

UNIVERSITI PUTRA MALAYSIA

FORMULATION AND STORAGE PROPERTIES OF TRASPARENT SOAP PREPARED FROM ENZYMATICALLY AND NON-ENZYMATICALLY TREATED PALM-BASED MATERIALS

KOH SOO PENG.

FSMB 2004 7

FORMULATION AND STORAGE PROPERTIES OF TRANSPARENT SOAP PREPARED FROM ENZYMATICALLY AND NON-ENZYMATICALLY TREATED PALM-BASED MATERIALS

KOH SOO PENG

MASTER OF SCIENCE UNIVERSITY PUTRA MALAYSIA

MARCH 2004

FORMULATION AND STORAGE PROPERTIES OF TRANSPARENT SOAP PREPARED FROM ENZYMATICALLY AND NON-ENZYMATICALLY TREATED PALM-BASED MATERIALS

By

KOH SOO PENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2004

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

FORMULATION AND STORAGE PROPERTIES OF TRANSPARENT SOAP PREPARED FROM ENZYMATICALLY AND NON-ENZYMATICALLY TREATED PALM-BASED MATERIALS

By

KOH SOO PENG

March 2004

Chairman:

Associate Professor Dr Lai Oi Ming, Ph.D.

Faculty:

Food Science and Biotechnology

The study on the physical and chemical properties of 28 samples of commercial transparent soap provided valuable information that could be used as a guideline in the preparation of palm-based transparent soap formulation. Most of the commercial transparent soaps had good transparency (above 0.8) with a moderate total fatty matter of between 40% and 60%. They were mostly superfatted products and showed good foamability and hardness with a penetration value of less than 5 mm.

Differences in titer, acid and iodine values affected the ability of different palmbased fatty acid in accepting the amount of sodium salt into soap formulation and the hardness property. The proper combination of triethanolamine, glycerol and sugar solution played an important role in determining the transparency, hardness, foamability and moisture content of the soap produced. Transparent soap bar made from blends of distilled palm stearin fatty acid with ricinoleic acid covered a wide range of acceptability for triethanolamine (20-90%) with low amount of sugar

solution (less than 30%) and less than 70% of glycerol. However, in blends of distilled palm oil fatty acid-based soap with ricinoleic acid, the transparent soap region ranged between 40% and 80% triethanolamine, less than 40% of glycerol and between 20% to 50% of sugar solution. Both blends of distilled palm fatty acid-based transparent soap had transparency reading above 0.8 and penetration value of less than 8 mm with the majority of moisture content of soap falling between 15% and 20%. In the region of low percentage of triethanolamine (0%-20%) with 80-100% of glycerol and sugar solution used, both distilled palm fatty acids used in soap formulation produced soft and gummy opaque soap.

Lipase-catalysed acidolysis is a vital tool to tailor-make refined, bleached and deodorised palm oil (RBD palm oil) enriched with ricinoleic acid (RA). Lipozyme IM60 lipase performed better (12.33% RA/24 hours) than *Pseudomonas* sp. lipase (2.59% RA/24 hours) as it was able to incorporate more ricinoleic acid into RBD palm oil at a shorter time. The alteration in triglyceride composition of acidolysed oil had led to the changes in their slip melting point, iodine value, solid fat content, crystallisation and melting behaviour and also the viscosity of the acidolysed oil produced.

The differences in sodium salt content used in different fatty raw material-based soap formulation had caused an effect on the transparency, total fatty matter, penetration value, chloride content and foamability of soap made. In general, the presence of ricinoleic acid in the blends of distilled palm oil fatty acid soap, blends of distilled palm stearin fatty acid soap and acidolysed oil-based soap assisted in improving the

soap transparency, especially when high contents of sodium salt were used in the soap formulation.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

FORMULASI DAN CIRI-CIRI PENYIMPANAN SABUN LUTSINAR DIHASILKAN SECARA BERENZIM DAN BUKAN BERENZIM BAHAN MENTAH BERASASKAN MINYAK SAWIT

Oleh

KOH SOO PENG

Mac 2004

Pengerusi:

Profesor Madya Dr Lai Oi Ming, Ph.D.

Fakulti:

Sains Makanan dan Bioteknologi

Kajian terhadap ciri-ciri fiziko dan kimia bagi 28 sampel sabun lutsinar komersial membekalkan maklumat berguna dalam penyediaan formulasi sabun lutsinar berasaskan minyak sawit. Kebanyakan sabun lutsinar komersial mempunyai tahap lutsinar melebihi 0.8 dengan kandungan asid lemak yang sederhana di antara 40-60%. Kebanyakan sabun lutinar di pasaran adalah produk 'superfatted' dan mempunyai kebuihan yang baik dan kekerasan dengan nilai penembusan kurang daripada daripada 5 mm.

Perbezaan dalam nilai titer, nilai asid dan nilai iodin mempengaruhi keupayaan asid lemak berasaskan minyak sawit yang berlainan terhadap penerimaan kuantiti garam natrium dalam formulasi sabun dan ciri kekerasan. Kombinasi yang bersesuaian di antara triethanolamine, gliserol dan larutan gula memainkan peranan penting dalam penentuan kelutsinaran, kekerasan, kebuihan dan kandungan kelembapan sabun yang dihasilkan. Ketulan sabun lutsinar diperbuat daripada campuran hasil sulingan asid

lemak minyak stearin boleh menerima 20-90% triethanolamine, larutan gula kurang daripada 30% dan gliserol kurang daripada 70%. Manakala, bagi sabun lutsinar yang diperbuat daripada campuran hasil sulingan asid lemak minyak sawit, 40-80% triethanolamine dengan gliserol kurang daripada 40% dan larutan gula di antara 20% hingga 50% adalah diterima dalam formulasi sabun. Kedua-dua jenis sabun lutsinar yang diperbuat daripada campuran hasil sulingan asid lemak berlainan mempunyai tahap kelutsinaran melebihi 0.8 dan nilai penembusan kurang daripada 8 mm serta kandungan kelembapan antara 15% dan 20%. Dalam lingkungan 0-20% triethanolamine dan keseluruhan julat peratusan bagi gliserol dan larutan gula dalam formulasi sabun, kedua-dua jenis hasil sulingan asid lemak minyak sawit menghasilkan sabun lutcahaya yang lembut dan berperekat.

Asidolisis menggunakan lipase merupakan teknik penting dalam pembuatan RBD minyak sawit yang kaya dengan asid ricinoleic (RA). Lipase Lipozyme IM60 mmpunyai prestasi yang lebih baik (12.33% RA/24 jam) berbanding lipase *Pseudomonas* sp. (2.59% RA/24 jam) kerana ia berupaya mmasukkan asid ricinoleik dalam RBD minyak sawit dalam masa yang lebih singkat. Perubahan dalam komposisi trigliserida menyebabkan perubahan dalam takat lebur slip, nilai iodin, kandungan lemak pepejal, kelakuan pembekuan dan peleburan serta viskositi bagi minyak sawit yan telah diubahsuai melalui asidolisis.

Perbezaan dalam kandungan garam natrium bagi bahan mentah yang berlainan dalam formulasi sabun mempunyai kesan terhadap kelutsinaran, kandungan asid lemak, nilai penembusan, kandungan klorin dan kebuihan sabun lutsinar yang dihasilkan. Secara amnya, kehadiran asid ricinoleik dalam sabun lutsinar yang diperbuat

daripada campuran hasil sulingan asid lemak minyak sawit, campuran hasil sulingan asid lemak minyak stearin dan minyak sawit yang telah diasidolisis mampu memperbaiki kelutsinaran sabun, terutamanya bagi kandungan garam natrium yang tinggi dalam formulasi sabun.

ACKNOWLEDGEMENTS

I wish to express my most sincere appreciation to my main supervisor, Prof. Madya Dr Lai Oi Ming of Department of Biotechnology, Faculty Food Science and Biotechnology, members of supervisory committee, Prof. Hasanah Mohd. Ghazali (Department of Biotechnology, University Putra Malaysia), Dr Ainie Kuntom (Chemistry and Technology Division, Malaysian Palm Oil Board) and Dr Chong Chiew Let (Chemistry and Technology Division, Malaysian Palm Oil Board), for their willingness to share their expertise, knowledge and constant encouragement throughout the course of my study. The suggestions and insightful comments on the contents of my thesis are gratefully acknowledged.

My sincere thanks also go to the staffs in Malaysian Palm Oil Board (MPOB) and my lovely friends in Enzyme Lab at Department of Biotechnology for their technical assistance and support. Many thanks go to Miss Lee Yim Leng for her invaluable guidance, encouragement and patience in sharing my excitements and frustrations of research. And lastly, I am grateful for the support of my family and their endless love, understanding and encouragements throughout the period of completing this project.

I certify that an Examination Committee met on 18th March 2004 to conduct the final examination of Koh Soo Peng on her Master of Science thesis entitled "Formulation and Storage Properties of Transparent Soap Prepared from Enzymatically and Non-Enzymatically Treated Palm-Based Materials" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Suhaila Mohamed, Ph.D.

Professor Faculty ofFood Science and Biotechnology Universiti Putra Malaysia (Chairman)

Lai Oi Ming, Ph.D.

Associate Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

Hasanah Mohd. Ghazali, Ph.D.

Professor Faculty of Food Science and Biotechnology Universiti Putra Malaysia (Member)

Ainie Kuntom, Ph.D.

Malaysian Palm Oil Board (Member)

Chong Chiew Let, Ph.D. Malaysia Palm Oil Board (Member)

GULAM RUSUL RAMMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 JUN 2004

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Lai Oi Ming, Ph.D.

Associate Professor Faculty Food Science and Biotechnology University Putra Malaysia (Chairwoman)

Hasanah Mohd. Ghazali, Ph.D.

Professor Faculty Food Science and Biotechnology University Putra Malaysia (Member)

Ainie Kuntom, Ph.D. Malaysia Palm Oil Board (Member)

Chong Chiew Let, Ph.D. Malaysia Palm Oil Board (Member)

AINI IDERIS, Ph.D.
Professor/Dean,
School of Graduate Studies
Universiti Putra Malaysia

Date: 09 JUL 2004

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at University Putra Malaysia or other institutions.

KOH SOO PENG

Date: 10 JUN 2004

TABLE OF CONTENTS

		Page
AB	STRACT	ii
	STRAK	v
ACKNOWLEDGEMENTS		viii
APPROVAL DECLARATION LIST OF TABLES		ix
		xi
		xvii
	ST OF FIGURES	XX
LIS	ST OF ABBREVIATIONS	xxvii
СН	IAPTER	
1	INTRODUCTION	1
2	LITERATURE REVIEW	5
	History of Transparent Soap	5
	The Structure of Transparent Soap	13
	Basic Raw Materials Utilized in Transparent Soap Formulation	16
	Tallow	16
	Rosin	17
	Castor Oil and Ricinoleic Acid	17
	Lauric Oil	18
	Superfatting Agents	18
	Salt Contents	19
	Alcohol	20
	Glycerin	21
	Sugar or Polyols	21
	Triethanolamine	22
	Alkali Solution	23
	Perfuming and Dyestuffs	23
	Foaming Agents	24
	Citric Acid	24
	Water	25 25
	Other Ingredients	25 26
	Factors Influencing Transparent Soap Making	26
	Balancing of the Fat Stocks	26
	Selection of Non-soap Additives	28
	The Rate of Cooling	28
	Phase Change due to Mechanical Treatment	29
	Purity of the Ingredients	29
	Shock or Physical strain	30
	Transparency Measurement	30
	Lipase	32
	Enzymatic Interesterification	33
	Application of Lipase-catalysed Interesterification	34
	Immobilization of Lipase	37

3	PHYSICAL AND CHEMICAL PROPERTIES OF COMMERC	
	TRANSPARENT SOAP FOUND IN MALAYSIA	39
	Introduction	39
	Materials and Methods	41
	Materials	41
	Methods	42
	Transparency Measurement	42
	Penetration Value	44
	Total Fatty Matter	44
	Moisture Content	46
	Foambility	46
	Free Caustic or Free Acid Content	47
	Results and Discussion	48
	Transparency Measurement	48
	Penetration Value	50
	Total Fatty Matter	50
	Moisture Content	53
	Foambility	55
	Free Caustic or Free Acid Content	57
	Summary	59
4	PALM-BASED TRANSPARENT SOAP FORMULATION	61
	Introduction	61
	Materials and Methods	62
	Materials	62
	Methods	63
	Physical and Chemical Analysis on Fatty Stocks Used	63
	Acid Value	63
	Titer Value	64
	Iodine Value	64
	Preparation of Palm-based Transparent Soap	66
	Preparation of Sodium Salt (Neutralization Process)	67
	Preparation of Soap Bar using Casting Method	67
	Physical and Chemical Analysis on Transparent Soap Bar	68
	Differential Scanning Calorimetry	68
	Transparency Measurement	68
	Foamability	69
	Penetration Value	69
	Surface Tensiometer	69
	Free Acid Content	70
	Weight loss	70
	Results and Discussion	70
	Distilled Palm Oil Fatty Acid as Fatty Stock in Soap Formula	70
	Differential Scanning Calorimetry	71
	Transparency Measurement	73
	Foamability	76
	Penetration Value	79
	Surface Tension	79
	Free Acid Content	81
	Changes in Soan Property after Storage	83

	Distilled Palm Stearin Fatty Acid as Fatty Stock in Soap Formula	85
	Differential Scanning Calorimetry	88
	Transparency Measurement	90
	Foamability	93
	Penetration Value	96
	Surface Tension	96
	Free Acid Content	99
	Changes in Soap Property after Storage	99
	Summary	102
5	EFFECT OF DIFFERENT INGREDIENTS AND PROCESSING	
	TEMPERATURE ON PALM-BASED SOAP FORMULATION	105
	Introduction	105
	Materials and Methods	106
	Materials	106
	Methods ·	106
	Preparation of Palm-based Transparent Soap	106
	Physical and Chemical Analysis on Transparent Soap Bar	107
	Experimental Design	107
	Results and Discussion	107
	Effect of Different Ingredients on Soap Transparency	107
	Transparency Measurement and Penetration Value	108
	Effect of Sodium Salt on Palm Olein Polyols-based Transparent Soap	110
	Transparency Measurement and Penetration Value	111
	Foamability	113
	Effect of Different Sugar Type on Soap Transparency	113
	Transparency Measurement, Penetration Value and Foamability	113
	Effect of Different Processing Temperature on Soap Transparency	116
	Transparency Measurement, Penetration Value and Foamability	117
	Effect of Triethanolamine, Glycerol and Sugar Solution on Palm Oil	
	Polyols-based Transparent Soap	117
	Transparency Measurement	119
	Penetration Value	122
	Foamability	122
	Summary	125
6	TERNARY DIAGRAM ON PALM-BASED TRANSPARENT SOA	AP 127
	Introduction	127
	Materials and Methods	128
	Materials	128
	Methods	128
	Preparation of Palm-based Transparent Soap	128
	Physical and Chemical Analysis on Transparent Soap Bar	129
	Results and Discussion	129
	Distilled Palm Stearin Fatty Acid as Fatty Raw Material	129
	Transparency Measurement	129
	Penetration Value	131
	Moisture Content	133
	Foamability and Free Acid Content	135
	Distilled Palm Oil Fatty Acid as Fatty Raw Material	135

	Transparency Measurement	138
	Penetration Value	140
	Moisture Content	140
	Foamability and Free Acid Content	143
	Summary	143
7	ACIDOLYSIS OF RBD PALM OIL WITH RICINOLEIC ACID	147
	Introduction	147
	Materials and Methods	148
	Materials	148
	Methods	149
	Immobilization of Lipase	149
	Preparation of Lipase-catalysed acidolysis of RBD Palm Oil with	
	Ricinoleic Acid	149
	Physical and Chemical Characteristics of Lipase-catalysed RBD Palm	
	Oil and Ricinoleic Acid Blends	151
	Determination of Hydrolytic Activity	151
	Removal of Free Fatty Acid	151
	Determination of Fatty Acid Composition using Gas	150
	Chromatography Determination of Triphyspile Composition using High	152
	Determination of Triglyceride Composition using High	153
	Performance Liquid Chromatography	133
	Determination of Melting and Cooling Profile using Differential	153
	Scanning Calorimetry	155
	Determination of Kinematic Viscosity using U-tube Viscometer	156
	Solid Fat Content	
	Slip Melting Point	157 157
	Apparent Density in Air of Oils	
	Iodine Value	158
	Saponification Value	158
	Results and Discussion	159
	Changes in Hydrolytic Activity	159
	Changes in the Fatty Acid Composition in Acidolysed RBD Palm Oil	162
	Changes in Triglyceride Profile	166
	Thermograms of Acidolysed RBD Palm Oil	183
	Changes in Iodine Value	197
	Changes in Solid Fat Content and Slip Melting Point of Acidolysed	
	RBD Palm Oil	200
	Changes in Viscosity of Acidolysed RBD Palm Oil	203
	Summary	206
8	EFFECT OF DIFFERENT FATTY STOCKS ON THE	200
	TRANSPARENCY OF PALM-BASED SOAP FORMULATION	209
	Introduction	209
	Materials and Methods	210
	Materials	210
	Methods	210
	Preparation of Palm-based Transparent Soap	210
	Preparation of Sodium Salt (Neutralization Process)	210
	Preparation of Sodium Salt (Saponification Process)	211

	Preparation of Soap Bar using Casting Method	212
	Physical and Chemical Analysis on Fatty Acids and Oils	212
	Saponification Value	212
	Physical and Chemical Analysis on Transparent Soap Bar	213
	Chlorides Content	213
	Results and Discussion	214
	Transparency Measurement	216
	Total Fatty Matter	219
	Penetration Value	221
	Foamability	223
	Moisture Content	225
	Chlorides Content	225
	Free Acid and Free Caustic Content	227
	Change in Soap Property after Storage	230
	Summary	233
9	CONCLUSION AND RECOMMENDATIONS	235
	Conclusion	235
	Recommendations	242
ΒIJ	BLOGRAPHY	243
АP	PPENDICES	254
RT	ODATA OF THE AUTHOR	258

LIST OF TABLES

Fable		Page
1	Average Free acid and free caustic content of commercial transparent soap.	58
2	Average Foamability and free acid content of blends soap made of distilled palm stearin fatty acid with ricinoleic acid in ternary diagram.	136
3	Average Foamability and free acid content of blends soap made of distilled palm oil fatty acid with ricinoleic acid in ternary diagram.	144
4	Percentage of free fatty acid of acidolysed oil catalysed by both Lipozyme IM60 and <i>Pseudomonas</i> sp. lipases under various incubation times ^a .	160
5	Percentage of free fatty acid of acidolysed oil catalysed by Lipozyme IM60 lipase at different ratio of RBD palm oil and ricinoleic acid ^a .	161
6	Percentage of free fatty acid of acidolysed oil catalysed by Lipozyme IM60 lipase at different incubation temperature ^a .	161
7	Percentage of ricinoleic acid of acidolysed oil catalysed by both Lipozyme IM60 and <i>Pseudomonas</i> sp. lipases under various incubation times ^a .	164
8	Percentage of ricinoleic acid of acidolysed oil catalysed by Lipozyme IM60 lipase at different ratio of RBD palm oil and ricinoleic acid ^a .	165
9	Percentage of ricinoleic acid of acidolysed oil catalysed by Lipozyme IM60 lipase at different incubation temperature ^a .	165
10	Melting properties of acidolysed oil catalysed by Lipozyme IM60 lipase with different reaction times.	186
11	Melting properties of acidolysed oil catalysed by <i>Pseudomonas</i> sp. linase	.

12	Cooling properties of acidolysed oil catalysed by <i>Pseudomonas</i> sp. lipase with different reaction times.	; 193
13	Cooling properties of acidolysed oil catalysed by Lipozyme IM60 lipase with different reaction times.	193
14	Melting properties of acidolysed oil catalysed by Lipozyme IM60 lipase with different incubation temperature.	194
15	Cooling properties of acidolysed oil catalysed Lipozyme IM60 lipase with different incubation temperature.	194
16	Melting properties of acidolysed oil catalysed by Lipozyme IM60 lipase with different ratio of RBD palm oil and ricinoleic acid.	196
17	Cooling properties of acidolysed oil catalysed Lipozyme IM60 lipase with different ratio of RBD palm oil and ricinoleic acid.	196
18	Percentage of iodine value of acidolysed oil catalysed by both Lipozyme IM60 and <i>Pseudomonas</i> sp. lipases under various incubation times ^a .	198
19	Percentage of iodine value of acidolysed oil catalysed by Lipozyme IM60 lipase at different ratio of RBD palm oil and ricinoleic acid ^a .	199
20	Percentage of iodine value of acidolysed oil catalysed by Lipozyme IM60 lipase at different incubation temperature ^a .	199
21	Physical and chemicals properties of different fatty raw materials for Palm-based transparent soap making.	215
22	Transparency measurement of different sodium salt content under various fatty stock-based soap formulation ^a .	217
23	Total fatty matter of different sodium salt content under various fatty stock-based soan formulation ^a	220

24	Penetration value of different sodium salt content under various fatty stock-based soap formulation ^a .	222
25	Foamability of different sodium salt content under various fatty stock-based soap formulation ^a .	224
26	Moisture content of different sodium salt content under various fatty stock-based soap formulation ^a .	226
27	Chloride content of different sodium salt content under various fatty stock-based soap formulation ^a .	228
28	Percentage of free acid and free caustic of different sodium salt content under various fatty stock-based soap formulation.	229
29	Transparency measurement of different sodium salt content under various fatty stock-based soap formulation after 1 month storage ^a .	231
30	Penetration value of different sodium salt content under various fatty	232

LIST OF FIGURES

Figure	e P	age
1	Transparent soap.	43
2	Transparency measurement of commercial transparent soap.	49
3	Penetration value (PV) of commercial transparent soap.	51
4	Total fatty matter of commercial transparent soap.	52
5	Moisture content of commercial transparent soap.	54
6	Foamability of commercial transparent soap.	56
7	Apparatus for titer value measurement.	65
8	Melting points of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm oil fatty acid-based soap (a)7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	72
9	Heat flow of different ratio of triethanolamine (T), glycerol (G) and suga solution (S) on distilled palm oil fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	
10	Transparency measurement of different ratio of triethanolamine (T), glyce (G) and sugar solution (S) on distilled palm oil fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	
11	Degree of transparency at different sodium salt content on distilled palm oil fatty acid-based soap.	77
12	Foamability of different ratio of triethanolamine (T), glycerol (G) and sugresolution (S) on distilled palm oil fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S	

13	Penetration value of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm oil fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	80
14	Surface tension of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm oil fatty acid-based soap (a)7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	82
15	Free acid content of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm oil fatty acid-based soap (a)7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	
16	Percentage weight lost of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm oil fatty acid-based soap after 4 months storage (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	86
17	Transparency measurement of different ratio of triethanolamine (T), glyces (G) and sugar solution (S) on distilled palm oil fatty acid-based soap after 4 months storage (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	
18	Melting points of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm stearin fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S	89
19	Heat flow of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm stearin fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	91
20	Transparency measurement of different ratio of triethanolamine (T), glyce (G) and sugar solution (S) on distilled palm stearin fatty acid-based soc (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S	
21	Degree of transparency at different sodium salt content on distilled palm stearin fatty acid-based soap.	94
22	Foamability of different ratio of triethanolamine (T), glycerol (G) and sug	ır

	solution (S) on distilled palm stearin fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e)3T:5G:4S and (f)2T:6G:4S.	94
23	Penetration value of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm stearin fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f)2T:6G:4S.	97
24	Surface tension of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm stearin fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S	98
25	Free acid content of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm stearin fatty acid-based soap (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S.	1 0 0
26	Percentage weight lost of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm stearin fatty acid-based soap after 4 months storage (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S	101
27	Transparency measurement of different ratio of triethanolamine (T), glycerol (G) and sugar solution (S) on distilled palm stearin fatty acid-based soap after 4 months storage (a) 7T:1G:4S (b) 6T:2G:4S (c) 5T:3G:4S (d) 4T:4G:4S (e) 3T:5G:4S and (f) 2T:6G:4S	103
28	Transparency measurement of different formulation of distilled palm stearin fatty acid-based soap.	109
29	Penetration value of different formulation of distilled palm stearin fatty acid-based soap.	1 0 9
30	Transparency measurement and penetration value of different percentage of sodium salt content on distilled palm stearin fatty acid-based soap containing palm olein polyols.	112
31	Average Foamability of different percentage of sodium salt content on distilled palm stearin fatty acid-based soan containing palm olein polyols	114

32	(a) Transparency measurement (b) penetration value (c) average foamability of different types of sugar on distilled palm stearin fatty acid-based soap.	115
33	(a) Transparency measurement (b) penetration value (c) average foamability of different processing temperatures on distilled palm stearin fatty acid-based soap.	118
34	Transparency measurement of (a) GLY:TEA (b) TEA:SUG (c) SUG:GLY series of distilled palm stearin fatty acid-based soap.	120
35	Penetration value of (a) GLY:TEA (b) TEA:SUG (c) SUG:GLY series of distilled palm stearin fatty acid-based soap.	123
36	Average foamability of (a) GLY:TEA (b) TEA:SUG (c) SUG:GLY series of distilled palm stearin fatty acid-based soap.	124
37	Ternary diagram on transparency measurement of distilled palm stearin fatty acid-based soap.	130
38	Ternary diagram on penetration value of distilled palm stearin fatty acid-based soap.	132
39	Ternary diagram on moisture content of distilled palm stearin fatty acid-based soap.	134
40	Ternary diagram on transparency measurement of distilled palm oil fatty acid-based soap.	139
41	Ternary diagram on penetration value of distilled palm oil fatty acid-based soap.	141
42	Ternary diagram on moisture content of distilled palm oil fatty acid-based soap.	142
43	U-tube viscometer.	155
44	Triglycerides profile of RBD palm oil:ricinoleic acid mixtures after	

