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This thesis introduces domination polynomial of a graph. The domination poly-

nomial of a graph G of order n is the polynomial D(G, x) =
∑n

i=γ(G) d(G, i)xi,

where d(G, i) is the number of dominating sets of G of size i, and γ(G) is the

domination number of G. We obtain some properties of this polynomial, and

establish some relationships between the domination polynomial of a graph G

and geometrical properties of G.

Since the problem of determining the dominating sets and the number of

dominating sets of an arbitrary graph has been shown to be NP-complete,

we study the domination polynomials of classes of graphs with specific con-

struction. We introduce graphs with specific structure and study the con-

struction of the family of all their dominating sets. As a main consequence,

the relationship between the domination polynomials of graphs containing a

simple path of length at least three, and the domination polynomial of re-

lated graphs obtained by replacing the path by a shorter path is, D(G, x) =
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x
[
D(G∗e1, x)+D(G∗e1∗e2, x)+D(G∗e1∗e2∗e3, x)

]
, where G∗e is the graph

obtained from G by contracting the edge e, and e1, e2 and e3 are three edges of

the path. As an example of graphs which contain no simple path of length at

least three, we study the family of dominating sets and the domination poly-

nomials of centipedes. We extend the result of the domination polynomial of

centipedes to the graphs G ◦ K1, where G ◦ K1 is the corona of the graph G

and the complete graph K1.

As is the case with other graph polynomials, such as the chromatic polynomials

and the independence polynomials, it is natural to investigate the roots of

domination polynomial. In this thesis we study the roots of the domination

polynomial of certain graphs and we characterize graphs with one, two and

three distinct domination roots.

Two non-isomorphic graphs may have the same domination polynomial. We say

that two graphs G and H are dominating equivalence (or simply D-equivalence)

if D(G, x) = D(H, x). We study the D-equivalence classes of some graphs. We

end the thesis by proposing some conjectures and some questions related to

this polynomial.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SET DOMINASI DAN POLINOMIAL DOMINASI BAGI GRAF

Oleh

SAEID ALIKHANI

Mac 2009

Pengerusi: Prof. Dr. Peng Yee Hock, PhD

Fakulti: Institut Penyelidikan Matematik

Tesis ini perkenalkan polinomial dominasi bagi satu graf. Polinomial dominasi

bagi suatu graf G berperingkat n ialah polynomial D(G, x) =
∑n

i=γ(G) d(G, i)xi,

dimana d(G, i) ialah bilangan set dominasi bagi G yang bersaiz i, dan γ(G)

ialah nombor dominasi bagi G. Kita perolehi beberapa sifat polinomial ini,

dan beberapa hubungan di antara polinomial dominasi suatu graf G dan sifat

geometri daripada G.

Oleh sebab masalah menentukan set dominasi dan bilangan set dominasi bagi

sebarang graf adalah diketahui NP-lengkap, kita kaji polinomial dominasi bagi

kelas-kelas graf dengan pembinaan tertentu. Kita perkenalkan graf dengan

struktur tertentu dan mengkaji pembinaan famili semua set dominasinya. Se-

bagai akibat utama, hububgan antara polinomial dominasi graf yang mengan-

dungi satu lintasan ringkas panjang sekurang-kurangnya tiga, dan polinomial

dominasi graf berkaitan yang diperolehi dengan menggantikan lintasan itu den-

gan lintasan lebih pendek ialah D(G, x) = x
[
D(G ∗ e1, x) + D(G ∗ e1 ∗ e2, x) +

D(G∗e1∗e2∗e3, x)
]
, dimana G∗e ialah graf yang diperolehi daripada G dengan
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mengecutkan garis e, dan e1, e2 dan e3 adalah tiga garis dalam lintasan terse-

but. Sebagai contoh graf yang tidak mengandungi lintasan ringkas panjang

sekurang-kurangnya tiga pula, kita kaji famili set dominasi dan polinomial

dominasi bagi “centipede”. Kita perluaskan keputusan mengenai polinomial

dominasi centipedes kepada graph G ◦K1, dimana G ◦K1 ialah corona graf G

dan graf lengkap K1.

Sebagaimana dengan polinomial graf lain, seperti polinomial kromatik dan

polinomial takbersandar, mengkaji punca polinomial dominasi adalah lazim.

Dalam tesis ini, kita kaji punca polinomial dominasi bagi graf tertentu dan

kita cirikan graf-graf dengan satu, dua dan tiga punca dominasi berbeza.

Dua graf tak isomorfik mungkin menpunyai polinomial dominasi yang sama.

Kita kata dua graf G dan H adalah setara dominasi (atau D-setara) jika

D(G, x) = D(H, x). Kita mengkaji kelas D-setara bagi beberapa graf. Kita

juga mencadangkan konjektur dan menggariskan beberapa soalan yang berkai-

tan dengan polinomial ini.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Basic definitions and knowledge

A graph G = (V, E) is a finite nonempty set V (G) of objects called vertices

together with a (possibly empty) set E(G) of unordered pairs of distinct vertices

of G called edges. We will only consider simple graphs, those without multiple

edges or loops. Two vertices u and v in G are adjacent if there exists an edge

between them, that is, if {u, v} ∈ E(G). We often write uv instead of {u, v}.

The vertices u and v are the ends of e = uv, and e is incident with both u

and v; both u and v are incident with e. The degree of a vertex v ∈ V (G),

written deg(v), is the number of edges in G which are incident with v. The

minimum and maximum degree of vertices in G is denoted by δ(G) and ∆(G),

respectively. If every vertex in G has degree k, then G is k-regular. A graph G

is said to be isomorphism with a graph H, if there is a bijection

φ : V (G) → V (H)

which preserve the adjacency and non-adjacency, that is uv ∈ E(G) if and only

if φ(u)φ(v) ∈ E(H).

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a

subgraph of G such that for all pair of vertices u and v in V (H) it is true that

uv ∈ E(H) if and only if uv ∈ E(G), then H is an induced subgraph of G.

If G and H are simple graphs such that V (G) = V (H) = V , and, for all

distinct u and v in V , uv 6∈ E(G) if and only if uv ∈ E(H), then H (resp.,



G) is the complement of G (resp., H). We write H = G (or G = H). The

union G = G1∪G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph

with vertices V (G) = V (G1) ∪ V (G2) and edges E(G) = E(G1) ∪ E(G2). If,

in addition, V1 ∩ V2 = ∅, then G is the disjoint union of G1 and G2, written

G = G1∪̇G2.

The simple graph G on n vertices having n edge between every pair vertices is

the complete graph Kn. Its complement is the null graph of order n, written

Kn.

For vertices u, v ∈ V (G), a u − v path is an alternating sequence of vertices

and edges that begins with the vertex u and ends with the vertex v in which

each edge of the sequence joins the vertex that precedes it in the sequence to

the vertex that follows it in the sequence. Moreover, no vertex is repeated in

this sequence. The number of edges in the sequence is considered the length of

the path. A graph G is connected if for every pair of vertices in V (G), there

exists a path between them. A graph G is disconnected if it is not connected.

A maximal connected subgraph of a graph G is called a component of G. A

cycle on n vertices, denoted Cn, is a path which originates and concludes at

the same vertex. The length of a cycle is the number of edges in the cycle. A

wheel Wn is a graph with n vertices, obtained from a cycle Cn−1 by adding a

new vertex and edges joining it to all vertices of the cycle. An end vertex (or

pendant vertex) is any vertex of degree 1 (that is, a vertex adjacent to exactly

one other vertex). For a graph G = (V, E), a subset U of V is independent

if, for all u and v in U , edge uv is not in E. A bipartite graph G is a graph

with independent sets V1 and V2 where V1 and V2 partition V (G). A complete

bipartite graph is a bipartite graph with partite (disjoint) sets V1 and V2 having
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the added property that every vertex of V1 is adjacent to every vertex of V2.

Complete bipartite graphs are denoted Km,n where |V1| = m and |V2| = n. The

bipartite graph K1,n is called a star graph.

The corona of two graphs G1 and G2, as defined by Frucht and Harary in [23],

is the graph G = G1 ◦ G2 formed from one copy of G1 and |V (G1)| copies of

G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of

G2. The corona G ◦K1, in particular, is the graph constructed from a copy of

G, where for each vertex v ∈ V (G), a new vertex v′ and a pendant edge vv′ are

added.

The join G = G1 ∨ G2 of two graphs G1 and G2 has V (G) = V (G1) ∪ V (G2)

and E(G) = E(G1) ∪ E(G2) ∪
{

uv|u ∈ V (G1) and v ∈ V (G2)
}

.

The open neighborhood of a vertex u, denoted as N(u), consists of all vertices

in V (G) which are adjacent to u. The closed neighborhood of a vertex v, is

N [v] = N(v) ∪ {v}. A set S ⊆ V is a dominating set of G, if N [S] = V , or

equivalently, every vertex in V −S is adjacent to at least one vertex in S. The

domination number γ(G) is the minimum cardinality of a dominating set in

G. A dominating set with cardinality γ(G) is called a γ-set, and the family

of γ-sets is denoted by Γ(G). For a detailed treatment of this parameter, the

reader is referred to [22]. We denote the family of dominating sets of graph G

with cardinality i by D(G, i).

A subset M of E(G) is called a matching in G if its elements are not loops

and no two of them are adjacent in G; the two ends of an edge in M are

said to be matched under M . A matching M saturates a vertex v, and v is

said to be M -saturated if some edges of M is incident with v; otherwise v is
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M -unsaturated.

A simple path is a path where all its internal vertices have degree two. In

Figure 1.1 we show a graph G which contains a simple path of length k with

vertices labeled 1, 2, . . . , k, k + 1.

k + 1

3 k1 2

Figure 1.1. Graph G contains a simple path of length k.

A finite sequence of real numbers (a0, a1, a2, . . . , an) is said to be unimodal if

there is some k ∈ {1, . . . , n− 1}, called the mode of sequence, such that

a0 ≤ . . . ≤ ak−1 ≤ ak ≥ ak+1 ≥ . . . ≥ an;

the mode is unique if ak−1 < ak > ak+1. A polynomial is called unimodal if the

sequence of its coefficients is unimodal.

As usual we use dxe, bxc for the smallest integer greater than or equal to x

and the largest integer less than or equal to x, respectively. In this thesis we

denote the set {1, 2, . . . , n} simply by [n].

1.2 Literature review

There are two parts in this dissertation: the dominating sets and the domi-

nation polynomials of graphs. First, in this section, we review the history of

domination theory.

Domination is an area in graph theory with an extensive research activity.

The dominating set problem asks to determine the domination number of a

4



given graph. Formal study of the dominating set problem began in the 1960,

the term itself first appearing in the 1967 book on graph theory [31] by Ore.

However, the problem has historical roots in the dominating queens problem,

which we extract from [22], written by well-known authorities: T.W. Haynes,

S.T. Hedetniemi, and P.J. Slaster.

∗

∗

∗

∗

∗

∗

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

Q

Figure 1.2. Squares attacked by a Queen.

The historical roots of domination is said to be the following chess problem.

Consider an 8×8 chessboard on which a queen can move any number of squares,

horizontally, vertically, or diagonally (assuming that no other chess piece lies in

this way). Figure 1.2 shows the squares that a queen attack or dominate. One

is interested to find the minimum number of queens needed on chessboard such

that all squares are either occupied or can attack by a queen. In Figure 1.3,

five queens are shown who dominate all the squares.

To model the queens problem on a graph, let G represent the chessboard such

that every vertex corresponds to a square, and there is an edge connecting two

vertices if and only if the corresponding squares are separated by any number

of squares horizontally, vertically, or diagonally. Such a set of queens in fact

5



represents a dominating set.

Q

Q

Q

Q

Q

Figure 1.3. Five dominating queens.

For another motivation of this concept, consider a bipartite graph where one

part represent people, the other part represents jobs, and the edges represent

the skills of each person. One is interested to find the minimum number of

people such that jobs are occupied. As shown in Figure 1.4, {Jane, John} form

a minimum size dominating set.

Jim

Nurse

Doctor

Dentist

Surgeon

Jane

Jack

John

Figure 1.4. Dominated jobs.

The concept of dominating set occurs in a variety of problems. A number of

these problems were motivated by communication network problems. The com-

munication network includes a set of nodes, where one node can communicate

6



with another if it is directly connected to that node. In order to send a message

directly from a set of nodes to all others, one need to choose this set such that

all other nodes are connected to at least one node in the set. Now, such a set is

a dominating set in a graph which represent the network. Other applications

of domination are, the facility location problem, land surveying and routings.

([22]).

We introduce some specific graphs and construct the family of all dominating

sets of these graphs by recursive method.

There are people who feel that combinatorial and graph theory results should

be given “purely combinatorial” proof, but I am not one of them. For me,

the most interesting parts of graph theory and combinatorics have always been

those overlapping with other areas of Mathematics. (See preface of [19]). Al-

gebraic graph theory is one of this area which has been extended by many

mathematicians. Let us review the history of graph polynomials:

The edge-difference polynomial. The historically first polynomial in graph

theory was introduced by J.J. Sylvester [36] in 1878, and further studied by J.

Petersen [33]. It is a multivariate polynomial depending on the ordering of the

vertices of a graph.

The chromatic polynomial. Let χ(G, λ) denotes the number of proper

vertex colourings of G with at most λ colours. G. Birkhoff [7], observed in 1912

that χ(G, λ) is, for a fixed graph G, a polynomial in λ, which is now called

the chromatic polynomial of G. The chromatic polynomial is the oldest graph

polynomial to appear in the literature. The book by F.M. Dong, K.M. Koh

and K.L. Teo [15] gives an excellent and extensive survey of this polynomial.

7



The Tutte polynomial. An interesting generalization of the chromatic poly-

nomial were introduced by H. Whitney in 1932 and W.T. Tutte in 1947. The

most prominent among them is now called the Tutte polynomial T (G, x, y)

which is a two variables polynomial from which the chromatic polynomial can

be obtained via a simple substitution and multiplication with a pre-factor. For

a modern exposition, the reader is referred to [20], [39] or chapter X of [8].

The characteristic polynomial. This polynomial denoted by P (G, λ), is the

characteristic polynomial of the adjacency matrix MG of the graph G, that is

P (G, λ) = det(λ1−MG) and it is completely determined by the eigenvalues of

MG, which are all real, as the matrix is symmetric. An excellent survey is [14].

The matching polynomials. The acyclic polynomial of graph G of order

n is the polynomial m(G, λ) =
∑

k(−1)kmk(G)λn−2k, where the coefficients

mk(G) count k-matchings. A close relative of this polynomial is the matching

generating polynomial of a graph G defined as g(G, λ) =
∑

k mk(G)λk. An

excellent survey on these two matching polynomials may be found in [19, 29].

The independence polynomial. This polynomial denoted by I(G, λ), is the

polynomial I(G, λ) =
∑β

i=0 i(G, k)λk, where i(G, k) is the number of indepen-

dent sets of G with cardinality i and β is the independence number of G. An

excellent survey of this polynomial are [24, 28].

The Interlace Polynomial. Two of the more interesting recent graph polyno-

mials were introduced by R. Arratia, B. Bollobs and G. Sorkin in [3, 4]. They

are called interlace polynomials and there is a univariate and a two-variable

version. M. Aigner and H. van der Holst [1] studied these polynomials from a

matrix point of view and derived various combinatorial interpretations.
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The Cover Polynomial of Directed Graphs. An interesting recent graph

polynomial on directed graphs is the cover polynomial introduced by F.R.K.

Chung and R.L. Graham [13], and independently in the context of rook poly-

nomials, by I. Gessel, [18]. In [13] it is presented as an attempt to create a

Tutte-like polynomial for directed graphs, and is closely related to the chro-

matic polynomial.

The collection of graph polynomials looks like a zoo. There are prominent

animals like the elephant, the giraffe, the gorilla, and there are exotic animals

defying classification, like the lamprey (petromyzon marinus, not really a fish)

or platypus (ornithorhynchus anatinus, not really a water bird, not really a

mammal). Some animals look different, but are related, like the elephant and

the rock hyrax (procavia capensis); some look alike, but are not related, like the

hedgehog (erinaceus europus) and the echidna (tachyglossus aculeatus). ([30]).

In this thesis we introduce a new animal in this zoo!

We introduce the domination polynomial of a graph. We translate the prop-

erties of graphs and results on the structure of the families of all dominating

sets of graphs, into algebraic properties and then, using the results of algebra,

to obtain results on graphs.

In Chapter 2, we introduce the domination polynomial of graphs and obtain

some of its properties. Also, in this chapter, we investigate some relationships

between domination polynomials and graphs.

In Chapters 3 and 4, we study the dominating sets and domination polynomial

of two types of graphs which contain a simple path of length at least three

(or simply call non-P4-free), denoted by G(m) and G′(m). The main result of
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