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The controlled drug release has been proven to enhance the bioavailability of a drug 

by maintaining the drug concentration in therapeutic level within certain period of 

time and lowering the risk of drugs side effects by reducing the frequency of drug 

administration. Among the available drug administration systems, microcapsule has 

provided advantages over the conventional mode, due to higher efficiency and 

flexibility. This microcapsule can be produced by supercritical fluids (SCF) method 

which currently been used in composite particles production. This application solves 

the limitations of conventional pharmaceutical methods for the production of active 

ingredient loaded micro particles. Supercritical anti-solvent (SAS) is one of the SCF 

methods proven to have good potential in micronization of pure component. In this 

technique, SCF acts as an anti-solvent for the feed solution and the precipitation 

occurs when these two media (SCF and feed solution) contact each other. Therefore, 

the general objective of this study is to widen the application of SAS in the co-
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precipitation of two components namely acetaminophen in Eudragit RL 100 towards 

controlling the delivery of the drug. 

 

The investigation began with the development of a mathematical model to estimate 

the rate of mass transfer between a solvent droplet and CO2 during SAS process in 

the supercritical regime. The simulation results show that, the solvent droplet 

expands when the solvent is denser than CO2, and shrinks when the CO2 is denser 

than the solvent. Both of these phenomena occur in less than one second. Based on 

the developed mathematical model, SAS system with 490ml of precipitation vessel is 

designed and developed. The design work focuses on the precipitation vessel, 

particle collector, temperature control system, process stream and selection of 

spraying device. After the commissioning of the SAS completed, the system is used 

to determine the optimum operating conditions for co-precipitation of acetaminophen 

in Eudragit RL 100. The optimum conditions are determined based on the 

encapsulation efficiency, particle size, product recovery and loading efficiency. The 

optimum conditions are 110 bars, 35 °C, 1.75 ml/min feed flow rate and 35 mg/ml 

polymer concentration. 

 

The repeatability and consistency of the SAS system is also determined to ensure the 

accuracy of the results.  At least 90% consistency is achieved in the co-precipitation 

of acetaminophen in Eudragit RL100 as judged by the particles size. In addition, the 

analysis of fourier transform infra red (FTIR) and thermo gravimetric analyzer (TGA) 

prove that the association between the acetaminophen and Eudragit RL 100 is 

physical. The results also show that the SAS process do not change the chemical 

structure (FTIR and high performance liquid chromatography (HPLC)) and thermal 
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stability (TGA and differential scanning calorimetry (DSC)) of acetaminophen 

during the process. However, the crystallinity of treated acetaminophen is marginally 

reduced compared to the untreated acetaminophen (x-ray diffraction (XRD)). More 

importantly, SAS process has successfully improved the homogenity and size of 

acetaminophen which is evidenced from the image of scanning electron microscope 

(SEM).  The diffusion coefficient for the release of the processed acetaminophen is 

also determined by Fick’s second law in this study. In is found that the diffusion 

coefficient is affected by the particle size and polymer concentration. The estimated 

diffusion coefficient has a magnitude of 10-14 m2/s.  

 

In conclusion, SAS technique has been proven to be one of the promising alternative 

techniques for co-precipitation of two solutes in drug microcapsules production for 

controlled drug delivery.  
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Pengawalan penghantaran ubat yang telah dibuktikan dalam peningkatan 

kebolehdapatan-bio ubat dengan mengekalkan kepekatan ubat  dalam tahap rawatan 

pada satu jangka masa dan  juga mengurangkan risiko kesan tidak baik daripada ubat 

kerana mengurangkan frekuensi pengambilan ubat.  Antara sistem pengawalan yang 

sedia ada, mikrokapsul memberi kebaikan seperti memberi kesan yang lebih tinggi 

dan cara pengambilan yang lebih fleksibel berbanding dengan cara lama. 

Mikrokapsul ini boleh dihasilkan melalui bendalir superkritikal (SCF) yang 

merupakan salah satu cara digunakan pada masa sekarang untuk menghasilkan 

partikel komposit. Cara ini mengatasi kekurangan cara lama yang digunakan di 

bidang farmaseutikal untuk menghasilkan partikel mikro yang mengandungi ramuan 

aktif  dan ia berkembang dengan pesat dalam bidang penghasilan partikel mikro. 

Anti-pelarut superkritikal (SAS) adalah satu cara yang telah dibuktikan kegunaannya 

dalam bidang pengecilan saiz komponen tulen. Dalam cara ini, SCF berfungsi 
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sebagai anti-pelarut bagi larutan suapan dan pemendakan berlaku apabila dua media 

ini ( SCF dan larutan suapan) bertemu. Justeru, objektif umum pengajian ini adalah 

untuk memperluaskan kegunaan SAS yang melibatkan dua komponen seperti 

pemendakan-bersama acetaminophen dalam Eudragit RL 100 untuk pengawalan 

penghantaran ubat.  

 

Pengajian ini bermula dengan menerbitkan satu model matematik untuk menjangka 

pemindahan jisim antara titisan pelarut dan CO2 semasa proses SAS di keadaan 

superkritikal. Keputusan menunjukkan bahawa titisan pelarut mengembang apabila 

ketumpatan pelarut adalah lebih tinggi berbanding dengan  CO2, dan titisan pelarut 

mengecut apabila CO2 adalah lebih tumpat daripadanya. Walau bagaimanapun, 

kedua-dua keadaan ini berlaku dalam jangka masa kurang daripada satu saat. 

Berasaskan daripada keputusan model, satu sistem SAS dengan 490 ml benjana 

pemendakan telah direka dan dibangun. Ia merangkumi rekaan bejana pemendakan, 

pengumpul partikel, sistem pengawalan suhu, penyusunan proses dan juga alat 

penyebaran. Keadaan optimum untuk pemendakan bersama acetaminophen dan 

Eudragit RL 100 ditentukan setelah sistem SAS itu telah dikenalpasti. Keadaan 

optimum ini ditentukan berasas daripada kecekapan pengalutan, saiz partikel, 

pemulihan produk dan kecekapan pengisian. Keadaan optimum yang telah 

ditentukan ialah:110 bar, 35 °C, 1.75 ml/min kadar suapan and 35 mg/ml kepekatan 

polimer. 

 

Sistem SAS itu juga mampu mengekalkan sekurang-kurangnya 90% konsistensi 

dalam pemendakan-bersama acetaminophen dan Eudragit RL 100 berasaskan saiz 

partikel. Hubungan antara acetaminophen dan Eudragit RL 100 adalah fizikal sahaja 
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setelah dianalisis oleh fourier transform infra red (FTIR) dan thermo gravimetric 

analyzer (TGA). SAP juga dikenalpasti bahawa ia tidak mengubah struktur kimia 

(FTIR dan high performance liquid chromatography (HPLC)) dan kestabilan 

terhadap haba (TGA dan differential scanning calorimetry (DSC)) acetaminophen 

semasa proses. Akan tetapi, tahap kristal acetaminophen (x-ray diffraction (XRD)) 

telah berkurangan berbanding dengan acetaminophen asal. Proses SAS juga mampu 

mengecilkan serta menyeratakan saiz acetaminophen yang dilihat bawah scanning 

electron microscope (SEM). Angkali serapan acetaminophen yang telah diproses 

berjaya ditentukan dengan hukum kedua Fick dalam pengajian ini. Keputusan 

menunjukan bahawa ia dipengaruhi oleh saiz partikel dan juga kepekatan polimer. 

Anggaran angkali serapan adalah dalam linkungan 10-14 m2/s. 

 

Kesimpulannya, teknik SAS menunjukkan bahawa ia merupakan cara alternatif 

untuk pemendakan-bersama dua komponen yang bermatlamat untuk pengawalan 

penghantaran ubat. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Controlled drug delivery products in the form of composite particles, using 

biocompatible or biodegradable polymers, have received considerable attention in 

the recent years. Among the potential applications of these composite particles is the 

protection of the sensitive therapeutically active molecules against in vivo 

degradation. It may also reduce the toxicity side effects which can occur when some 

highly active drugs like those used for cancer treatment are administered in the form 

of a solution. Besides, it helps the patient to be more comfortable by avoiding 

repetitive injection or reducing the use of perfusion pumps, and may also leads to 

improvement in favorable drug pharmacokinetics (Gref et al., 1995). 

 

The effective use of pharmacologically active substances in the chemotherapy of 

cancer, viral infections, and many other diseases suffers from non-specific toxicity 

and poor tissue specificity of drugs. These composite particles can also be used as 

carriers for targeting these pharmacologically active substances by the intravenous 

route in order to increase the active substance’s effectiveness in the diseased tissue 

and reduce general toxicity (Verdun et al., 1986). 

 


