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By  

HASSAN S. URAIBI  

                                                        September 2009 
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 The Ordinary Least Squares (OLS) method is often used to estimate the parameters of a 

linear model.  Under certain assumptions, the OLS estimates are the best linear unbiased 

estimates.  One of the important assumptions of the linear model is that the error terms 

are normally distributed.  Unfortunately, many researchers are not aware that the 

performance of the OLS can be very poor when the data set that one often makes a 

normal assumption, has a heavy-tailed distribution which may arise as a result of the 

presence of outliers. One way to deal with this problem is to use robust statistics which 

is less affected by the presence of outliers.  Another possibility is to apply a bootstrap 

technique which does not rely on the normality assumption.   In this thesis the usage of 

bootstrap technique is emphasized.   It was a computer intensive method that can replace 

theoretical formulation with extensive use of computer. Unfortunately, many statistics 

practitioners are not aware of the fact that most of the classical bootstrap techniques are 

based on the OLS estimates which is sensitive to outliers. The problems are further 
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complicated when the percentage of outliers in the bootstrap samples are greater than the 

percentage of outliers in the original sample. To rectify this problem, we propose a 

Dynamic Robust Bootstrap-LTS based (DRBLTS) algorithm where the percentage of 

outliers in each bootstrap sample is detected.  We modified the classical bootstrapping 

algorithm by developing a mechanism based on the robust LTS method to detect the 

correct number of outliers in the each bootstrap sample. 

Kallel et al. ( 2002 ) proposed utilizing the bootstrap technique for model selection.  They 

used the classical bootstrap method to estimate the bootstrap location and the scale 

parameters based on calculating the Mean of Squared Residual (MSR).  It is now evident 

that the classical mean and classical standard deviation are easily affected by the presence 

of outliers.  In this respect, we propose to incorporate our proposed DRBLTS in the 

bootstrap model selection technique.  We also proposed to use an alternative robust 

location and scale estimates which are less affected by outliers instead of using the 

classical mean and classical standard deviation.  

The performances of the newly proposed methods are investigated extensively by real 

data sets and simulations study. The effect of outliers is investigated at various percentage, 

i.e , 0%, 5%, 10%, 15% and 20%. The results show that the DRBLTS is more efficient 

than other estimators discussed in this thesis. The results on the model selection again 

signify that our proposed robust bootstrap model selection method is more robust than the 

classical bootstrap model selection. 
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ALGORITMA BOOTSTRAP TEGUH DINAMIK UNTUK PEMILIHAN MODEL 

LINEAR MENGGUNAKAN KUASA DUA TERCANTAS TERKECIL 
 
 

Oleh 
 
 

HASSAN S. URAIBI  
 

            September 2009 

 

Pengerusi: Associate Professor Habshah Binti Midi, Ph.D. 

Institut Penyelidikan Matematik 
 

Kaedah Kuasadua Terkecil Biasa  (OLS) selalu digunakan untuk menganggar parameter 

model linear. Dalam andaian tertentu, penganggar OLS adalah penganggar saksama linear 

terbaik Salah satu daripada andaian yang penting tentang model linear adalah ralat bey 

taburan normal. Malangnya, kebanyakan penyelidik tidak sedar bahawa prestasi OLS boleh 

menjadi sangat lemah apabila set data yang biasa dianggap bey taburan normal mempunyai 

taburan yang berhujung tebal yang disebabkan kehadiran titik terpencil. Salah satu cara untuk 

mengatasi masalah ini adalah dengan menggunakan statistik teguh kurang yang dipengaruhi 

oleh titik terpencil. Antara kemungkinan lain adalah dengan menggunakan teknik 

‘bootstrap’yang tidak bergantung kepada andaian normal. Dalam tesis ini, kegunaan teknik 

‘bootstrap’ adalah dititikberatkan. Ia merupakan kaedah intensif komputer yang boleh 

menggantikan perumusan teon dengan menggunakan komputer secara meluas. Malangnya, 
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kebanyakan pengamal statistik tidak sedar kenyataannya bahawa kebanyakan daripada teknik 

‘bootstrap’ klasik adalah berdasarkan kepada penganggar OLS di mana ianya sensitif 

terhadap titik terpencil. Masalah akan menjadi lebih sukar apabila peratus titik terpencil dalam 

sampel bootstrap adalah lebih besar berbanding dengan peratus titik terpencil dalam sampel 

asal. Untuk menyelesaikan masalah ini kita mencadangkan algoritma berdasarkan ‘bootstrap’ 

Teguh Dinamik-LTS (DRBLTS)’ dimana peratus  titik terpencil di dalam setiap ‘bootstrap’ 

sampel dikesan. Kita mengubahsuai algoritma  ‘bootstrap’ klasik dengan membina 

mekanisme berdasarkan kepada kaedah teguh LTS untuk mengesan bilangan outliers yang 

betul dalam setiap ‘bootstrap’ sampel.. 

 
Kallel et al. ( 2002 ) mencadangkan teknik ‘bootstrap’ digunakan untuk pemilihon model. 

Mereka menggunakan kaedah ‘bootstrap’ klasik untuk mengganggarkan lokasi ‘bootstrap’ dan 

skala parameter berdasarkan kepada min kuasa dua reja (MRS). Sekarang terbukti bahawa min 

klasik dan sisihan piawai klasik mudah dipengaruhi oleh kehadiran titik terpencil. Oleh itu, 

kami mencadangkan untuk menggabungkan DRBLTS dalam teknik pemilihan model 

‘bootstrap’. Kami juga mencadangkan untuk menggunakan pengangar lokasi teguh dan 

penganggar skala teguh yang kurang dipengaruhi oleh titik terpencil selain menggunakan min 

klasik dan sisihan piawai klasik.  

Prestasi  kaedah baru yang dicadangkan dikaji secara meluas menggunakan dengan set 

data yang sebenar dan kajian simulasi. Keputusan- kajian menunjukkan bahawa 

penganrggar OLS lebih berjaya daripada kaedah yang dicadangkan dalam situasi di 

mana tiada titik terpencil dalam data. Kesan titik terpencil keatas kaedah yang 
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dicadangkan telah diselidiki dalam pelbagai peratus iaitu 0%, 5%, 10%, 15% dan 20%. 

Keputusan juga menunjukkan bahawa DRBLTS adalah lebih efisien berbanding dengan 

penganggar-penganggar yang lain yang telah dibincangkan di dalam tesis ini apabila  

titik terpencil hadir di dalam data. Keputusan bagi pemilihan model sekali lagi 

menunjukkan bahawa kaedah pemilihan model ‘bootstrap’ teguh adalah lebih teguh 

berbanding dengan pemilihan model teguh‘bootstrap’ klasik. 
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CHAPTER 1 

 

INTRODUCTION 

 

The general purpose of linear regression is to predict the behavior of 

response variable from some explanatory variable(s). In another word it 

assesses the degree of relationship between one response variable and one 

variable (simple regression) or more than one variable (Multiple 

regression). For verifying this task, a commonly used procedure is the 

ordinary least squares method (OLS). Historically it’s well known; easy of 

computation is the main reason OLS method had been initially used until 

today. Gauss in 1875 and Legendre in 1805 independently discovered the 

method of least squares for regression model. Lengendre in 1805 was the 

first to publish his results related to method of least squares, although Gauss 

is generally recognized as the “father “of least squares (Saccucci, 1985). As 

there is no computer when it was discovered, the OLS was extremely useful 

because it could be computed explicitly from the data through the use of 

matrix algebra (Anderson, et al., 2001). 

Multiple linear regression is the central model in this thesis. The general 

linear regression model can be written in a matrix form as follows: 

 

                                 εβ += Xy                                                              (1.1) 

 



where y is a  vector, representing the observed  response variable, X is 

the 

1n×

pn×  matrix of predictor variables, β  is unknown 1p×  vector of 

regression parameters and ε  is an 1n×  vector of random errors assumed to 

be independent normally distributed with mean 0 and variance matrix . 

The Ordinary Least Squares method is often used to estimate the 

parameters of the model.  It is a very popular method because of tradition 

and ease of computation. The OLS estimates are obtained by minimizing 

the error sum of squares. In order to use the regression correctly, the 

assumptions of OLS need to be met. These assumptions are as follows: (1) 

the errors are normally distributed, (2) the errors have the same variance at 

all levels of the independent variables (homoskedastic),(3) the explanatory 

variables are independent, also no correlation between explanatory 

variables and residuals, (4) the variables are measured without error 

(Anderson, 2001). When the OLS estimates satisfy all the above 

assumptions, the OLS is the Best Linear Unbiased Estimator (BLUE) which 

implies that among all the unbiased estimators, the OLS produces the 

minimum variance.  However, in real situation, usually these assumptions 

are not met. When the assumptions are not met, the OLS can be highly 

inefficient, resulting in low power (Wilcox, 1997). In addition to that, the 

confidence bands become wider with increased alpha levels (Wilcox, 

1997). The OLS approach may also produce unstable estimates when the 

assumption of normality of errors is not met (Ryan, 1997). 

2σ

 

Unfortunately, many statistics practitioners are not aware of the fact that the 

violation of the normality assumption of the error terms may be due to one 
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or more outliers in the data. Maronna et al. (2006) define outliers as 

observations that are well separated from the majority of the data or in 

some way deviate from the general pattern of the data. Fox (2003) 

considers the outliers in a linear model, a value of the response variable that 

is conditionally unusual given the values of the explanatory variables. 

Rouseeuw and Leroy (2003) describe regression outliers are cases for 

which  deviate from the linear relation followed by the 

majority of the data, taking into account both the explanatory variables and 

response variable simultaneously. Outliers can occur for a variety of 

reasons including data entry errors, non-homogeneity: 

)iy,ipx,...,i2x,i1(x

 

Skyler J. Granmer (2005) stated that “Sometimes the data are not a 
homogeneous set to which a single model will apply, but rather a 
heterogeneous set of two or more types of cases”. 
 

 

 model weaknesses, when the statistical model has no ability to represent a 

particular phenomenon thereby, is considered weak model, because most 

the statistical models are approximations to physical processes. The reasons 

of weak models may be due to randomness of human behaviors, left out 

variable, incomplete model, aggregation error and measurement error that 

are known error in equations and faulty distributional assumptions, 

 

Incorrect assumptions about the distribution of the data can also lead to the 
presence of suspected outliers [e.g., Iglewicz & Hoaglin, 1993].  
 

 
Outliers can occur in three directions. Rosseeuw and Zomeren (1990) 

described outliers in the X-direction as leverage points and if they are 
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influential then they are generally known as high leverage points. The 

second types of outliers occur in the Y-direction. This type of outlier has a 

data point with a large squared residual from the fit. The third types of 

outliers occur in both X and Y directions, simultaneously.  
Y

-a
xi

s 

X-axis 
 

Figure 1.1 The Y- axis outlier. 

 
X-axis 

Y
-a

xi
s 

Figure 1.2 Tthe X-axis outlier. 
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Figure 1.3 Both X-axis and Y-axis outlier. 

 

The classical Ordinary Least Squares (OLS) method has long been 

subjugated the literature and applications of linear models. According to 

Gauss-Markov theorems, the OLS is the optimal procedure under the 

assumption that the distribution of the errors is normal. Many researchers 

are not aware that the performance of the OLS can be very poor when the 

data set that one often makes a normal assumption, has a heavy-tailed 

distribution which may arise as a result of outliers. Outliers which arise 

from ‘bad’ data points may have large influence on the OLS estimates. 

According to Hampel et al. (1986), the existence of 1-10% outliers in a 

routine data is rather rule than exceptions.  Midi et al. (2009) pointed out 

that the detection of outliers is crucial due to their responsibility for 

X-axis 



misleading conclusion about the fitting of multiple linear regression model, 

causing multicollinearity problems, masking and swamping of outliers.   

 
Chatterjee , Hadi, and Price;( 2000) stated that  “Masking occurs when the 
data contain outliers but we fail to detect them. This can happen because 
some of the outliers may be hidden by other outliers in the data. Swamping 
occurs when we wrongly declare some of the non-outlying points as 
outliers. This can occur because outliers tend to pull the regression equation 
toward them, hence make other points lie far from the fitted equation. Thus, 
masking is a false negative decision whereas swamping is a false positive.” 
 

Hampel (1971) pointed out that even one single outlier can have an 

arbitrary large effect on the OLS estimates. One of central concepts to 

understand robust regression technique is the breakdown points (BP). 

Hampel (1971) introduced a BP as the proportion of outliers that it would 

take to render the estimator useless.  The robustness of each estimator is 

measured by the BP.   An estimator becomes more robust as the value of BP 

increases.  The BP of the OLS estimator is 0% which implies that it can be 

easily affected by a single outlier. A better approach is to consider a robust 

procedure. This procedure fits a regression by using estimators that dampen 

the impact of unusual observations or outliers; those points lying far away 

from the pattern formed by the good points and has large residuals from the 

robust fit. According to Giloni et al. (2006), robust methods are those 

methods that can fit the bulk of the data well. It is worth mentioning that 

the results obtained from robust methods are expected to be fairly close to 

the classical methods in the situation where there is no outlier(s) in the data 

sets.  Several works on robust estimation have been proposed in the 

literature. Among them are Edgeworth proposed the Least Absolute Values 

(LAV) estimator in 1887, and also Huber (1973) who introduced M-
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estimators. However, none of these estimators achieved high breakdown 

point. Rousseeuw & Leroy in 1987 introduced the most robust estimator 

having the highest possible breakdown point of n/2 or 50% which is known 

as Least Median Squares (LMS) and Least Trimmed of Squares (LTS). 

Yohai (1987) improved further the efficiency of the high breakdown 

estimators by introducing the MM-estimators.  If a robust estimation 

technique has 50% BP then 50% of the data could contain outliers and the 

coefficients would remain usable (Hampel et al., 1986).  In the literature 

several methods proposed to detect the outlying observations problem, 

according to their impact and location. ( see: Huber P.J ; 1973, Cook; 1977, 

Belsley Kuh and Welsch; 1980, Hawkins; 1980, Velleman and Welsch; 

1981,  Atkinson; 1982 , Cook and Weisberge; 1982 , Rousseeuw; 1984, 

Rousseeuw and Yohai; 1984, Rousseeuw; 1985,  Rousseeuw and Leroy; 

2003, Chatterjee and Hadi; 1988, Rousseeuw and Zomeren; 1990, Fox; 

1991, Barrett and Lewis; 1994, Huber M. and Rousseeuw; 1996, Habshah 

Midi; 1999,  Chatterjee , Hadi, and Price; 2000, Hampel F;2000, 

Montgomery, Peck, and Vining;2001,Imon; 2002; 2005a; 2005b; 2007, 

Habshah Midi;2002, Imon and Ali;2005, Midi et al., 2009.      

One important aspect in statistical inference is to acquire the standard errors 

of the parameter estimates and to construct the T-statistics and confidence 

intervals for the parameters of a model.  The OLS technique is often used to 

estimate the parameters of a model.  The construction of confidence 

intervals requires that the estimates can be treated as samples from a normal 

distribution.  Nonetheless, many measurements are not normal and have a 

heavy tailed distribution which may be the result of outliers.  In this 
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situation, we may use an alternative method such as robust method or the 

bootstrapping method, which is a distribution free method. The 

Bootstrapping method, which was introduced by Efron in 1979 , has been 

increasingly popular because it has many interesting properties. The basic 

idea of bootstrapping method is to generate a large number of sub-samples 

by randomly drawing observations with replacement from the original 

dataset or full sample.  These sub-samples are then being termed as 

bootstrap samples and are used to recalculate the estimates of the regression 

coefficients. In fact re-sampling methods do not need some resampling 

assumptions that have related to the form of the estimator distribution in the 

ordinary sampling techniques, because the sample is thought as population 

(Sahinler, 2007). Some re-sampling procedures such as jackknife 

(Quenouille, 1949), permutation methods that introduced by Fisher and 

Pitman  in  1930, and use of computers to do simulation also goes back to 

the early days of computing in the late 1940.  They were introduced before 

nonparametric bootstrap that was introduced by Efron in 1979, who was 

unified the ideas and connected the simple nonparametric for independent 

and identically distributed (iid) observations, which resamples the data with 

replacement (Chernick, 2008). Bootstrap method has been successful in 

attracting statistics practitioners as its usage does not rely on the normality 

assumption. An interesting feature of the bootstrap method is that it can 

provide the standard errors of any complicated estimator without requiring 

any theoretical calculations.  These interesting properties of the bootstrap 

method have to be traded off with computational cost and time.  There are 

considerable papers that deal with bootstrap methods, see Efron and 

 8



Tibshiriani (1986) and Efron and Tibshiriani (1993).  Kallel et al. (2002) 

proposed using the bootstrap technique for model selection.  They used the 

random –x Re-Sampling together with the OLS method in their 

bootstrapping algorithm.  Furthermore, the computation of the bootstrap 

location and bootstrap scale estimates are based on the classical mean and 

classical standard deviation formulation. As already been mentioned, the 

OLS is very sensitive to the presence of outliers and will produce less 

efficient results.  One possible approach to deal with this problem is to 

incorporate a robust method which is not sensitive to outliers in the 

bootstrapping algorithm.  In addition of using the robust method, we shall 

propose using a robust location and robust scale formulation for the 

bootstrap estimates.  Hence a new robust bootstrap method is proposed for 

model selection criteria. 

However, the development of robust bootstrap methods in the presence of 

outliers has received little attention.  There are not many papers that deal 

with robust bootstrapping methods in linear regression.  Amado and Pires 

(2004) proposed a resampling plan which is not so much affected by the 

outlying observations.  They applied re-sampling probabilities to ascribe 

more importance to some samples values than others, but not in the context 

of linear regression.  Singh (1998) robustified the bootstrap method by 

applying winsorization for certain L and M estimators.  But according to 

Amado and Pirez (2004) this winsorized bootstrap is difficult to apply to 

multivariate samples.  Imon and Ali (2005) proposed a Diagnostics –

Before-Bootstrap whereby the suspected outliers are identified and omitted 

from the analysis before performing bootstrap with the remaining set of 
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