

UNIVERSITI PUTRA MALAYSIA

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-**CARBON NANOTUBE NANOCOMPOSITES**

JEEFFERIE BIN ABD RAZAK

FK 2009 42

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-CARBON NANOTUBE NANOCOMPOSITES

JEEFFERIE BIN ABD RAZAK

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2009

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-CARBON NANOTUBE NANOCOMPOSITES

 $\mathbf{B}\mathbf{y}$

JEEFFERIE BIN ABD RAZAK

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfillment of the Requirement for the degree of Master of Science

DECEMBER 2008

DEDICATED TO

Emak, Ayah & All My Family Members

Uan, Omar, Fendi, Nana, Bee, Angah, Fauz,

KKA Postgraduates, FKP Staff & UTeM

2006-2008

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

PRODUCTION AND CHARACTERIZATION OF POLYPROPYLENE-CARBON NANOTUBE NANOCOMPOSITES

Bv

JEEFFERIE BIN ABD RAZAK

2009

Chairman : Mohamad Amran Mohd Salleh, PhD

Faculty : Engineering

At the first stage in this research, the multi-walled carbon nanotubes (MWCNTs) were grown by using the floating catalysts chemical vapor deposition (FC-CVD) method. The produced MWCNTs were characterized by using the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the high resolution transmission electron microscopy (HRTEM). The MWCNTs was incorporated into polypropylene (PP) to produce the PP/MWCNTs nanocomposites through the direct melt compounding process using an internal mixer. The mixer parameters were varied to determine the best parameter to produce the nanocomposites. It was determined through the tensile test which performed on every nanocomposite which fabricated from the various combinations of parameters. The best parameters to produce the nanocomposites were at the temperature of 175°C, rotor speed of 60 rpm and the compounding time of 8 minutes. In the next stage, the effect of filler loading was studied. The filler loading was varied from 0, 0.25, 0.50, 0.75 and 1.00wt.%. The

best tensile properties was observed in the nanocomposites with 0.75wt.% of MWCNTs, with the improvement of 42.82% and 126.90% of the tensile strength and tensile modulus, compared to the virgin PP matrix. The validation of the tensile test data was carried out by using the historical data design from the Response Surface Methodology (RSM) with the aid of the Design Expert Software 6.10. The PP/MWCNTs nanocomposites which compounded from the best processing parameter were further characterized for other properties. Physical test on the nanocomposites density was revealed that the density is decreased with the increasing percentage of MWCNTs addition. This condition gives benefit on the weight saving of the materials. Fourier Transform Infra Red (FTIR) and X-Ray diffraction analysis disclosed that the melt blending between the PP matrix and MWCNTs filler is entirely physical-mechanical blending, without involving any chemical interaction. This further explained the reinforcement behavior of the MWCNTs within the PP matrix. Furthermore, TEM images of the nanocomposites surface confirmed an excellent dispersion and distribution of the MWCNTs in the PP matrix. This condition was supported by the significant improvement of the flexural strength, flexural modulus, impact strength, and storage modulus and loss modulus properties of the fabricated nanocomposites. In overall, the proper selection of the melt blending processing parameter and the use of low filler loading was significantly helped to disperse and distribute the MWCNTs homogenously within the PP matrix, resulting major improvements to the many of the properties studied.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains

PENGHASILAN DAN PENCIRIAN NANOKOMPOSIT POLIPROPILENA-KARBON NANOTIUB

Oleh

JEEFFERIE BIN ABD RAZAK

2009

Pengerusi : Mohamad Amran Mohd Salleh, PhD

Fakulti : Kejuruteraan

Pada peringkat pertama penyelidikan, karbon nanotiub berbilang dinding (MWCNTs) telah ditumbuh melalui kaedah pemangkinan terapung secara pemendapan wap kimia (FC-CVD). MWCNTs yang dihasil telah diciri menggunakan mikroskop imbasan elektron (SEM), mikroskop pemindahan elektron (TEM) dan mikroskop pemindahan elektron resolusi tinggi (HRTEM). MWCNTs telah digabung dengan polipropilena (PP) bagi menghasil nanokomposit PP/MWCNTs melalui proses penyebatian lebur secara terus, menggunakan pencampur dalaman. Parameter pencampur dipelbagai bagi menentukan parameter terbaik bagi menghasilkan nanokomposit. Ia ditentukan melalui ujian tegangan yang dilakukan keatas setiap nanokomposit yang difabrikasi dari gabungan pelbagai parameter. Parameter terbaik bagi menghasil nanokomposit adalah pada suhu 175°C, kelajuan rotor 60 rpm dan tempoh penyebatian selama 8 minit. Pada peringkat seterusnya, kesan pembebanan pengisi telah dikaji. Pembebanan pengisi dipelbagai

dari 0, 0.25, 0.50, 0.75 dan 1.00 peratus berat. Sifat tegangan terbaik diperhati pada nanokomposit terisikan 0.75 peratus berat MWCNTs, dengan penambahbaikan sebanyak 42.82% dan 126.90% bagi kekuatan tegangan dan modulus tegangan berbanding matriks PP dara. Pengesahan keatas data ujian tegangan dilaksana dengan menggunakan kaedah permukaan sambutan (RSM) dengan bantuan perisian Design Expert 6.10. Nanokomposit PP/MWCNTs yang disebati menggunakan parameter pemprosesan yang terbaik seterusnya diciri bagi sifat-sifat yang lain. Ujian fizikal bagi ketumpatan nanokomposit menunjukkan ketumpatan adalah mengurang dengan peningkatan peratusan penambahan MWCNTs. Keadaan ini memberi kebaikan kepada pengurangan berat bahan. Analisis perubahan fourier infra merah (FTIR) dan pembelauan sinar-X (XRD) mendedahkan bahawa penyebatian lebur antara matriks PP dan pengisi MWCNTs secara keseluruhannya adalah penyebatian fizikalmekanikal, tanpa melibatkan sebarang interaksi kimia. Ini selanjutnya menerangkan kelakuan penguatan MWCNTs dalam matriks PP. Sebagai tambahan, imej-imej TEM bagi permukaan nanokomposit mengesahkan taburan dan serakan MWCNTs yang sangat baik didalam matriks PP. Keadaan ini disokong oleh penambahbaikan signifikan bagi sifat-sifat kekuatan pelenturan, modulus pelenturan, kekuatan hentaman, modulus simpanan dan modulus lesapan bagi nanokomposit yang difabrikasi. Secara keseluruhan, pemilihan parameter pemprosesan pencampur lebur yang betul dan penggunaan pembebanan pengisi yang rendah akan secara signifikannya dapat membantu serakan dan taburan MWCNTs secara seragam, menyebabkan penambahbaikan yang major bagi kebanyakan sifat yang dikaji.

ACKNOWLEDGEMENT

This work could have not been finished without the support and sacrifice of many people I had met over the last couple of years. They are the group of intelligent and nice people I would like to be with in my lifetime. To begin with, I would like to thank deeply to my supervisor Dr. Mohamad Amran Mohd Salleh for his help and insight resolving many of the problems encountered throughout this work. He has given me the full freedom to decide and work on problems and approaches of most interest to me. I wish to thanks to Dr. Nor Azowa Ibrahim for her sincere endless support and full guidance during the course of this work. She has been a great source of ideas, invaluable feedback and encouragement through all stages of my M.Sc. program. Also, I wish to appreciate Dr. Suraya Abd Rashid and Prof. Dr. Fakru'l-Razi Ahmadun as a member of supervisory committee of this thesis. Thanks for the very positive and good aura which always make me strong and confident with myself. Without them all, I have no inner strength to face all the challenges and difficulty during the period of candidature.

I would like to express greatest appreciation to my entire family member for their long-standing support, encouragement and patience towards the completion of this work. Thanks *emak* and *ayah* for your everyday prayers to the successfulness of life and education for your son. Thanks also to all, whom contributed directly or indirectly (to name a few), to the successfulness of this research work. May God Bless Them All!!! To all my friends, many thanks for the true friendships bloomed and hope all of us can be more succeed in the future. To Universiti Teknikal Malaysia Melaka (UTeM), thanks for the scholarship provided and study leave granted, which makes this work possible.

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohamad Amran Mohd Salleh, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Fakhru'l-Razi Ahmadun, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Suraya Abdul Rashid, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Nor Azowa Ibrahim, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 April 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

JEEFFERIE BIN ABD RAZAK

Date: 9 February 2009

TABLE OF CONTENTS

		Page
DEDI	CATION	ii
ABST	RACT	iii
ABST	RAK	V
ACK	NOWLEGDEMENTS	vii
APPR	OVAL	viii
DECI	ARATION	X
LIST	OF TABLES	xiv
LIST	OF FIGURES	xvi
LIST	OF ABBREVIATIONS	xxiii
CHAI	PTER	
1 INT	CRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	4
	Scope of Study	5
	Objectives of Study	6
1.5	Thesis Overview	7
2 LIT	ERATURE REVIEW	8
	Composites	8
	Polymer Matrix Composites (PMC)	8
	Major Component in PMC	11
	PP as Matrix Materials	13
2.4	CNTs as Filler Reinforcement	15
	2.4.1 The Distinguishing Properties of CNTs	18
	2.4.2 Synthesis of CNTs	20
	2.4.3 Dispersion of CNTs	21
2.5	CNTs Filled PNC	23
	2.5.1 Advantages of CNTs as Filler Materials in Composites	
	Application	24
	2.5.2 Mechanical Properties of CNTs Filled PNC	25
	2.5.3 Thermal Properties of CNTs Filled PNC	31
	2.5.4 Thermo-Mechanical Properties of CNTs Filled PNC	33
	2.5.5 Challenges in CNTs Filled PNC	35
2 -	2.5.6 Market Trend of CNTs and its Polymer Composites	36
2.6	Processing and Fabrication of CNTs Filled PNC	40
	2.6.1 Melt Compounding of PP/MWCNTs Composites via	40
	Internal Mixer	40
2.7	2.6.2 Stabilization of Processing Torque in the Internal Mixer	41
2.7	Response Surface Methodology (RSM) – Statistical Approach to	
	the Interaction Study between the Melt Blending Processing	42
	Parameter and its Tensile Properties Responses	42

3	MA	TERIALS AND METHODS	47
	3.1	Experimental Procedure	47
	3.2	Raw Materials	48
	3.3	Synthesis, Characterization and Preparation of CNTs Filler	49
		3.3.1 Synthesis of CNTs by FC-CVD Process	49
		3.3.2 Preparation of CNTs Filler for Composites Fabrication	50
		3.3.3 CNTs Morphological and Structural Characterization	50
	3.4	1 6	
		Samples	52
		3.4.1 Melt Compounding of PP/MWCNTs Composites by the	
		Internal Mixer	52
		3.4.2 Hot and Cold Compression Molding of PP/MWCNTs	
		Composites	53
	3.5	Critical Property Analysis - Tensile Test of PP/MWCNTs	
		Composites	54
	3.6	Interaction Study between the Processing Parameter to the Tensile	
		Properties	55
	27	Further Characterization on the Various DD/MWCNTs Comments	
	3.7	Further Characterization on the Various PP/MWCNTs Composites Properties	57
		Properties 3.7.1 Determination of True Density using The Gas Absorption	31
		Technique	57
		3.7.2 SEM Observation of the PP/MWCNTs Composites	37
		Fractured Surfaces	57
		3.7.3 TEM Observation of the PP/MWCNTs Composites	37
		Surfaces	58
		3.7.4 Flexural Test / Three Point Bending Test of PP/MWCNTs	
		Composites	58
		3.7.5 Izod Pendulum Impact Test of PP/MWCNTs Composites	59
		3.7.6 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs	
		Composites	59
		3.7.7 Thermogravimetric (TGA) Analysis of PP/MWCNTs	
		Composites	60
		3.7.8 Differential Scanning Calorimetry (DSC) Analysis of	
		PP/MWCNTs Composites	61
		3.7.9 Water Absorption Test of PP/MWCNTs Composites	61
		3.7.10 Thickness Swelling Test of PP/MWCNTs Composites	62
		3.7.11 Fourier Transform Infrared Spectroscopy (FTIR) Spectra	
		Analysis for PP/MWCNTs Composites	63
		3.7.12 X-Ray Diffraction Study for PP/MWCNTs Composites	63
1	DE	SULTS AND DISCUSSION	64
4		Introduction	64
	4.2		64
	⊤. ∠	4.2.1 Weight Distribution of Synthesis Works	64
		4.2.2 Scanning Electron Microscopy (SEM) Micrograph	0-
		Analysis of MWCNTs	66
		4.2.3 Transmission Electron Microscopy (TEM) Micrograph	00
		Analysis of MWCNTs	69
		125 High Resolution Transmission Electron Microscopy	

	(HRTEM) Observation of MWCNTs	72
4.3	The Study on the Processability of PP/MWCNTs Composites	
	Fabricated using Internal Mixer	78
	4.3.1 Torque Analysis of Composites Processing	78
	4.3.2 Critical Property Analysis: Tensile Properties of	
	PP/MWCNTs Composites – Determination of the Best	
	Processing Condition of Melt Blending Process	83
	4.3.3 Parameter Interaction Study using Response Surface	
	Methodology (RSM) – Design Expert®	98
4.4		120
	4.4.1 SEM Analysis of Tensile Test Fractured Surfaces of	1.00
	PP/MWCNTs Composites	120
	4.4.2 SEM Analysis of Impact Test Fractured Surfaces of	104
	PP/MWCNTs Composites	124
15	4.4.3 TEM Analysis of PP/MWCNTs Composites Surfaces	126
4.5	<u> </u>	120
	Composites 4.5.1 Flexural Test / Three Point Bending Analysis for	130
	PP/MWCNTs Composites	130
	4.5.2 Notched-Izod Impact Strength Analysis for PP/MWCNTs	130
	Composites	133
	4.5.3 Dynamic Mechanical Analysis (DMA) of PP/MWCNTs	133
	Composites	135
4.6	<u>*</u>	143
	4.6.1 Thermogravimetry (TGA) Data Analysis for PP/MWCNTs	
	Composites	144
	4.6.2 Differential Scanning Calorimetry (DSC) Analysis of	
	PP/MWCNTs Composites	149
4.7	Chemical and Physical Properties of PP/MWCNTs Composites	153
	4.7.1 Analysis of True Density of PP/MWCNTs Composites	153
	4.7.2 Water Absorption of PP/MWCNTs Composites	155
	4.7.3 Thickness Swelling of PP/MWCNTs Composites	159
	4.7.4 Fourier Transform Infrared (FTIR) Analysis for	
	PP/MWCNTs Composites	161
	4.8.4 Analysis of X-Ray Diffractometry Data for PP/MWCNTs	
	Composites	163
_		1.67
	CONCLUSION AND RECOMMENDATIONS	167
	5.1 Conclusion	167
;	5.2 Recommendations	171
REFE	ERENCES	172
	ENDICES	181
	OATA OF STUDENT	192
	OF PUBLICATIONS	192
~ -		

LIST OF TABLES

Table		Page
2.1	Mechanical properties of CNTs compared with other important engineering materials (Colbert, 2003)	20
2.2	Comparison between different types of commercially available CNTs (Esawi & Farag, 2006)	38
3.1	The level of variables chosen for trial	56
4.1	Designations used for processing parameters of each composite group	83
4.2	Regression coefficients and P-value calculated from the model (R1)	101
4.3	Regression analysis (ANOVA) for the tensile strength properties of fabricated PP/MWCNTs composites, quadratic response surface fitting	101
4.4	Regression coefficients and P-value calculated from the model (R2)	108
4.5	Regression analysis (ANOVA) for the modulus of Young's properties of fabricated PP/MWCNTs composites, quadratic response surface fitting	108
4.6	Regression coefficients and P-value calculated from the model (R3)	116
4.7	Regression analysis (ANOVA) for the percentage of elongation at break properties of fabricated PP/MWCNTs composites, quadratic response surface fitting	116
4.8	Onset degradation temperature for each composite tested	147
4.9	Thickness swelling for PP/MWCNTs composites in acidic medium with pH 3 for 10 days of soaking period	159

4.10	Thickness swelling for PP/MWCNTs composites in neutral medium with pH 7 for 10 days of soaking period	160
4.11	Thickness swelling for PP/MWCNTs composites in alkaline medium with pH 12 for 10 days of soaking period	160
4.12	Thickness swelling for PP/MWCNTs composites in organic solvent (acetone) medium with pH 4.8 for 10 days of soaking period	160

LIST OF FIGURES

Figure		Page
2.1	A classification scheme for the various composites types (Callister, 2000)	10
2.2	Schematic representation of (a) continuous and aligned, (b) discontinuous and aligned, and (c) discontinuously and randomly oriented fiber reinforced composites (Callister, 2000)	12
2.3	The reaction to prepare PP (Harper, 1999)	13
2.4	SEM images of nanotubes on a substrate (Si); cast from dispersion in acetone (Hussain <i>et al.</i> , 2006)	16
2.5	The carbon lattice and the ways it can be rolled-up to form a zigzag, an armchair or a chiral tube (Mamalis <i>et al.</i> , 2004)	16
2.6	Schematic of nanotubes morphologies; (a) armchair, zig-zag, and (c) chiral (Hussain <i>et al.</i> , 2006)	17
2.7	Schematic of a: (a) single-walled and (b) multiwalled nanotubes (Hussain <i>et al.</i> , 2006)	18
2.8	Illustration of (a) poor distribution and poor dispersion, (b) poor distribution but good dispersion, (c) good distribution but poor dispersion and (d) good distribution and good dispersion (Hu <i>et al.</i> , 2006)	23
2.9	Schematic description of possible fracture mechanism of CNTs. (a) Initial state of the CNT; (b) pull-out caused by CNT/matrix debonding in case of weak interfacial adhesion; (c) rupture of CNT – strong interfacial adhesion in combination with extensive and fast local deformation; (d) telescopic pull-out-fracture of the outer layer due to strong interfacial bonding and pull-out of the inner tube; (e) bridging and partial debonding of the interface – local bonding to the matrix enables crack bridging and interfacial failure in the non-bonded regions (Goiny et al. 2005)	32

2.10	Representation of an entanglement leading to a contact between two fibers; and of a simple fiber/fiber contact (Adapted from Dalmas <i>et al.</i> , 2007)	34
2.11	Specific modulus-to-weight ratio versus price of CNTs. Bubbles for CF, SWCNTs and MWCNTs were superimposed in the chart (Esawi & Farag, 2006)	39
2.12	Global market forecast for CNTs in promising commercial sectors, 2006-2011 (\$ million)	39
3.1	Process flow chart	47
3.2	FC-CVD system for the synthesis of CNTs	49
3.3	Collected as-produced CNTs	50
3.4	Ultrasonication-mechanical stirrer apparatus set-up for MWCNTs pre-dispersion procedure	51
3.5	Haake internal mixer	53
3.6	Set up of the mold and platen plate used and HSINCHU compression press molding machine for hot and cold molding operation	54
3.7	Instron Universal Testing Machine (UTM-4302)	55
3.8	Standard test configuration for flexural properties determination	60
3.9	Standard test configuration for impact resistance determination	60
4.1	Distribution plot of collected weight per batch (g/batch) of MWCNTs synthesized via FC-CVD method	66
4.2	SEM observation of the CNTs 'forest' by using 5000X of magnification power	67
4.3	SEM observation of other carbonaceous product obtained by FC-CVD process (20 000X of magnification)	68
4.4	Coiled and entanglement behavior of CNTs produced; observed at 20 000X of magnification power	68

4.5	Open-ended structure of the as-produced CNTs observed at 40 000X of magnification power	69
4.6	Micrographs of TEM observation of CNTs under the magnification of 100 000X	70
4.7	Micrographs of TEM observation of CNTs under the magnification of 215 000X	71
4.8	Micrographs of TEM observation of CNTs under the magnification of 345 000X	72
4.9	HRTEM image observation of CNTs under 50 nm of magnifications	73
4.10	OD & ID determination from HRTEM observations	74
4.11	Dimensional analysis of individual MWCNT and wall profiling determination	75
4.12	Micrographs of trapped catalyst particles and its dimensional analysis	76
4.13	Average plot of torque values (Nm) versus compounding duration (minutes) for the PP/MWCNTs composites with different wt. % of filler loading	80
4.14	Effect of MWCNTs filler loading on stable torque value at seven minutes for the processing of PP/MWCNTs composites via melt blending process	81
4.15	Effect of CNTs loading to the processing torque (N.m); (a) Interrelationship of processing torque with the compounding period within the stabilization period for various filler content based on experimental data; (b) Interrelationship of processing torque with the matrix treatment using compatibilizer MA-SEBS, at the stabilization stage for various filler content based on the past study conducted by Xie <i>et al.</i> , (2002)	82
4.16	Effect of various compounding temperature (°C) and rotation speed of roller rotor blade (rpm) to the tensile strength (MPa) of PP/MWCNTs composites with varied percentages of filler loading	87

92	Effect of various compounding temperature (°C) and rotation speed of roller rotor blade (rpm) to the tensile modulus (MPa) of PP/MWCNTs composites with varied percentages of filler loading	4.17
96	Effect of various compounding temperature (°C) and rotation speed of roller rotor blade (rpm) to the percentages of elongation at break (%) of PP/MWCNTs composites with varied percentages of filler loading	4.18
99	Predicted versus actual plot for the values of tensile strength (MPa)	4.19
103	Three dimensional plot of response surface and its contour plot for the processing parameter A and B and its effect to the tensile strength (MPa) values	4.20
104	Three dimensional plot of response surface and its contour plot for the processing parameter A and C and its effect to the tensile strength (MPa) values	4.21
104	Three dimensional plot of response surface and its contour plot for the processing parameter B and C and its effect to the tensile strength (MPa) values	4.22
105	Perturbation plot for the first response studied; Tensile Strength (TS)	4.23
107	Predicted versus actual plot for the values of modulus of Young's (MPa)	4.24
110	Three dimensional plot of response surface and its contour plot for the processing parameter A and B and its effect to the Modulus of Young's (MPa) values	4.25
111	Three dimensional plot of response surface and its contour plot for the processing parameter A and C and its effect to the Modulus of Young's (MPa) values	4.26
112	Three dimensional plot of response surface and its contour plot for the processing parameter B and C and its effect to the Modulus of Young's (MPa) values	4.27

4.28	Perturbation plot for the second response studied; Modulus of Young's	112
4.29	Predicted versus actual plot for the values of percentage of elongation at break (%)	115
4.30	Three dimensional plot of response surface and its contour plot for the processing parameter A and B and its effect to the percentages of elongation at break (%) values	117
4.31	Three dimensional plot of response surface and its contour plot for the processing parameter A and C and its effect to the percentages of elongation at break (%) values	118
4.32	Three dimensional plot of response surface and its contour plot for the processing parameter B and C and its effect to the percentages of elongation at break (%) values	119
4.33	Perturbation plot for the third response studied; Percentages of Elongation at Break (%)	119
4.34	SEM micrograph of the tensile fractured surface of PP sample with 15 000X of magnification	121
4.35	SEM micrograph of the tensile fractured surface of (a) PP/0.25wt.%; (b) PP/0.50wt.%; (c) PP/0.75wt.% and (d) PP/1.00wt.% MWCNTs composites with 5 000X of magnification	122
4.36	SEM micrograph of the impact fractured surface of PP sample with 3 000X magnification	125
4.37	SEM micrograph of the impact fractured surface of (a) PP/0.25wt.%; (b) PP/0.50wt.%; (c) PP/0.75wt.% and (d) PP/1.00wt.% MWCNTs composites with 3 000X of magnification	126
4.38	TEM observation of cyro thin sectioning of (a) PP/0.25wt.%; (b) PP/0.50wt.%; (c) PP/0.75wt.% and (d) PP/1.00wt.% MWCNTs composites surfaces with 35 500X of magnification power	128
4.39	Flexural Strength (MPa) data plot versus the composite types fabricated with various weight percentages of MWCNTs loading	131

4.40	flexural Modulus (MPa) data plot versus the composite types fabricated with various weight percentages of MWCNTs loading	132
4.41	Plot of Izod Impact Strength (J/m) for PP/MWCNTs composites with various weight percentages of filer loading	134
4.42	Variation of storage modulus (E') of PP/MWCNTs composites as a function of temperature	136
4.43	Variation of loss modulus (E") of PP/MWCNTs composites as a function of temperature	140
4.44	Variation of damping factor (tan δ) of PP/MWCNTs composites as a function of temperature	142
4.45	TGA curve for as-produced MWCNTs	145
4.46	Overlay of TGA curves for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	146
4.47	Differential thermal gravimetric thermograms (DTG) for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	148
4.48	Overlay of DSC curves for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	150
4.49	Overlay of DSC for the first and second melting drop curves for virgin PP and PP/MWCNTs composites with different percentages amount of filler loading	152
4.50	Plot of density value for PP/MWCNTs composites with various percentages of filler loading	155
4.51	Graph of measured weights for PP/MWCNTs composites soaked in acidic medium with pH 3 for 10 days of soaking period	157
4.52	Graph of measured weights for PP/MWCNTs composites soaked in neutral medium with pH7 for 10 days of soaking period	157
4.53	Graph of measured weights for PP/MWCNTs composites soaked in alkaline medium with pH12 for 10 days of soaking period	158

4.54	Graph of measured weights for PP/MWCNTs composites soaked in organic solvent, acetone with pH 4.8 for 10 days of soaking period	158
4.55	FTIR spectra for MWCNTs sample, control sample for virgin PP and its composites with different amount of filler loading	162
4.56	Diffraction pattern of multi-walled carbon nanotubes (MWCNTs)	165
4.57	Diffraction pattern of PP/MWCNTs composites with various percentages of filler loading	166

LIST OF ABBREVIATIONS

°C Degree Celsius

ABS Acrylonitrile Butadiene Styrene

ANOVA Analysis of Variance

ASTM American Society for Testing and Materials

CASOS Centre for Computational Analysis of Social and Organizational

Systems

CNTs Carbon Nanotubes

CVD Chemical Vapor Deposition

DMA Dynamic Mechanical Analysis

DSC Differential Scanning Calorimetry

DWCNTs Double Walled Carbon Nanotubes

E/ρ Specific Modulus

ESEM Environmental Scanning Electron Microscope

FC-CVD Floating Catalyst Chemical Vapor Deposition

FTIR Fourier Transform Infra-Red

HRTEM High Resolution Transmission Electron Microscopy

ID Internal Diameter

MA-SEBS Maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene

MWCNTs Multi-Walled Carbon Nanotubes

OD Outer Diameter

OFAT One Factor at Time

PE Polyethylene

PEN/MWCNTs Poly(ethylene 2, 6-naphthalate/Mutiwalled carbon nanotubes

PMC Polymer Matrix Composites

PMMA Polymethyl Metacrylate

PNC Polymer Nanocomposites

PP Polypropylene

PP/MWCNTs Polypropylene-Multiwalled Carbon Nanotubes Composites

PVC-U Unplastisized Polyvinyl Chloride

PVCv/NBR Virgin Polyvinyl Chloride / Natural Butadiene Rubber

PVCw/NBR Waste Polyvinyl Chloride / Natural Butadiene Rubber

RHA Rice Husk Ash

rpm rotation per minute

RSM Response Surface Methodology

SEM Scanning Electron Microscopy

Si Silicon

SWCNTs Single Walled Carbon Nanotubes

TEM Transmission Electron Microscopy

Tg Glass Transition Temperature

TGA Thermogravimetry Analysis

TPa Tera Pascal

UHMWPE Ultra High Molecular Weight Polyethylene

wt.% weight percentage

XRD X-Ray Diffraction

