element 
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modeling (FEM) was done. The frequency responses of device were simulated by S-

parameter and impedance. 

The impedance was used to study the mass loading effect of the Platinum electrodes 

of the SAW devices. The analysis of the result shows that the mass loading affects the 

resonant frequency of the SAW device. Furthermore, the results show that FEM 

approach is more precise than LEC for design and simulation of SAW resonator. 
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Kajian berkenaan peranti gelombang akustik permukaan (SAW) telah bermula seawal 

tahun 1970an dan membawa kepada perkembangan peralatan perlaksanaan tinggi, 

bersaiz kecil, tahan lasak dan pengeluaran yang tinggi. Peranti SAW memang telah 

dikenali dengan kecekapan dan serba-bolehnya di dalam mengawal dan memproses 

signal elektrik. Sehingga kini, banyak kajian yang telah dilakukan dalam perlaksanaan 

yang berkaitan dengan peranti elektronik pengguna, sistem komunikasi, dan sistem  

pemprosesan seperti talian tunda , penapis, resonator dan pemampat denyutan. 

 

Penggunaan bahan baru seperti Gallium phosphate (GaPO4 ) telah menambah baik 

tahap suhu peranti SAW. Melalui tesis ini, peranti SAW yang menggunakan bahan 

yang baru ini, beroperasi pada 433.92 MHz frekuensi resonan telah dikaji bagi 

perlaksanaan tanpa wayar tidak aktif. Peranti SAW ini mengandungi penerima 

gelombang antara-angka (IDT) dengan 1.4µm nisbah jarak jari 1:1 terdiri dari 

platinum dan lapisan bawah chromium. Model litar persamaan cantuman  dan model 
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pembezaan terhingga (FEM) telah digunakan. Tindakbalas frekuensi peralatan ini  

telah di simulasikan dengan parameter S dan impedans. 

 

Impedans digunakan untuk mengetahui kesan jisim muatan oleh elektrod platinum 

peranti SAW. Analisa telah menunjukkan bahawa kesan jisim muatan boleh 

mempengaruhi resonan peranti tersebut. Bawasa nya Keputusan telah menunjukkan 

bahawa pendekatan FEM ada lah lebih tepat dari LEC bagi rekabentuk dan simulasi 

resonator SAW. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction 
 

There has been a tremendous growth in the telecommunications industry over the 

past few decades with a subsequent increase in demand for high quality and reliable 

components. Surface Acoustic Wave (SAW) is being used as the main principle 

component in devices that are successfully applied to electrical signal processing for 

more than three decades. They are prevalently applied in the telecommunication 

industry, particularly as band-pass filters both in IF and RF sections, or in resonators 

due to their perfect performance, high accuracy, and smallness of size.   

It is also employed in wireless communication systems due to demanding of higher 

operating frequencies, wider bandwidth and lower insertion loss. Besides, the high 

accuracy and crystal stability over time make SAW a suitable device in sensors 

application (e.g. pressure, temperature, and strain). Consequently, there is an 

increasing urgent need to improve this device in design, modeling, simulating, 

techniques of fabrication, and response prediction. The recent advances in sensor 

technology have become mainly possible by means of microtechnology, particularly 

with microfabrication technique to produce this device in real-life [1].  

With the large number of components that are indispensable to achieve of the 

required functionality, the electric wiring of spatially distributed systems becomes 

complex and causes difficulties in system handling and installation. Through the use 

of wireless systems these problems can be overcome. Wireless systems have been 

successfully applied to the processing of electrical signals for more than 30 years, 
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particularly in the telecommunication industry. This was first demonstrated in 1965, 

by the use of voltage-excited metal-film interdigital transducers on the surface of 

piezoelectric substrate as described by White and Voltmer [2]. Since then, however, 

SAW devices have become popular in consumer and communications systems [3, 4]. 

These wireless systems also can be used as a sensor, where they can communicate by 

ultrasonic or infrared signals [1]. 

The advantage of being wireless is that these SAW devices can be placed in 

unrestricted locations, and therefore making measurement close to its occurrence 

possible, independent of potentially harsh circumstances, such as in the power plant. 

At present, this knowledge is gained from costly periodic shutdowns and manual 

inspection. Because of the characteristics of SAW devices such as small in size, 

rugged and light weight which makes them a good choice for highly integrated 

wireless transceivers. 

In addition, with the introduction of passive SAW devices in wireless application, no 

local power source for the device is required. SAW devices offer new and exciting 

perspectives for remote monitoring and control of moving parts, even in harsh 

environments where no other devices can operate. Another advantage is that no 

semiconductors are used in conjunction with the sensors, which are able to withstand 

a high dose of radiation and a powerful electromagnetic interference (EMI) up to the 

power endurance of the devices. 

Surface acoustic waves are essentially mechanical waves (i.e. conventionally called 

acoustic waves) which propagate on the surface of an elastic medium with most of its 

energy concentrated near the substrate surface. In general, piezoelectric substrates 

such as quartz are used as elastic medium. The physical phenomenon on which the 

SAW devices are based is piezoelectricity, (i.e. the virtue by which certain materials 
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produce electrical charge when mechanically strained or vice versa), which follows 

as structure depicted in Figure 1.1. 

Figure 1.1 illustrates the relationship between stimulus and strain. It is valid for 

stationary/slowly changing events (i.e. piezoelectric actuator or sensor) or dynamic 

events (i.e. SAW device excited by an RF signal).  

 
Actuator: Stimulus (e.g. voltage) results in strain output 

 
Sensor: Stimulus (e.g. deformation) results in signal output (e.g. voltage) 

  
Figure 1.1: Stimulus-strain Relationship for Piezoelectric Substrate 

 
The most important part of a SAW device is the Interdigital Transducer (IDT) or 

electrodes as shown in Figure 1.2. IDT is patterned on the surface of the piezoelectric 

substrate by using lithographic techniques. When an alternating electric input signal 

is applied to the electrodes, the electric field penetrates the piezoelectric substrate 

and surface acoustic waves are induced due to piezoelectric coupling. Similarly, 

charge accumulates on the electrodes in response to the acoustic waves, which in 

turn induces secondary acoustic waves. In this manner, IDTs can act as transmitters, 

receivers and reflectors collectively [5]. 
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Figure 1.2: IDT in a SAW Device 

 

Acoustic wavelength λ  is given by fυ where υ  is the velocity of SAW and f  the 

frequency. The periodicity of the required interdigital electrodes is related to the 

acoustic wavelength λ  , and is equal to 2λ  as shown in Figure 1.3. The surface 

wave velocity is typically five orders of magnitude smaller than that of 

electromagnetic waves in free space and therefore the wavelength is also much 

smaller at the same frequencies, which translate into smaller device sizes. 

 

 
Figure 1.3: IDT Periodicity and Wavelength 

 
Basically, there are two types of structure for SAW devices: delay line and resonator. 

A delay line is shown in Figures 1.4 (a) and (b), consists of two interdigital 

transducers (IDTs) (or an IDT and reflector), and a propagation path between them, 

while a resonator has one or two IDTs between the reflectors as shown in Figures 1.4 


