

UNIVERSITI PUTRA MALAYSIA

ISOLATION AND IDENTIFICATION OF ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS FROM GARCINIA CANTLTYNA AND G. NIGROLINEATA

KHALID AHMAD SHAKER SHADID.

IB 2005 4

ISOLATION AND IDENTIFICATION OF ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS FROM GARCINIA CANTLEYNA AND G. NIGROLINEATA

KHALID AHMAD SHAKER SHADID

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2005

ISOLATION AND IDENTIFICATION OF ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS FROM GARCINIA CANTLEYNA AND G. NIGROLINEATA

By

KHALID AHMAD SHAKER SHADID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ISOLATION AND IDENTIFICATION OF ANTIMICROBIAL AND CYTOTOXIC COMPOUNDS FROM GARCINIA CANTLEYNA AND G. NIGROLINEATA

By

KHALID AHMAD SHAKER SHADID

September 2005

Chairman: Professor Md. Nordin Hj. Lajis, PhD

Institute: Bioscience

Eleven species of *Garcinia* (Guttiferae) from the flora of Malaysia were screened *in vitro* for antimicrobial and cytotoxic activities. Disc diffusion and MTT methods were utilized to screen the antimicrobial and cytotoxic effects, respectively. On the basis of the screening results and literature review of the tested plants, *Garcinia cantleyana* and *Garcinia nigrolineata* were selected for phytochemical investigations.

The investigations of the chloroform extract of *Garcinia cantleyana* by a combination of different chromatographic techniques led to the isolation of eight new natural products: three caged tetraprenylated xanthonoids; cantlyanone A, cantlyanone B and cantlyanone C, four caged triprenylated xanthonoids; cantlyanone D, cantlyanone E, cantlyanone F and cantlyanone G, and 1,4,6,8-tetrahydroxy-5-(2-methylbut-3-en-2-yl)-9*H*-xanthen-9-one (cantleyanaxanthone). Six known compounds namely, glutin-5-en-3 β -ol, a mixture of stigmasterol and

 β -sitosterol, guadichaudion H, garbogiol and for the first time in *Garcinia* species the isolation of sesquineolignan (Macranthol).

All caged-polyprenylated xanthonoids were found to exhibit significant cytotoxicity against several cancer cell lines with IC_{50} values from 0.2-3 μ M. Broth microdilution method was used to determine antibacterial activity for the isolated compounds; the results showed strong antibacterial activity against *staphylococcus aureus* ATCC 335591 for Cantleyanone F with MIC value of 31.25 μ g/ml.

Sesquineolignan (Macranthol) which was isolated for the first time in this genus showed cytotoxic IC₅₀ values of 4.17, 3.70, 1.53, 2.53 μ g/ml against MDA-MB-231, MCF-7, CaOV-3 and HeLa, respectively, and antibacterial activity with an MIC value of 3.91 μ g/ml activity against *staphylococcus aureus* ATCC 335591, the result of which is remarkable.

From the methanolic extract of *Garcinia nigrolineata* leaves, three compounds were isolated, namely a mixture of stigmasterol and β -sitosterol, friedelin, and for the first time methyl putranjivate from *Garcinia nigrolineata*. Bioassays was carried out, but these compounds were inactive against several cell lines.

The structures of all compounds were carried out with the help of chemical and modern spectroscopic techniques (UV, IR, MS, ¹H NMR, ¹³C NMR, DEPT, ¹H-¹H COSY, HMQC, and HMBC).

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagi memenuhi keperluan untuk ijazah Doktor Falsafah

PEMENCILAN DAN PENGENALPASTIAN SEBATIAN-SEBATIAN SITOTOKSIK DAN ANTIMIKROBIAL DARIPADA GARCINIA CANTLEYNA DAN G. NIGROLINEATA

Oleh

KHALID AHMAD SHAKER SHADID

September 2005

Pengerusi: Profesor Md. Nordin Hj. Lajis, PhD

Institut: Biosains

Sebelas spesies *Garcinia* daripada Malaysia telah dikaji secara *in vitro* untuk menentukan aktiviti-aktiviti antimicrobial dan sitotoksik. Kaedah pembauran cakera dan MTT telah diguna untuk menentukan kesan antimicrobial dan sitotoksik. *G. cantleyana dan G. nigrolineata* telah dipilih untuk kajian lebih lanjut berdasarkan keputusan aktiviti-aktiviti biologi dan kajian terdahulu.

Kajian terhadap ekstrak kloroform *G. cantleyana* dengan menggunakan kombinasi berbagai teknik kromatografi yang berbeza telah berjaya memencilkan lapan sebatian semulajadi yang baru: tiga sangkar tetraprenil xanthonoid; kantlianon A, kantlianon B, kantlianon C, empat sangkar triprenil xanthonoid; kantlianon D, kantlianon E, kantlianon F, dan kantlianon G serta kantlianaxanthon. Enam sebatian yang telah diketahui yaitu glutin-5-ena-3 β -ol, campuran stigmasterol dan β -sitosterol, guadicaudion H, garbogiol, dan buat pertama kali dalam spesies *Garcinia* pemencilan seskuineolignan.

Kesemua sangkar poliprenil xanthonoid telah menunjukkan aktiviti sitotoksik yang signifikan terhadap beberapa talian sel dengan nilai 50% perencatan dari 0.2-3 μM. Kaedah "broth microdilution" telah digunakan untuk menentukan aktiviti antibakteria kesemua sebatian yang telah dipencilkan. Katlianon F telah menunjukkan aktiviti antibakteria yang tinggi dengan nilai MIC 31.25 μg/ml.

Seskuineolignan telah dipencilkan buat kali pertama dalam genus ini telah menunjukkan aktiviti sitotoksik dengan nilai 50% perencatan 4.17, 3.70, 1.53, 2.53 µg/ml terhadap sel MDA-MB-231, MCF7, CaOV-3, dan HeLa, setiap satu. Sebatian ini juga menunjukkan aktiviti antibakteria terhadap *staphylococcus aureus* ATCC 335591, dengan nilai MIC 3.91 µg/ml.

Tiga sebatian berjaya dipencilkan daripada ekstrak methanol daun *G. nigrolineata* iaitu campuran stigmasterol dan β -sitosterol, fridelin, dan metil putranjivat yang buat pertama kali dipencilkan daripada *G. nigrolineata*. Sebatian ini didapati tidak aktif terhadap semua talian sel yang diuji.

Struktur kesemua sebatian telah ditentukan dengan menggunakan teknik kimia dan spektroskopik moden (UV, IR, MS, ¹HNMR, ¹³NMR, DEPT, ¹H-¹H COSY, HMQC, and HMBC).

ACKNOWLEDGEMENTS

All praise to **Allah** most Gracious, Most Merciful, Who, Alone brings forgiveness and light and new life to those who call upon Him; and to Him is the dedication of this thesis.

"Read! In the Name of your Lord Who has created (all that exist). He has created man from a clot. Read! And your Lord as the Most Generous. Who has taught (the writing) by the pen. He has taught man that which he knew not." Qur'an 96: 1-5

We praise Allah for His great loving kindness, which has brought us all together to tell and encourage each other and mankind with stories of His care, and leading. In so doing, I also thank to those who answered His call, who have started their journey upon the Straight Path of Allah. All respect for our Holy Prophet (Peace be upon him), who guided us to identify our creator

I am whole-heartedly thankful to my research supervisor, Prof. Dr. Md. Nordin Haji Lajis, Head of the Laboratory of Natural Products, institute of Biosience for his encouragement, exceptional ideas, and tireless optimism that have kept me going, and for providing the excellent facilities for my work.

I am thankful to Prof. Dr. Abdul Manaf, who kindly guided me into the 'Wonderland of Animal Cell Cultures' and for being positive and encouraging about my research.

My thanks are extended to Associate Professor Dr. Daud Ahmad, who has encouraged me to persevere with the biological assays despite the initial undesirable results, and to Prof Dr. Ahmad Sazali, for his keen interest precious attention and guidance.

I am also thankful to Associate Professor Dr Khozirah shaari, for her kindness, valuable suggestions and persistent help in the field of NMR. I have learned so much from her.

Sincere thanks are due to my colleagues at the Laboratory of Natural Products, Drs. Rohaya, Faridah, Koushik, Dharma, and Habsah, Suryati, and Maulidiani who have made the period when I worked on the thesis very inspiring.

In addition, I am grateful to science officers, Din, Zurina, Mazina, Abby and Julia, all of you have been so helpful. Special thanks to Shamsul for getting me samples of plant material. Many thanks to Normah, who helped with bioassays, thank you so much.

Finally, my warmest thanks are due to my to my family – parents Ahmad Shaker Shadid and Nehal Shadid, brother Nader, sisters Neda'a and Sana'a as well as my wife Ihsan Mkhaimar – for their love understanding encouragement and never failing support during all these years.

> KHALID AHMAD SHAKER SHADID June 2005

I certify that an Examination Committee met on 27th September 2005 to conduct the final examination of Khalid Ahmad Shaker Shadid on his Doctor of Philosophy thesis entitled "Isolation and Identification of Antimicrobial and Cytotoxic Compounds from *Garcinia cantleyna* and *G. nigrolineata*" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

MAWARDI RAHMANI, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

GWENDOLINE EE CHENG LIN, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

KHOZIRAH SHAARI, PhD

Associate Professor Institute of Bioscience Universiti Putra Malaysia (Internal Examiner)

MUHAMMAD IQBAL CHOUDHARY, PhD

Professor H. E. J. Research Institute of Chemistry University of Karachi Karachi (External Examiner)

GULAM/RUSUL RAHMAT ALI, PhD Professor/Deputy Dean School of Graduate Studies Universiti Putra Malavsia

Date: 2 2 NOV 2005

ix

The thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

MOHD. NORDIN HJ. LAJIS, PhD

Professor Institute of Bioscience Universiti Putra Malaysia (Chairman)

ABDUL MANAF ALI, PhD

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

DAUD A. ISRAF ALI, PhD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

AHMAD SAZALI, PhD Professor Institute of Science Universiti Teknologi MARA (Member)

eng

AINI IDERIS, PhD Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date: 08 DEC 2005

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

KHALID AHMAD SHAKER SHADID

Date: 28 SEP 2005

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENT	vii
APPROVAL	ix
DECLARATION	Х
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF SCHEMES	xxii
LIST OF ABBREVIATIONS	xxiv

CHAPTER

1	INTR	ODUCTION	1
	1.1	Historical Aspects	1
	1.2	•	۱
	•	Medicine	2
	1.3	Cancer and its treatment	5
		1.3.1 Role of natural products in the treatment of cancer	6
		1.3.2 Ongoing search for new anti-cancer natural products	6
		1.3.3 Selection of candidate plants for cytotoxic screening	9
	1.4	Plants as Source of Antibiotics	11
	1.5	Natural Products and their Economical use	12
	1.6	Research in Natural Products in Malaysia	13
	1.7	Objective of Research	15
2.	LITE	RATURE REVIEW	17
	2.1	Introduction	17
	2.2	Garcinia cantleyana Whitmore	19
	2.3	Garcinia nigrolineata Planch. ex T. Anders	20
	2.4	The chemistry of isolated natural products from Garcinia	22
		2.4.1 Xanthones from Garcinia	27
	2.5	Caged Triprenylated, Tetraprenylated Xanthonoids,	
		Tetraoxygenated xanthones, Neolignan and triterpene	
		from Garcinia	45
	26	Biological activities of <i>Garcinia</i> principles	46

2.0	Diological dollation of Carolina principies	
	2.6.1 Antibacterial and antifungal activities	47
	2.6.2 Cytotoxic activity	49
2.7	The biosynthesis of xanthone	52
	2.7.1 Biosynthetic Considerations of the Caged Unit	54

3	EXPE	RIMENTAL	57
	3.1	General Instrumentation	57

3.2	3.1.2 3.1.3 3.1.4	Melting points Solvents Spectroscopy Chromatographic Methods material Preparation of crude extracts from various	57 57 57 58 60
		parts of <i>Garcinia</i> Species	61
3.3	Extrac	tion and isolation of compounds from the crude	
	metha	nol extract of <i>Garcinia cantleyana</i> leaves 1 st collection	62
	3.3.1	Extraction	62
3.4	3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8	Subfraction F2.3B (Cantleyanone C) (307) Subfractions F3.2A1 (Garbogiol) (308)	63 64 66 69 71 72
	chloro	form extract of Garcinia cantleyana leaves and	
	Trunk	bark, 2 nd collection	74
	3.4.1	Chemical investigation of the leaves	74
3.5	3.4.3	Subfraction J2.2.2.2 B (Macranthol) (310) Subfraction J4.2 B (Cantleyanone G) (311) ical investigation of the crude chloroform extract	76 77
		rcinia cantleyana trunk bark	81 82
		Subfraction O2.2.2.2 B (Cantleyanone E) (312) Subfraction O2.2.2.2 D (Cantleyanone D) (313)	83
	3.5.3	Subfraction O4.2 B (Cantleyanone F) (314)	85
3.6		Subfraction Q2.2 B (Guadichaudion H) (233) ction and isolation of compounds from	86
	Garci	<i>nia nigrolineata</i> leaves 1 st collection	89
	3.6.1	Chemical investigation of the crude methanol extract of Garcinia nigrolineata leaves	89
		Subfraction GA1 B (Methyl putranjivate) (315) Subfraction GB2 B (Friedelin) (315)	91 92
	3.6.4	mixture of stigmasterol and β -sitosterol (317)	94
3.7	Bioas	say procedures	95
	3.7.1	General considerations	95
3.8		Antimicrobial Assay 3.7.2.1 Disc diffusion method 3.7.2.2 Broth microdilution method oxic Assay	95 95 96 97
3.9	Biolog	gical Activity Tests	98

		3.9.1 Plant Extract	98
	3.10	Antimicrobial Activity Test	98
		3.10.1 Microorganism	99
		3.10.2 Preparation of Nutrient and Potato Dextrose	
		Broth Culture	99
		3.10.3 Disc Diffusion Method	100
		3.10.4 Broth microdilution method	100
	3.11	Cytotoxic Activity Assay	101
		3.11.1 Culture of cells	101
		3.11.2 MTT assay	102
4	BIOL	OGICAL ACTIVITIES OF CRUDE EXTRACTS from	
	G. CA	NTLEYANA and G. NIGROLINEATA	104
	4.1	Antimicrobial activities	104
	4.2	Cytotoxic Activities	105
5	RESU	ILTS AND DISCUSSION	108
Ū	5.1	Characterization of the compounds from	100
	5.1	Garcinia cantleyana	108
		5.1.1 Cantleyanone A (305)	108
		5.1.2 Cantleyanone B (306)	122
		5.1.3 Cantleyanone C (307)	132
		5.1.4 Cantleyanone G (311)	145
		5.1.5 Cantleyanone E (312)	156
		5.1.6 Cantleyanone D (313)	167
		5.1.7 Cantleyanone F (314)	178
		5.1.8 Gaudichaudion H (233)	190
		5.1.9 Cantleyanaxanthone (309)	201
		5.1.10 Garbogiol (308)	212
		5.1.11 Macranthol (310)	222
		5.1.12 glutin-5-en-3β-ol (304)	234
	5.2	Characterization of the compounds from	044
		Garcinia nigrolineata leaves	244
		5.2.1 Methyl putranjivate (315)	244 254
		5.2.2 Friedelin (316) 5.2.3 β -sitosterol and stigmasterol mixture (317)	254 260
	5.3	Bioactivity of Isolated Natural products	263
	0.0	5.3.1 Antimicrobial Activity	263
		5.3.2 Cytotoxic Activity	264
	5.4	Plausible biosynthesis for the new compounds	267
6		CLUSION	270
		OGRAPHY	274
	BIOD	ATA OF THE AUTHOR	288

LIST OF TABLES

Table		Page
1.1	Some cytotoxic compounds from plants	7
2.1	Chemically studied Garcinia species	21
2.2	New xanthones from <i>Garcinia</i> genus (1989 – 2005)	28
2.3	Biological activities of compounds isolated from Garcinia	48
3.1	Yield and the voucher specimen of Garcinia extracts	61
3.2	Fractions obtained from the crude chloroform extract of <i>G. cantleyana</i> by VLC	63
3.3	Subfractions obtained from fraction F by column chromatography	67
3.4	Fractions obtained from the crude chloroform extract of <i>G. cantleyana</i> by sephadex LH-20	74
3.5	Fractions obtained from the crude chloroform extract of <i>G. cantleyana</i> by c. chromatography	81
3.6	Solubility of the crude extract in various solvents at room temperature	89
3.7	Fractions obtained from the crude hexane extract of <i>G.</i> nigrolineata by C. chromatography	90
4.1	Yield and Antimicrobial activity of <i>Garcinia</i> extracts as measured by Disc diffusion method	106
4.2	MIC values for selected species of <i>Garcinia</i> (µg/disc) by using Disc diffusion method	107
4.3	<i>In vitro</i> cytotoxicity of crude methanol <i>Garcinia</i> extracts IC ₅₀ μg ml ⁻¹	107
5.1	The assignments of protons of cantleyanone A (305)	113
5.2	The assignments of protons of cantleyanone B (306)	124
5.3	The assignments of protons of cantleyanone C (307)	135

xv

5.4	The assignments of protons of cantleyanone G (311)	147
5.5	The assignments of protons of cantleyanone E (312)	158
5.6	The assignments of protons of cantleyanone D (313)	170
5.7	The assignments of protons of cantleyanone F (314)	181
5.8	The assignments of protons of gaudichaudion H (233)	193
5.9	The assignments of protons of cantleyanaxanthone (309)	204
5.10	The assignments of protons of garbogiol (308)	214
5.11	The assignments of protons of macranthol (310)	225
5.12	NMR spectral data of glutin-5-en-3β-ol (304)	236
5.13	NMR spectral data of methyl putranjivate (315)	246
5.14	NMR spectral data of Friedelin (316)	256
5.15	Antibactrial activity of caged polyprenylated xanthonoids	
	and sesquineolignan as measured by the Broth	
	microdilution method	264
5.16	Cytotoxic activities of the isolated natural products	266

LIST OF FIGURES

Figure		Page
2.1	Garcinia cantleyana Whitmore	19
2.2	Garcinia nigrolineata Planch. ex T. Anders.	20
2.3	Variety and similarity of Garcinia natural products	24
2.4	Proposed mechanism of action for gambogic acid	50
3.1	Molecular structure of MTT and formazan (MTT reaction	
	product)	98
5.1	Selected HMBC correlations and 3D of tricycle-4-	
	oxa[4.3.1.0 ^{3,7}]decane skeleton	110
5.2	cantleyanone A (305)	112
5.3	Diagnostic ^{2}J and ^{3}J correlations in the HMBC and	
	selected NOESY correlations of Cantleyanone A	112
5.4	EIMS Spectrum of Cantleyanone A (305)	114
5.5	UV Spectrum of Cantleyanone A (305)	114
5.6	IR Spectrum of Cantleyanone A (305)	114
5.7	¹ H-NMR spectrum of Cantleyanone A (305) in CDCl ₃	115
5.8	¹³ C-NMR spectrum of Cantleyanone A (305) in CDCl ₃	116
5.9	DEPT spectrum of Cantleyanone A (305)in CDCl ₃	117
5.10	COSY spectrum of Cantleyanone A (305)in CDCl ₃	118
5.11	HMQC spectrum of Cantleyanone A (305) in $CDCl_3$	119
5.12	HMBC spectrum of Cantleyanone A (305) in CDCl ₃	120
5.13	NOESY spectrum of Cantleyanone A (305) in $CDCI_3$	121
5.14	cantleyanone B (306)	123
5.16	EIMS Spectrum of Cantleyanone B (306)	125
5.17	UV Spectrum of Cantleyanone B (306)	125
5.18	IR Spectrum of Cantleyanone B (306)	125
5.19	¹ H-NMR spectrum of Cantleyanone B (306) in CDCl ₃	126
5.20	¹³ C-NMR spectrum of Cantleyanone B (306) in CDCl ₃	157
5.21	DEPT spectrum of Cantleyanone B (306) in CDCl ₃	128
5.22	COSY spectrum of Cantleyanone B (306)in CDCl ₃	129

5.23	HMQC spectrum of Cantleyanone B (306)in CDCl ₃	130
5.24	HMBC spectrum of Cantleyanone B (306) in $CDCl_3$	131
5.25	Cantleyanone C (307)	136
5.26	Diagnostic ^{2}J and ^{3}J correlations in the HMBC	
	Cantleyanone C (307)	136
5.27	HRESI ⁻ MS Spectrum of Cantleyanone C (307)	137
5.28	EI MS Spectrum of Cantleyanone C (307)	137
5.29	UV Spectrum of Cantleyanone C (307)	138
5.30	IR Spectrum of Cantleyanone C (307)	138
5.31	¹ H-NMR spectrum of Cantleyanone C (307) in CDCl ₃	139
5.32	¹³ C-NMR spectrum of Cantleyanone C (307) in CDCl ₃	140
5.33	DEPT spectrum of Cantleyanone C (307) in $CDCl_3$	141
5.34	COSY spectrum of Cantleyanone C (307) in $CDCI_3$	142
5.36	HMQC spectrum of Cantleyanone C (307) in $CDCl_3$	143
5.37	HMBC spectrum of Cantleyanone C (307) in CDCl ₃	144
5.38	cantleyanone G (311)	146
5.39	Diagnostic ^{2}J and ^{3}J correlations in the HMBC	
	Cantleyanone G (311)	147
5.40	EI MS Spectrum of Cantleyanone G (311)	148
5.41	UV Spectrum of Cantleyanone G (311)	148
5.42	IR Spectrum of Cantleyanone G (311)	148
5.43	¹ H-NMR spectrum of Cantleyanone G (311) in CDCl ₃	149
5.44	¹³ C-NMR spectrum of Cantleyanone G (311) in CDCl ₃	150
5.45	DEPT spectrum of Cantleyanone G (311) in $CDCI_3$	151
5.46	COSY spectrum of Cantleyanone G (311) in $CDCl_3$	152
5.47	NOESY spectrum of Cantleyanone G (311) in $CDCl_3$	153
5.48	HMQC spectrum of Cantleyanone G (311) in $CDCI_3$	154
5.49	HMBC spectrum of Cantleyanone G (311) in $CDCI_3$	155
5.50	cantleyanone E (312)	157
5.51	Diagnostic ^{2}J and ^{3}J correlations in the HMBC	158
	Cantleyanone E (312)	
5.52	EI MS Spectrum of Cantleyanone E (312)	159
5.53	UV Spectrum of Cantleyanone E (312)	159

5.54	IR Spectrum of Cantleyanone E (312)	159
5.55	¹ H-NMR spectrum of Cantleyanone E (312) in CDCl ₃	160
5.56	¹³ C-NMR spectrum of Cantleyanone E (312) in CDCl ₃	161
5.57	DEPT spectrum of Cantleyanone E (312) in $CDCl_3$	162
5.58	COSY spectrum of Cantleyanone E (312) in CDCl ₃	163
5.59	NOESY spectrum of Cantleyanone E (312) in $CDCl_3$	164
5.60	HMQC spectrum of Cantleyanone E (312) in $CDCI_3$	165
5.61	HMBC spectrum of Cantleyanone E (312)in CDCl ₃	166
5.62	cantleyanone D (313)	169
5.63	Selected ^{2}J and ^{3}J correlations in the HMBC and NOESY	
	correlations of Cantleyanone D (313)	169
5.64	EI MS Spectrum of Cantleyanone D (313)	171
5.65	UV Spectrum of Cantleyanone D (313)	171
5.66	IR Spectrum of Cantleyanone D (313)	171
5.67	¹ H-NMR spectrum of Cantleyanone D (313) in CDCl ₃	172
5.68	¹³ C-NMR spectrum of Cantleyanone D (313) in CDCl ₃	173
5.69	COSY spectrum of Cantleyanone D (313) in $CDCl_3$	174
5.70	NOESY spectrum of Cantleyanone D (313) in $CDCI_3$	175
5.71	HMQC spectrum of Cantleyanone D (313) in CDCl ₃	176
5.72	HMBC spectrum of Cantleyanone D (313) in $CDCI_3$	177
5.73	cantleyanone F (314)	180
5.74	Selected ^{2}J and ^{3}J correlations in the HMBC and NOESY	
	correlations of Cantleyanone F (314)	180
5.75	EI MS Spectrum of Cantleyanone F (314)	182
5.76	UV Spectrum of Cantleyanone F (314)	182
5.77	IR Spectrum of Cantleyanone F (314)	182
5.78	¹ H-NMR spectrum of Cantleyanone F (314) in CDCl ₃	183
5.79	¹³ C-NMR spectrum of Cantleyanone F (314) in CDCl ₃	184
5.80	DEPT spectrum of Cantleyanone F (314) in CDCl ₃	185
5.81	COSY spectrum of Cantleyanone F (314) in $CDCl_3$	186
5.82	NOESY spectrum of Cantleyanone F (314) in CDCl ₃	187
5.83	HMQC spectrum of Cantleyanone F (314) in $CDCI_3$	188
5.84	HMBC spectrum of Cantleyanone F (314) in $CDCl_3$	189

5.85	Gaudichaudion H (233)	192
5.87	EIMS Spectrum of Gaudichaudion H (233)	194
5.88	UV Spectrum of Gaudichaudion H (233)	194
5.89	IR Spectrum of Gaudichaudion H (233)	194
5.90	¹ H-NMR spectrum of Gaudichaudion H (233) in CDCl ₃	195
5.91	¹³ C-NMR spectrum Gaudichaudion H (233) in CDCl ₃	196
5.92	DEPT spectrum of Gaudichaudion H (233) in $CDCI_3$	197
5.93	COSY spectrum of Gaudichaudion H (233) in $CDCI_3$	198
5. 9 4	HMQC spectrum of Gaudichaudion H (233) in $CDCI_3$	199
5.95	HMBC spectrum of Gaudichaudion H (233) in CDCl ₃	200
5.96	Cantleyanaxanthone (309)	204
5.97	Diagnostic ^{2}J and ^{3}J correlations in the HMBC	
	Cantleyanaxanthone (309)	204
5.98	EI MS Spectrum of Cantleyanaxanthone (309)	205
5.99	UV Spectrum of Cantleyanaxanthone (309)	205
5.100	IR Spectrum of Cantleyanaxanthone (309)	205
5.101	¹ H-NMR spectrum Cantleyanaxanthone (309)	206
5.102	¹³ C-NMR spectrum of Cantleyanaxanthone (309) in CDCl ₃	207
5.103	DEPT spectrum of Cantleyanaxanthone (309)in CDCl ₃	208
5.104	COSY spectrum of Cantleyanaxanthone (309) in $CDCl_3$	209
5.105	HMQC spectrum of Cantleyanaxanthone (309) in $CDCI_3$	210
5.106	HMBC spectrum of Cantleyanaxanthone (309) in $CDCI_3$	211
5.107	Garbogiol (308)	214
5.108	Diagnostic ^{2}J and ^{3}J correlations in the HMBC garbogiol	215
5.109	EI MS Spectrum of garbogiol (308)	215
5.110	UV Spectrum of garbogiol (308)	215
5.111	IR Spectrum of garbogiol (308)	215
5.112	¹ H-NMR spectrum garbogiol (308)	216
5.113	¹³ C-NMR spectrum of garbogiol (308)	217
5.114	DEPT spectrum of garbogiol (308) in CDCl ₃	218
5.115	COSY spectrum of garbogiol (308) in CDCl ₃	219
5.116	HMQC spectrum of garbogiol (308) in CDCl ₃	220
5.117	HMBC spectrum of garbogiol (308)in CDCl ₃	221

5.118	2D NMR for macranthol (310)	224
5.119	Macranthol (310)	225
5.120	EI MS Spectrum of macranthol (310)	226
5.121	UV Spectrum of macranthol (310)	226
5.122	IR Spectrum of macranthol (310)	226
5.123	¹ H-NMR spectrum macranthol (310) in acetone- d_6	227
5.124	¹³ C-NMR spectrum of macranthol (310) in acetone- d_6	228
5.125	DEPT spectrum of macranthol (310) in acetone- d_6	229
5.126	COSY spectrum of macranthol (310) in acetone- d_6	230
5.127	NOESY spectrum of macranthol (310) in acetone- d_6	231
5.128	HMQC spectrum of macranthol (310) in acetone- d_6	232
5.129	HMBC spectrum of macranthol (310) in acetone- d_6	233
5.130	glutin-5-en-3β-ol (304)	236
5.131	EI MS Spectrum of glutin-5-en-3β-ol (304)	237
5.132	IR Spectrum of glutin-5-en-3β-ol (304)	237
5.133	¹ H-NMR spectrum glutin-5-en-3 β -ol (304) in CDCl ₃	238
5.134	¹³ C-NMR spectrum of glutin-5-en-3 β -ol (304) in CDCl ₃	239
5.135	DEPT spectrum of glutin-5-en-3 β -ol (304) in CDCl ₃	240
5.136	COSY spectrum of glutin-5-en-3 β -ol (304) in CDCl ₃	241
5.137	HMQC spectrum of glutin-5-en-3 β -ol (304) in CDCl ₃	242
5.138	HMBC spectrum of glutin-5-en-3 β -ol (304) in CDCl ₃	243
5.139	methyl putranjivate (315)	246
5.140	EI MS Spectrum of methyl putranjivate (315)	247
5.141	UV Spectrum of methyl putranjivate (315)	247
5.142	IR Spectrum of methyl putranjivate (315)	247
5.123	¹ H-NMR spectrum of methyl putranjivate (315)in CDCl ₃	248

5.144	13 C-NMR spectrum of methyl putranjivate (315) in CDCl ₃	249
5.145	DEPT spectrum of methyl putranjivate (315) in $CDCl_3$	250
5.146	COSY spectrum of methyl putranjivate (315) in $CDCl_3$	251
5.147	HMQC spectrum of methyl putranjivate (315) in $CDCl_3$	252
5.148	HMBC spectrum of methyl putranjivate (315) in $CDCl_3$	253
5.149	Friedelin (316)	256
5.150	EI MS Spectrum of Friedelin (316)	257
5.151	UV Spectrum of Friedelin (316)	257
5.152	IR Spectrum of Friedelin (316)	257
5.153	¹ H-NMR spectrum of Friedelin (316) in CDCl ₃	258
5.154	¹³ C-NMR spectrum of Friedelin (316) in CDCl ₃	259
5.158	EI MS of stigmasterol and β -sitosterol (317)	261
5.159	IR spectrum of stigmasterol and β -sitosterol (317)	261
5.160	Structure of stigmasterol and β -sitosterol (317) (R=R ₁ =	004
	β - sitosterol, R=R ₂ = stigmasterol) ¹ H-NMR spectrum of stigmasterol and β -sitosterol (317)	261
5.161	in CDCl ₃	262

Scheme		Page
2.1	Proposed biosynthesis of xanthones in higher plants	53
2.2	Proposed biosynthesis of xanthones in higher plants involving spiranic intermediates	54
2.3	Proposed biosynthesis of caged unit 263 by a) Kartha and b) Ollis	56
3.1	Flowchart for column chromatography of crude chloroform extract of <i>G. cantleyana</i> leaves 1 st collection	73
3.2	Flowchart for column chromatography of crude chloroform extract of <i>G. cantleyana</i> leaves 2 nd collection	80
3.3	Flowchart for column chromatography of crude chloroform extract of <i>G. cantleyana</i> Trunk bark	88
3.4	Flowchart for column chromatography of crude ethyl acetate extract of <i>G. nigrolineata</i> leaves	94
5.1	Plausible biogenetic pathways to cantleyanone A, B, and G	268
5.2	Plausible biogenetic pathways to cantleyanone E, D,	
	and F	269

LIST OF SCHEMES

LIST OF ABBREVIATIONS

δ	Chemical shift in ppm
°C	Degree in Celsius
[α] _D	Specific rotation at sodium D-line
bp	Boiling point
br	Broad
BuOH	Butanol
¹³ C	Carbon-13
d	Doublet
dd	Doublet of doublet
ddd	Doublet of doublet of doublet
DEPT	Distortionless Enhancement by Polarization Transfer
DMSO	Dimethylsulfoxide
EtOAc	Ethyl acetate
eV	Electron volt
FTIR	Fourier Transform Infra-Red
GC-MS	Gas Chromatography-Mass Spectrometry
¹ H	Proton
gHMBC	Gradient Heteronuclear Multiple Bond Correlation
gHSQC	Gradient Heteronuclear Single-Quantum Coherence
gCOSY	Gradient Correlation Spectroscopy
HREIMS	High Resolution Electron Impact Mass Spectrum
HREIMS EIMS	
	High Resolution Electron Impact Mass Spectrum
EIMS	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum
EIMS ESIMS	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum
EIMS ESIMS Hz	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum Hertz
EIMS ESIMS Hz IR	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum Hertz Infrared
EIMS ESIMS Hz IR J	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum Hertz Infrared Coupling in Hz
EIMS ESIMS Hz IR J Lit.	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum Hertz Infrared Coupling in Hz Literature
EIMS ESIMS Hz IR J Lit. m	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum Hertz Infrared Coupling in Hz Literature Multiplet
EIMS ESIMS Hz IR J Lit. m <i>m</i> /z	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum Hertz Infrared Coupling in Hz Literature Multiplet Mass per charge
EIMS ESIMS Hz IR J Lit. m <i>m</i> /z MeOH	High Resolution Electron Impact Mass Spectrum Electron Impact Mass Spectrum Electro-Spray Ionization Mass Spectrum Hertz Infrared Coupling in Hz Literature Multiplet Mass per charge Methanol

