

UNIVERSITI PUTRA MALAYSIA

HUMAN HEPATITIS B VIRAL PROTEINS HBX AND HBE: ROLES IN HepG2 CELL LINE SURVIVAL AND CELL DEATH

ANDREA LISA HOLME

FPSK(P) 2004 5

HUMAN HEPATITIS B VIRAL PROTEINS HBX AND HBE: ROLES IN HepG2 CELL LINE SURVIVAL AND CELL DEATH

By ANDREA LISA HOLME

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2004

DEDICATION

In Loving Memory

Of

Elizabeth Christie Holme

Abstract of this thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

HUMAN HEPATITIS B VIRAL PROTEINS HBX AND HBE: ROLES IN CELL SURVIVAL AND CELL DEATH

By

Andrea Lisa Holme

January 2004

Chairman:

Professor Datin Farida Jamal, M.B.B.S., M.Sc., M.R.C. Path.

Faculty:

Medicine and Health Sciences

Existing reports of viral hepatitis, resulting in liver cell death have not been fully explained with regards to the mechanism of the viral proteins involved. The objective of the study is to determine if any of the Hepatitis B viral proteins cause changes in the survival of human hepatocytes and if so by what means. The two main candidates for inducing survival changes were the precore proteins (HBE) and HBX, both of which have been reported to accumulate in the liver of patients and to trigger an immune response. The human liver HepG2 cell line was chosen to study the effect of these proteins during transient expression. The results from this study show that both viral proteins can induce cell death by an apoptotic mechanism via caspases. HBX appears to trigger more cell death than HBE, while HBE-induced an initial proliferation of the cell culture followed by cell death. HBX-induced apoptosis appears to involve both extrinsic and intrinsic cell death systems through the Fas

system and the mitochondria, respectively. There is also a total loss of the PI3K/Akt pathway surivial signals. The HBE-induced apoptosis appears to be through DNA damage triggering an intrinsic cell death program, coupled with a partial loss of the PI3K/Akt pathway that allows GSK3β to be activated, while keeping FHKR inactive. In both cases, the viral cell death can be prevented using the correct dosage of IL-6 stimulation, while loss of serum or the addition of ethanol can have an overall positive effect on the viability of HBX and HBE transfected cells. The deaths can also be prevented in varing degress by the inhibition of MEK1 and PP1A/2A suggesting these pathways are involved probably by cross talking.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai syarat memenuhi keperluan untuk Ijazah Doktor Falsafah

PROTIN HBX DAN HBE VIRUS HEPATITIS B MANUSIA: PERANAN DALAM KEHIDUPAN SEL DAN KEMATIAN SEL

Oleh

Andrea Lisa Holme

Januari 2004

Pengerusi: Profesor Datin Faridah Jamal, M.B.B.S., M.Sc., M.R.C. Path.

Fakulti: Perubatan Dan Sains Kesihatan

Laporan tentang virus hepatitis yang mengakibatkan kerosakan hati belum lagi dijelaskan dengan sepenuhnya dalam aspek mekanisma dan peranan protin virus yang terlibat. Projek ini bertujuan menyiasat sebarang protin virus hepittitis B yang mempengaruhi kehidupan sel hati manusia dan, jika ada bagaimana protin tersebut berfungsi. Dua protin yang memainkan peranan penting adalah protin precore (HBE) dan HBX. Kedua- dua protin tersebut telah dilaporkan terkumpul di dalam hati pesakit dan akan merangsangkan respon keimunan. Sel kanser hepatoblastoma, HepG2, telah dipilih untuk menyiasat kesan protin tersebut semasa transcient ekspesi. Keputusan menunjukan kedua-dua protin virus itu dapat merangsangkan kematian sel melalui mekanisma yang bergantung kepada caspase. HBX didapati merangsangkan kematian sel yang banyak berbanding dengan HBE. Manakala, HBE merangsangkan fasa awal pembahagian sel diikuti dengan kematian sel. Perangsangan apoptosis oleh HBX melibatkan sistem

kematian sel ekstrinsik dan intrinsik melalui sistem Fas dan mitokondria masingmasing. Terdapat juga kehilangkan isyarat kehidupan bagi perjalanan PI3K/Akt. Kematian sel akibat daripada HBE adalah disebabkan oleh kerosakan DNA yang seterusnya merangsangkan program kematian sel intrinsik. Bersamaan kejadian tersebut, terdapat kehilangan separa dalam perjalanan PI3K/Akt yang membolehkan keaktifan GSK3β tanpa mengaktifkan FHKR. Kesan kematian sel akibat daripada kedua-dua protin virus ini dapat diterbalikkan dengan sukatan IL-6 tertentu. Manakala, kehilangan serum atau penambahan etanol boleh membawa kesan positif ke atas viabiliti sel yang dijangkiti HBX dan HBE. Darjah penyongsangan kematian sel dipengaruhi oleh penyahaktifan MEK 1 dan PP1A/2A. Kesimpulannya, kedua-dua protin virus tersebut berkerjasama merangsangkan kematian sel yang dapat dipengaruhi oleh factor-faktor luaran.

ACKNOWLEDGEMENTS

First I would like to thank my supervisor Assoc. Prof. Dr Seow Heng Fong for her guidance throughout my Ph.D. Also thanks to my fellow lab members and the staff of UPM and a huge thanks goes to Mr. Anthonysamy who always was there to help. Thanks also goes to David Lyn for his help in setting up the fluorescent microscope without which I would not have been able to do most of this work. Thanks also to the sales people, especially Mr Ng (BioDiagnostics Sdn Bhd) and Mrs. Rozana (BioSynTech Sdn Bhd), for their help in always finding reagents and pushing through shipments. Last but not least, I would like to thank my family and friends for their support and encouragement.

I certify that an Examination Committee met on 5th January 2004 to conduct the final examination of Andrea Lisa Holme on her Doctor of Philosophy thesis entitled "Human Hepatitis B Viral Proteins HBX and HBE: A Role in Cell Survival and Cell Death" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Datin Dr. Farida Jamal, M.B.B.S., M.Sc., M.R.C.Path.

Professor Faculty of Medicine and Health Science Universiti Putra Malaysia (Chairman)

Seow Heng Fong, Ph.D.

Professor Faculty of Medicine and Health Science Universiti Putra Malaysia

Sabariah Abdul Rahman, M.B.B.S., M.Path., A.M.M.Path.

Associate Professor Faculty of Medicine and Health Science Universiti Putra Malaysia

Chong Pei Pei, Ph.D.

Faculty of Medicine and Health Science Universiti Putra Malaysia

Dr. Chua Kaw Bing, M.Med., M.D., Ph.D.

Professor

Univeristy Perubatan Antarabangsa (IMU) Sesama Centre, Plaza Komanwel

(Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 0 4 JUN 2004

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. Members of the Supervisory Committee are as follows:

Seow Heng Fong, Ph.D.

Professor Faculty of Medicine and Health Science Universiti Putra Malaysia (Chairman)

Sabariah Abdul Rahman, M.B.B.S, M.Path., A.M.M.Path.

Associate Professor Faculty of Medicine and Health Science Universiti Putra Malaysia (Member)

Chong Pei Pei, Ph.D.

Faculty of Medicine and Health Science Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 JUN 2004

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ANDREA LISA HOLME

Date: 5th January 2004

TABLE OF CONTENTS

AI AC AI DI LI LI	ABSTRACT ABSTRAK ACKNOWLEDGEMENTS APPROVALS DECLARATION LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS		3 5 7 8 10 15 16 22	
CI	HAPTE	CR		
1	LITE	RATURE	C REVIEW	26
	1.1	Introduc		26
	1.2	Hepatitis	s B Virus Structure	28
	1.3	Immune	Response to Hepatitis B Virus	30
	1.4	Overviev	w of Signal Transduction Pathways Related to Hepatocytes	35
		1.4.1	Mitogen Activated Protein Kinases	35
		1.4.2	Stress Activated Kinases	38
		1.4.3	Phosphatases Pathway	39
		1.4.4	Phosphatidylinositol 3 kinase-PI3K Pathway	40
			Janus Kinase (Jak)/Signal Transducers and Activators of	42
			Transcription (STAT) Kinase Pathway	4.4
	1.5		NFkappabeta	44
	1.5	Apoptos		45
	1.		Morphology of Apoptosis	46
	1.6	Caspases		48
	1.7		cally Triggered Apoptosis	49
	1.8		ally Triggerd Apoptosis	53
	1.9	-	on of Mitochondria Induced Cell Death by Bcl Family	55
	1.10		rs of Apoptosis	59
	1.11	_	ng Pathways Involved in Apoptosis	61
			Protein Kinase C and Protein Kinase A	62
			Cermide	63
			NF Kappa Beta	65
			p53	66
			Nitric Oxide	68
	1.12	Cytokine	es	69
		1.12.1	Loss of Cytokine-Dependent Suppression of Apoptosis	70
	1.13	Mechani	isms of Hepatitis B Virus Related Hepatocellular Carcinoma	72
		1.13.1	HBX as a Factor in the Development of Hepatocellular Carcinoma	74
		1.13.2	HBeAg as a Factor in the Development of Hepatocellular Carcinoma	77

	1.14	Conclu	sion	79
	1.15	Aims o	f the Project	80
2		GENE	RAL MATERIALS AND METHODS	81
	2.1		ting Mammalian Expression Vectors	81
		2.1.1	Materials and Instruments	81
		2.1.2	Polymerase Chain Reaction to Generate DNA Fragment for Cloning	82
		2.1.3	Gel Purification of the PCR Products	83
		2.1.4	Ligation of Gel Purified PCR Products into pTARGET TM Vector	84
		2.1.5	Transformation of Recombinant pTARGET TM Vector into JM109	84
		2.1.6	Spreading Transformed Cells on Agar Plates	85
		2.1.7	Colony PCR to Determine the Insert Orientation in pTARGET TM Vector	85
		2.1.8	Preparation of Competent JM109 Using the Calcium Chloride Method	85
		2.1.9	Long Term Storage of Bacteria Stocks as Glycerol Stocks	86
		2.1.10	Plasmid Extraction using the Alkaline SDS-Lysis Method	86
		2.2.1	QIAGEN Endotoxin Midi Plasmid Prepatation	87
	2.2	Protein	Work	88
		2.2.1	Materials and Instruments	88
		2.2.1	Lysis of Mammalian Cells for Western Blotting	89
		2.2.3	Electrophoresis of Proteins on SDS-PAGE Gels	89
		2.2.4	Coomassie Blue Staining and Destaining	91
		2.2.5	Determination of Protein Concentration using the Bradford Method	91
		2.2.6	Semi Dry Western Blotting	92
	2.3	Cell Cu	ılture	93
		2.3.1	Materials and Instruments	93
		2.3.2	Maintenance and Subculturing of the HepG2 Cell Line	94
		2.3.3	Cryopreservation	95
		2.3.4	Trypan Blue Exclusion Test	95
		2.3.5	Transcient Transfection of the HepG2 Cell Line	96
		2.3.6	Light Microscopy Morphology Scoring	97
		2.3.7	MTT Assay	98
		2.3.8	Treatments of the HepG2 Cell Line with: Inhibitors, Serum Withdrawl, Ethanol, IL-6 and Condition Medium	98
	2.4	_	nd Fluorescent Microscope	99
		2.4.1	Materials and Instruments	99
		2.4.2	Light Microscope	100
		2.4.3	Epi-Fluorescent Microscope	100
	2.5	Statisti	CS	102
3		OPTIN	MISING TRANSFECTION OF THE HEPG? CELL LINE	103

	3.1	Introduction	103 104	
	3.2			
	3.3	•		
	3.4	Localisation and Expression of the Viral Proteins HBX and HBE	109	
	3.5	Conclusion of the Transfection	111	
ļ		SURVIVAL OF HEPG2 CELLS EXPRESSING VIRAL PROTEINS	113	
	4.1	Introduction	113	
	4.2	Results for the HepG2 Cell Line Transfected with HBX	114	
		4.2.1 Assessment of Survival Using MTT Assay and Light	114	
		Morphology Scoring of the HepG2 Cell Line Transfected with HBX		
		4.2.2 Assessment of Apoptosis by Nuclear DAPI Staining in the HepG2 Cell Line Transfected with HBX	116	
		4.2.3 Assessment of the Role of Caspases in HBX-induced Cell Death in the HepG2 Cell Line Transfected with HBX	118	
		4.2.4 Immunofluorescent Assessment of the Apoptotic Proteins: Caspase 3, Fas Receptor, Fas Ligand and Apaf-1 in the HepG2 Cell Line Transfected with HBX	120	
	4.3	Conclusion for the HepG2 Cell Line Transfected with HBX	126	
	4.4	Results for the HepG2 Cell Line Transfected with HBE	130	
		4.4.1 Assessment of Survival Using MTT Assay and Light Morphology Scoring of the HepG2 Cell Line Transfected with HBE	130	
		4.4.2 Assessment of Apoptosis by Nuclear DAPI Staining in the HepG2 Cell Line Transfected with HBE	132	
		4.4.3 Assessment of the Role of Caspases in HBX-induced Cell Death in the HepG2 Cell Line Transfected with HBE	133	
		4.4.4 Immunofluorescent Assessment of the Apoptotic Proteins: Caspase 3, Fas Receptor, Fas Ligand and Apaf-1 in the HepG2 Cell Line Transfected with HBE	135	
	4.5		140	
5		CELL SIGNALLING PATHWAYS INVOLVED IN VIRAL PROTEIN INDUCED CELL DEATH	142	
	5.1	Introduction	142	
		5.1.1 Extracellular Response Kinase-ERKs	144	
		5.1.2 Phosphatidylinositiol 3 kinase-PI3K Pathway	145	
		5.1.3 Phosphatase Pathway	149	
	5.2	Results for the HepG2 Cell Line Transfected with HBX	150	
		5.2.1 Dose Response Curve for the HepG2 Cell Line Exposed to the Inhibitors; PD098059, Wortmannin, and Okadaic Acid	150	
		5.2.2 Assessment of Survival Using MTT Assay of the HepG2 Cell Line Transfected with HBX in the Presence of Inhibitors; PD098059, Wortmannin, and Okadaic Acid	154	

		5.2.3	Immunofluorescent Assessment of the Apoptotic Proteins:	156
			Caspase 3, Fas Receptor, Fas Ligand, and Apaf-2 in the HepG2	
			Cell Line Transfected with HBX and Treated with PD098059	
		5.2.4	Assessment of PI3K Activity in the HepG2 Cell Line	160
			Transfected with HBX	
	5.3		usion for the HepG2 Cell Line Transfected with HBX	163
	5.4		ts for the HepG2 Cell Line Transfected with HBE	167
		5.4.1	Assessment of Survival Using MTT Assay of the HepG2 Cell	
			Line Transfected with HBE in the Presence of Inhibitors;	169
			PD098059, Wortmannin, and Okadaic Acid	
		5.4.2	Immunofluorescent Assessment of the Apoptotic Proteins:	172
			Caspase 3, Fas Receptor, Fas Lignad, and Apaf-2 in the HepG2	
			Cell Line Transfected with HBE and Treated with PD098059	
		5.4.3	Assessment of PI3K Activity in the HepG2 Cell Line	172
			Transfected with HBE	
	5.5	Concl	usion for the HepG2 Cell Line Transfected with HBE	172
6		ACCE	SSMENT OF PARACRINE FACTORS ON CELL	174
U			VAL AND DEATH	1/7
		SOIG	VAL AND DEATH	
	6.1	Introd	uction	174
	6.2	Result	ts for the HepG2 Cell Line Transfected with HBX	176
		6.2.1	MTT Assay of the HepG2 Cell Line Transfected with HBE in	177
			the Presence and Absence of Serum	
		6.2.2	MTT Assay of the HepG2 Cell Line Transfected with HBE and	177
			Exposed to Ethanol in the Presence and Absence of Serum	
		6.2.3	MTT Assay of the HepG2 Cell Line Cultured in the Presence of	178
			Condition Medium from HepG2 Transfected with HBX	
		6.2.4	MTT Assay of the HepG2 Cell Line Transfected with HBX and	179
			Exposed to Interleukin 6	
	6.3		usion for the HepG2 Cell Line Trransfected with HBX	180
	6.4		ts for the HepG2 Cell Line Transfected with HBE	181
		6.4.1	MTT Assay of the HepG2 Cell Line Transfected with HBE in	181
			the Presence and Absence of Serum	
		6.4.2	MTT Assay of the HepG2 Cell Line Transfected with HBE and	182
			Exposed to Ethanol in the Presence and Absence of Serum	100
		6.4.3	MTT Assay of the HepG2 Cell Line Cultured in the Presence of	183
		(11	Condition Medium from HepG2 Transfected with HBE	104
		6.4.4	MTT Assay of the HepG2 Cell Line Transfected with HBE and	184
	6.5	Concl	Exposed to Interleukin 6 usion for the HepG2 Cell Line Transfected with HBE	185
	0.5	Conci	usion for the riepoz cen Elife Transferred with TIBE	105
7		GENI	ERAL DISCUSSION	186
	7.1	Recon	nmendations for Future Work	198
	-		ERENCES	200
			OATA OF THE AUTHOR	238

LIST OF TABLE

Table		Page
Table 1	PCR Primers for Cloning	p81
Table 2	Components to Prepare SDS-PAGE Gel	p90
Table 3	Dilutions of New England BioLabs Antibodies	p93
Table 4	DNA Concentrations and Transfection Reagent Volumes Used	p97
Table 5	Antibodies Dilutions Used	p101
Table 6	Summary of Caspase 3, FasR, FasL and Apaf-1 Immunofluorescent Staining in HepG2 and HepG2-HBX Cells	p120
Table 7	Summary of Caspase 3, FasR, FasL and Apaf-1 Immunofluorescent Staining in HepG2 and HepG2-HBE Cells	p140
Table 8	Summary of the Western Blots	p162
Table 9	Summary of Caspase 3, FasR, FasL and Apaf-1 In Immunofluorescent Staining in HepG2 and HepG2-HBE Cells Treated with 10µM PD098059	p171
Table 10	Summary Of Novel Findings From The Work	p197

LIST OF FIGURES

Figure		Page
Figure 1.1	Geographic distribution of human chronic Hepatitis B virus infection	p26
Figure 1.2A	Shows an electron Microscope photograph of serum dervived from human infected with Hepatis B virus	p28
Figure 1.2B	A diagram of the Dane particle structure	p28
Figure 1.3	The genome of HBV is a double-stranded circular DNA	p29
Figure 1.4A	Overview of the MAPK family	p37
Figure 1.4B	MAPK cascase consists of 3 protein kinases; MAPKKK, MAPKK, MAPK	p37
Figure 1.5	Overview of p38 MAPK pwathway	p39
Figure 1.6	Overview of PI3K/Akt pathway	p41
Figure 1.7	Overview of IL-6 signalling pathway	p44
Figure 1.8	Overview of the cell death pathways from cell Membrane converging on caspases to result in protease activation	p50
Figure 1.9A	Overview of Fas death receptor	p52
Figure 1.9B	Overview of TNF death receptor	p53
Figure 1.10	Overview of the intrinsic cell death	p54
Figure 1.11	Overview of regulation of apoptosis	p56
Figure 1.12	Overview of the balance regulating p53 activity	p67
Figure 1.13A	Overview of the loss of cytokine dependent suppression of apoptosis	p72
Figure 1.13B	Overview of the signalling pathways involved in cytokine suppression	p72
Figure 1.14	Development and progression of cancer	p73

Figure 2.1	Counting cells with a hemocytometer	p96
Figure 3.1	Diagram of the pTARGET TM vector	p103
Figure 3.2	Morphology of the HepG2 cell line in cell culture as seen under an inverted phase contrast microscope	p105
Figure 3.3	The HepG2 cell line transfected with recombinate HBXpTARGET vector using various ratios of DNA: PLUS-LIPOFECTAMINE Reagent.	p107
Figure 3.4	The HepG2 cell line transfected with recombinate HBEpTARGET vector using various ratios of DNA: PLUS-LIPOFECTAMINE Reagent.	p108
Figure 3.5	The HepG2 cell line transfected with pTARGET Vector using various ratios of DNA: PLUS-LIPOFECTAMINE Reagent.	p108
Figure 3.6	The HepG2-HBX and HepG2 cell line were fixed and permeablised on day 2 and immunofluorescent double staining for the HBX viral protein and nucleus with DAPI was performed	p109
Figure 3.7	The HepG2-HBE and HepG2 cell line were fixed and permeablised on day 2 and immunofluorescent double staining for the HBE viral protein and nucleus with DAPI was performed	p110
Figure 4.1A	Daily sampling by MTT assay and light morphology scoring of HepG2-HBX over a 4-day period and plotted as % of control cells	p115
Figure 4.1B	The HepG2-HBX population morphology under inverted phase contrast microscopy	p115
Figure 4.2A	The HepG2 cell line was grown on a coverslip, and stained with DAPI and viewed under light microscope with UV light	p116
Figure 4.2B	The HepG2 cell line was grown on a coverslip, and stained with DAPI and viewed with UV light	p116
Figure 4.3	The nuclear staining pattern of HepG2 cells and HepG2-HBX was assessed by DAPI staining of cells over 4 days	p117

Figure 4.4A	The Dose Response Curve of the HepG2 cell line exposure to Z-VAD-fmk	p119
Figure 4.4B	The morphology of the HepG2 cell population treated with 100 µM Z-VAD-fmk	p119
Figure 4.5A	20µM of Z-VAD-fmk was added to HepG2 and HepG2-HBX which was assessed after 4 days by MTT assay and plotted as % of control cells	p120
Figure 4.5B	The morphology of the HepG2 and HepG2-HBX with 20µM Z-VAD-fmk	p120
Figure 4.6	Indirect immunofluorescent staining of caspase 3 in HepG2 and HepG2-HBX on day 2	p122
Figure 4.7	Indirect immunofluorescent staining for Fas Receptor in HepG2 and HepG2-HBX on day 2	p123
Figure 4.8	Indirect immunofluorescent staining for Fas Ligand in HepG2 and HepG2-HBX on day 2	p124
Figure 4.9	Indirect immunofluorescent staining of Apaf-1 in HepG2 and HepG2-HBX on day 2	p125
Figure 4.10A	Daily sampling by MTT assay and light morphology scoring of HepG2-HBE over a 4-day period and plotted as % of control cells	p131
Figure 4.10B	The HepG2-HBE population morphology under inverted phase Contrast microscopy	p131
Figure 4.11	The nuclear staining pattern of HepG2 cells and HepG2-HBE was assessed by DAPI staining of cells over 4 days	p132
Figure 4.12A	20µM of Z-VAD-fmk was added to HepG2 and HepG2-HBE which was assessed after 4 days by MTT assay and plotted as % of control cells	p134
Figure 4.12B	The morphology of the HepG2 and HepG2-HBE with 20µM Z-VAD-fmk	p134
Figure 4.13	Indirect immunofluorescent staining of caspase 3 in HepG2 and HepG2-HBE on day 2	p136
Figure 4.14	Indirect immunofluorescent staining for Fas Receptor in HepG2 and HepG2-HBE on day 2	p137

Figure 4.15	Indirect immunofluorescent staining for Fas Ligand in HepG2 and HepG2-HBE on day 2	p138
Figure 4.16	Indirect immunofluorescent staining of Apaf-1 in HepG2 and HepG2-HBe on day 2	p139
Figure 5.1	Cooperative effect versus Non Cooperative effect on signalling	p143
Figure 5.2A	The Dose Response Curve of the HepG2 cell line exposed to PD098059	p151
Figure 5.2B	The cell population morphology exposed to 100µM PD098059	p151
Figure 5.3A	The Dose Response Curve of the HepG2 cell line exposed to Wortmannin	p152
Figure 5.3B	The cell population morphology exposed to 0.167µM Wortmannin	p152
Figure 5.4A	The Dose Response Curve of the HepG2 cell line exposed to Okadaic acid	p153
Figure 5.4B	The cell population morphology exposed to 1nM and 10nM Okadaic acid	p153
Figure 5.5A	MTT assay of the HepG2-HBX exposed to inhibitors: PD098059, Wortmannin, Okadaic acid	p155
Figure 5.5B	The HepG2-HBX cell population morphology with PD098059, Wortmannin, Okadaic acid	p155
Figure 5.6	Indirect immunofluorescent staining of HepG2-HBX and exposed to 10µM of PD 098059 on day 2	p156
Figure 5.7	Indirect immunofluorescent staining for activated caspase 3 in HepG2-HBX exposed to 10µM of PD 098059 on day 2	p157
Figure 5.8	Indirect immunofluorescent staining for FasR in HepG2-HBX exposed to 10µM of PD 098059 on day 2	p158
Figure 5.9	Indirect immunofluorescent staining for FasL in HepG2-HBX exposed to 10µM of PD 098059 on day 2	p159

Figure 5.10	Indirect immunofluorescent staining for Apaf-1 in HepG2-HBX exposed to 10µM of PD 098059 on day 2	p160
Figure 5.11	Indirect immunofluorescent staining for PI3K in HepG2 and HepG2-HBX	p161
Figure 5.12	Representative Western blotting of PKB/Akt and its down-stream substrates in HepG2, HepG2-HBX and HepG2-HBE	p162
Figure 5.13A	MTT assay of the HepG2-HBE exposed to inhibitors: PD098059, Wortmannin, Okadaic acid	p168
Figure 5.13B	The HepG2-HBE cell population morphology with PD098059, Wortmannin, Okadaic acid	p168
Figure 5.14	Indirect immunofluorescent staining of HepG2-HBE and exposed to $10\mu M$ of PD 098059 on day 2	p170
Figure 5.15	Indirect immunofluorescent staining for activated caspase 3 in HepG2-HBE exposed to 10µM of PD 098059 on day 2	p170
Figure 5.16	Indirect immunofluorescent staining for Apaf-1 in HepG2-HBE exposed to $10\mu M$ of PD 098059 on day 2	p171
Figure 6.1	HepG2 cell line and HepG2-HBX cultured in the presence and absence of serum for 4 days with daily MTT assay being performed	p176
Figure 6.2	HepG2 cell line and HepG2-HBX were cultured in the presence and absence of serum and 1mM of ethanol for 4 days with daily MTT assay being performed	p177
Figure 6.3	MTT assay of conditioning medium added to HepG2 cell line	p178
Figure 6.4	HepG2 cell line and HepG2-HBX were exposed to a Concentration range of IL-6 over for 4 days with MTT assay performed on day 4	p179
Figure 6.5	HepG2 cell line and HepG2-HBE cultured in the presence and absence of serum for 4 days with daily MTT assay being performed	p182

Figure 6.6	HepG2 cell line and HepG2-HBE were cultured in the presence and absence of serum and 1mM of ethanol for 4 days with daily MTT assay being performed	p183
Figure 6.7	HepG2 cell line and HepG2-HBE were exposed to a Concentration range of IL-6 over for 4 days with MTT assay performed on day 4	p184
Figure 7.1	Illustration of the initial infection stage of HBV	p193

LIST OF ABBREVIATIONS

4E-BP eIF-4E binding protein

Abl Ableson protein tyrosine kinase

AKT Cellular homolog of the v-akt oncogene, an S/T protein kinase

Apaf-1 Apoptotic protease activating factor-1

ASK Apoptosis signal-regulating kinase

Bcl B cell leukemia oncogene

Caspase Cysteine proteases with aspartate specificity

CBP CREB binding protein

CDK Cyclin-dependent kinase

c-Raf Raf proto-oncogene S/T protein kinase

CREB cAMP response element-binding protein, CREB1

DAG Diacylglycerol

DAPI 4', 6-Diamidino-2-phenyindole

DED Death Effector Domain

DR Death receptor

E2F Transcription factor family including E2F- and DP-like

subunits

eEF Eukaryotic elongation factor

eIF Eukaryotic initiation factor

ELK1 Ets domain protein

ERK Extracellular signal-regulated kinase, MAPK

FADD Fas-associated protein with death domain

FAK Focal adhesion kinase

FasL

Fas Ligand

FasR

Fas Receptor

FKHR

Forkhead in rhabdomyosarcoma

FLIPs

FLICE (Caspase 8) inhibitory protein

GSK-3β

Glycogen synthase kinase-3β

HBE

all precursor protein forms of Hepatitis B virus

HBeAG

secreted precursor protein

HepG2-HBE

HepG2 transfected cells with HBEpTARGETTM vector

HepG2-HBX

HepG2 transfected cells with HBXpTARGETTM vector

IAP

Inhibitor of apoptosis

ICAD

Inhibitor of caspase-activated deoxyribonuclease

IkB

Inhibitor of NF-kB

IKK

IkB kinase

INK4

Inhibitor of CDK 4

IRS

Insulin receptor substrate

ISRE

Interferon-stimulating response element

Jak

Janus-family tyrosine kinase

JNK

Jun N-terminal kinase

MAPK

Mitogen-activated protein kinase

MEK

MAPK/ERK kinase, MAPKK

MEKK

MEK kinase

MLK

Mixed lineage kinase

MTT

Methylthiazoletetrazolium

NF-kB

Nuclear factor kappa B

NIK NF-kB Induced kinase

NOS Nitric oxide Synthase

p53 Tumour suppressor protein that protects from DNA damage

PDK 3-phosphoinositide-dependent protein kinase

PH Pleckstin homology domain

PI3K Phosphoinositide-3 kinase

PIAS Protein inhibitors of activated STATs

PKA Protein kinase A

PKC Protein kinase C

PKR dsRNA-dependent serine/threonine protein kinase

PP1 Phosphoprotein phosphatase 1

PP2A Phosphoprotein phosphatase 2A

PP2B Phosphoprotein phosphatase 2B

PYK2 Proline-rich tyrosine kinase-2

PCR Polymerase Chain Reaction

RAIDD RIP-associated ICH/CED-3-homologous protein with a death

domain

RIP Receptor-interacting protein

SAPK Stress-activated protein kinase

Shc SH2-containing collagen-related proteins

Smad Contraction of Sma and Mad (Mothers against

decapentaplegic)

TEN Phosphatase and tensin homolog deleted on chromosome ten

TNF Tumor necrosis factor

TRADD TNF receptor-1-associated death domain protein