

UNIVERSITI PUTRA MALAYSIA

PHOTOELECTROCHEMICAL DEGRADATION OF DYE POLLUTANTS USING TIO2 THIN FILM ELECTRODES

LEE CHONG YONG.

FSAS 2004 26

PHOTOELECTROCHEMICAL DEGRADATION OF DYE POLLUTANTS USING TiO_2 THIN FILM ELECTRODES

LEE CHONG YONG

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

PHOTOELECTROCHEMICAL DEGRADATION OF DYE POLLUTANTS USING TiO₂ THIN FILM ELECTRODES

By

LEE CHONG YONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2004

DEDICATION

I would like to dedicate my work during Master Science programmed to my departed and beloved father, Lee Boon Hock. Although he was passed away last 12 years ago, his smiles and high spiritual determination always in my mind.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

PHOTOELECTROCHEMICAL DEGRADATION OF DYE POLLUTANTS USING TiO₂ THIN FILM ELECTRODES

By

LEE CHONG YONG

May 2004

Chairman: Associate Professor Zulkarnain Zainal, Ph.D.

Faculty: Science and Environmental Studies

Thin film electrodes were fabricated by immobilizing titanium dioxide (TiO₂) onto titanium substrate using sol gel dip-coating method. The electrochemical technique was employed to study the photodegradation process on methyl orange dye. The effects of various parameters and conditions on electrochemical assisted photocatalytic degradation process were investigated by monitoring dyes decolourisation rates using UV-Vis spectrophotometer.

Photosensitivity of the TiO_2 thin film electrode was analysed by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV) techniques combined with illumination. Sample heat-treated at 500°C showed the best photosensitivity. The TiO_2 thin films and the dried gel were also analysed using Scanning Electron Microscope (SEM), X-Ray Diffractometry (XRD), UV/Vis Spectroscopy, Fourier Transform-Infra Red (FT-IR), Thermogravimetric Analyser (TGA), Differential Thermal Analyser (DTA) and CHNS analyser. The photoelectrochemical degradation experiment results showed that the rate of dye removal increased with external applied potential between 0.0 V and 1.5 V versus Ag/AgCl reference electrode. Meanwhile, the

photoeletrochemical degradation rate was also affected by initial concentrations, light intensity, light sources, photocatalysts coated area, repeated use, supporting electrolyte, solution pH, agitation and solution temperature.

The photoelectrochemical degradation experiment was also carried out on naphtol blue black, rhodamine 6G, methylene blue, reactive blue 2, direct red 81, mixed dyes (consists of methyl orange, naphtol blue black, rhodamine 6G, methylene blue, reactive blue 2, direct red 81) and actual textile effluents. The removal efficiency was evaluated and compared in terms of UV/Vis decolourisation, Total Organic Carbon (TOC), Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD).

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai^{RA} MALAYSIA memenuhi keperluan untuk ijazah Master Sains

DEGRADASI BAHAN PENCEMAR PEWARNA SECARA FOTOELEKTROKIMIA MENGGUNAKAN ELEKTROD LAPISAN NIPIS TiO₂

Oleh

LEE CHONG YONG

Mei 2004

Pengerusi: Profesor Madya Zulkarnain Zainal, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Elektrod lapisan nipis dihasilkan melalui pemegunan titanium dioksida (TiO₂) pada substrat titanium dengan menggunakan kaedah salutan-celup sol-gel. Teknik elektrokimia digunakan untuk mengkaji proses fotodegradasi ke atas pewarna metil oren. Kesan pelbagai parameter dan keadaan pada proses degradasi fotomangkin berbantukan eletrokimia dikaji berpandukan kepada kadar pelunturan warna dengan menggunakan spektrofotometer lembayung cahaya nampak.

Fotosensitiviti bagi elektrod nipis TiO₂ dianalisis dengan menggunakan kaedah Voltammetri Pengimbasan Linear (LSV) dan Kitaran Voltammetri (CV) yang disertai dengan penyinaran cahaya. Sampel yang dipanaskan pada suhu 500°C menunjukkan kepekaaan cahaya yang terbaik. Elektrod nipis TiO₂ dan gel kering TiO₂ dianalisis menggunakan alat Mikroskopi Pengimbasan Elektron (SEM), Pembelauan Sinar-X (XRD), Spektrofotometer lembayung cahaya nampak (UV/Vis), Fourier Transform Infra Merah (FTIR), Analisis Terma Gravimetri (TGA), Analisis Pembezaan Terma (DTA) dan penganalisan CHNS. Keputusan fotoelektrokimia degradasi eksperimen menunjukkan kadar penyingkiran pewarna meningkat dengan mengaplikasikan keupayaan luar antara 0.0 V dan 1.5 V merujuk kepada elektrod Ag/AgCl. Sementara itu, kadar fotoelektrokimia degradasi juga dipengaruhi oleh kesan kepekatan pewarna, keamatan cahaya, sumber cahaya, luas permukaan salutan fotomangkin, ulangan penggunaan, larutan elektrolit pembantu, pH larutan, pengaliran dan suhu larutan.

Eksperimen fotoelektrokimia degradasi juga dijalankan pada naftol biru hitam, rhodamin 6G, metilena biru, reaktif biru 2, direct merah 81, pewarna campuran (terdiri daripada metil oren, naftol biru hitam, rhodamin 6G, metilena biru, reaktif biru 2, direct merah 81) dan efluen sebenar kilang tekstil. Keberkesanan penyingkiran pewarna-pewarna dinilai dan dibandingkan dari segi kadar penurunan warna, Jumlah Karbon Organik (TOC), Permintaan Oksigen Kimia (COD) dan Permintaan Oksigen Biokimia (BOD).

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my earnest appreciation and heartfelt thanks to my project supervisor, Associate Professor Dr. Zulkarnain Zainal for his extraordinary patience, kindness, invaluable guidance, constructive criticisms, advice, continuous supervision and suggestion throughout the duration of the study. My sincere gratitude also goes to the other supervisory committee members, Professor Dr Mohd. Zobir Hussein, Professor Dr Anuar Kassim and Dr Nor Azah Yusof.

I wish to express my sincere thanks to Mr Sujak from Department of Environmental Sciences, UPM for the guidance and technical supports giving while doing BOD and COD analyses. Thanks to Sara, Kong Hui, Woei Long, Nasir, Kok Wei, Soon Minh, Tien Ping, Mas, Dila, Ida and other lab mates as well, I really learned a lot from them. Special thanks I wish to give to last year final year project student, Wong Kee Ann who together with me designed the electrochemical photoreactor. To all who contribute to this study, a lot of thanks.

To my beloved girlfriend, Kar Wai who always been a source of inspiration and strength throughout my study, thanks a lot for your love, concern, understanding and help. To my roommate, Boon Siong, messy room and switch on the light through whole night might give you uncomfortable condition during finishing up this report. Thanks for your understanding and support.

Last but not least, I would like to express my sincerely and heartfelt thanks to my mother, brothers and sisters who give unconditional support and help to me from my

childhood until now. Certainly, it is difficult for me to pay back what you all had contributed to me. But one thing for sure, I'm proud to be your son and brother, if any success I have achieved, this glory certainly belong to you all.

I certify that an Examination Committee met on 11th May 2004 to conduct the final examination of Lee Chong Yong on his Master of Science thesis entitled "Photoeletrochemical Degradation of Dye Pollutants Using TiO₂ Thin Film Electrodes" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd. Zaizi Desa, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

Abdul Halim Abdullah, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

Tan Wee Tee, Ph.D.

Associate Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

Musa Ahmad, Ph.D.

Associate Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D. Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 19 JUL 2004

ix

This Thesis Submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

ZULKARNAIN ZAINAL, Ph. D

Associate Professor Faculty Sience and Environmental Studies Universiti Putra Malaysia (Chairman)

MOHD. ZOBIR HUSSEIN, Ph. D

Professor Faculty Sience and Environmental Studies Universiti Putra Malaysia (Member)

ANUAR KASSIM, Ph. D Professor Faculty Sience and Environmental Studies Universiti Putra Malaysia (Member)

NOR AZAH YUSOF, Ph. D

Lecturer Faculty Sience and Environmental Studies Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D, Professor/Dean School of Graduate Studies, Universiti Putra Malaysia

Date: 16 AUG 2004

DECLARATION FORM

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for other degree at UPM or other institutions.

GYONG LEE C

Date: 9/7/04.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xv
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	xxiii

CHAPTER

1

INTR	RODUCTION	1
1.1	Theory of Semiconductor	4
1.2	Properties of Titanium Dioxide	6
	1.2.1 Structural Properties	7
	1.2.1 Optical Properties	9
	1.2.3 Electrical Properties	10
1.3	Photo Effect at the Semiconductor-Electrolyte Interface	12
1.4	Photoelectrochemistry of TiO ₂ Semiconductor	14
1.5	Photodegradation Process on Titanium Dioxide	16
1.6	Titanium as Supporting Materials	17
1.7	Thin Film Preparation by Sol-gel Method	17
1.8	Role of Supporting Electrolyte in Electrochemical System	18
1.9	Properties of Dyes	18
1.10	Cyclic Voltammetry (CV)	26
1.11	Linear Sweep Voltammetry (LSV)	27
1.12	Total Organic Carbon (TOC)	29
1.13	Chemical Oxygen Demand (COD) Analyses	29
1.14	Biological Oxygen Demand (BOD) Analyses	30
1.15	Literature Review	31
1.16	Objectives	35

2 METHODOLOGY

36

2.1	Preparation of Titanium Dioxide Sol-Gel	36
2.2	Preparation of Titanium Dioxide Films	36
2.3	Preparation of Dyes Solution	37
2.4	Determination of Wavelength at Maximum Absorption (λ_{max})	38
	and Construction of Standard Calibration Curve of Dye	
2.5	Characterization of Titanium Dioxide Thin Films and Gel	39
	2.5.1 Scanning Electron Microscope (SEM) Analysis	39
	2.5.2 X-Ray Diffractometry (XRD) Analysis	39
	2.5.3 Fourier Transform-Infra Red (FT-IR) Analysis	39

Page

	2.5.4 Thermal Analysis	40
	2.5.5 CHNS Analysis	40
	2.5.6 Optical Absorption Study	40
	2.5.7 Voltammetry Study	41
2.6	Photoelectrochemical Degradation Experiment	42
	2.6.1 Effect of Applied Potential	43
	2.6.2 Effect of Initial Concentration	43
	2.6.3 Effect of Light Intensity	43
	2.6.4 Effect of Different Type of Light Source	45
	2.6.5 Effect of Electrode Coated Area	45
	2.6.6 Effect of Repeated Used	45
	2.6.7 Effect of Supporting Electrolyte	45
	2.6.8 Effect of Solution pH	46
	2.6.9 Effect of Agitation	46
	2.6.10 Effect of Solution Temperature	46
2.7	Photoelectrochemical Degradation of Various Dyes	47
2.8	Photoelectrochemical Degradation of Mixed Dyes	47
2.9	Photoelectrochemical Degradation of Textile Effluents	48
2.10	Total Organic Carbon (TOC) Analysis	48
2.11	Chemical Oxygen Demand (COD) Analysis	49
2.12	Biochemical Oxygen Demand (BOD) Analysis	49
DEGI	TTO AND DISCUSSION	E 1
RESU	JL 15 AND DISCUSSION	51
3.1	Surface Morphology of TiO ₂ Coated on Titanium Plate	52
3.2	X-ray Diffractometry Studies	56
3.3	Infrared (IR) Analysis of TiO ₂ Compound	59
3.4	Thermal Analysis	60
3.5	CHNS Analysis	62
3.6	Thin Films Optical Bandgap Study	63
3.7	Electrochemical Characteristic	67
3.8	Effect of Applied Potential	71
	3.8.1 Kinetics Order of Photoelectrochemical Degradation	74
	Process	
3.9	Effect of Initial Concentration	80
3.10	Effect of Light Intensity	83

3.9	Effect of Initial Concentration	80
3.10	Effect of Light Intensity	83
3.11	Effect of Different Type of Light Source	86
3.12	Effect of Electrode Coated Area	89
3.13	Effect of Repeated Use	92
3.14	Effect of Supporting Electrolyte	95
	3.14.1 Effect of Anions	95
	3.14.2 Effect of Cations	107
3.15	Effect of Solution pH	111
3.16	Effect of Agitation	116
3.17	Effect of Solution Temperature	121
3.18	Photoelectrochemical Degradation on Various Type of Dyes	125
	3.18.1 Electrochemical Characteristic of Various Types of Dyes	132
3.19	Total Organic Carbon (TOC) Analysis	137
	3.19.1 TOC Analysis for Rhodamine 6G	138

	3.19.2 TOC Analysis for Methyl Orange	139
-	3.19.3 TOC Analysis for Naphtol Blue Black	139
	3.19.4 TOC Analysis for Reactibe Blue 2	140
	3.19.5 TOC Analysis for Mixed Dyes	141
	3.19.6 TOC Analysis for Direct Red 81	141
	3.19.7 TOC Analysis for Methylene Blue	142
3.20	Photoelectrochemical Degradation on Industrial Textile Effluents	145
	3.20.1 TOC Analysis for Industry Textile Effluents	147
3.21	Chemical Oxygen Demand (COD) and Biochemical Oxygen	153
	Demand (BOD) Analyses	
3.22	Comparison Between UV/Vis, TOC and COD Analysis	155
CON	CLUSION AND RECOMMENDATIONS	157
4.1	Conclusion	157
4.2	Recommendations	159
BIBL	IOGRAPHY	162
APPE	INDICES	168
BIOD	ATA OF THE AUTHOR	176

LIST OF TABLE

Table		Page
1.1	Crystallographic Properties of Anatase and Rutile	8
1.2	Properties of Methyl Orange	20
1.3	Properties of Methylene Blue	21
1.4	Properties of Rhodamine 6G	22
1.5	Properties of Reactive Blue 2	23
1.6	Properties of Naphtol Blue Black	24
1.7	Properties of Direct Red 81	25
3.1	Comparison of d (Å) values for dried gel and film. Both of the samples heat-treated at 500° C	58
3.2	Bandgap energies, E_g of indirect and direct optical transition	66
3.3	The first order kinetic apparent rate constant, half time, and correlation factor values for the effect of applied potential	76
3.4	The second order kinetic apparent rate constant and correlation factor values for the effect of applied potential	78
3.5	Percentage and half time of methyl orange degradation calculated based on Figure 3.18. Accumulated charges were calculated corresponding to the photocurrent recorded vs. time as shown in Figure 3.20	83
3.6	The first order kinetic apparent rate constant, half time and correlation factor values for the effect of light intensity	85
3.7	The first order kinetic apparent rate constant, half time and correlation factor values for the effect of different light sources	89
3.8	The first order kinetic apparent rate constant, half time and correlation factor values for repeatedly used electrode	94
3.9	Standard electrode potential for several anions	105
3.10	Standard electrode potential for several cations	110
3.11	The first order kinetic apparent rate constant, half time and correlation factor values for the effect of agitation	119
2 1 2	The first order kinetic encount rate constant, helf time and correlation	122

factor values for the effect of solution temperature

3.13	Comparison of activation energy, E_a , obtained in this study with those in literature	124
3.14	The first order kinetic apparent rate constant, half time and correlation factor values for the photoelectrochemical degradation of various dyes	127
3.15	Comparison between dyes properties and its removal efficiency	128
3.16	The first order kinetic apparent rate constant, half time and correlation factor values for the photoelectrochemical degradation of various dyes	144
3.17	Percentages of TOC removal of various dyes	145
3.18	Percentages of TOC removal of textile effluents	151
3.19	The first order kinetic apparent rate constant, half time and correlation factor values for the photoelectrochemical degradation of textile effluents	152
3.20	The pseudo second order kinetic apparent rate constant and correlation factor values for the photoelectrochemical degradation of textile effluents	153
3.21	Percentages of COD removal for various dyes and textile effluent	153
3.22	Percentage of BOD removal for textile effluent	154

Figu	·e	Page
1.1	The energy gap (E_g) difference between the metal, insulator and Semiconductor	3
1.2	Mechanism of generating mobile charge carriers in semiconductor	5
1.3	Structure of anatase TiO ₂	7
1.4	Structure of rutile TiO ₂	7
1.5	Formation of surface hydroxyls (OH) on the Anatase TiO ₂ surface (a) an uncovered surface (b) coordination of Ti ⁴⁺ ions by water molecules (c) formation of surface hydroxyl ions by proton from water to O ₂ ⁻ ions.	8
1.6	Band structure of (a) indirect band-gap and (b) direct band gap	9
1.7	The Fermi split into two "Quasi-Fermi level"	11
1.8	Energy diagram and electron hole pair(EHP) movements in <i>n</i> -type and <i>p</i> -type semiconductors inserted in electrolyte solution and illuminated	13
1.9	Schematic representation of the semiconductor particle showing the pair electron/hole formed in the conduction band (CB) and valence band (VB) respectively. Band gap energy is represented by E_g .	15
1.10	Plot of potential against time for CV scan	26
1.11	A typical Cyclic Voltammogram for a reversible single electron transfer reaction.	27
1.12	Plot of potential against time for LSV scan	28
1.13	A typical Linear Sweep Photovoltammogram for showing the difference between dark and illumination effect	28
2.1	Dip-coating TiO ₂ on substrate using sol-gel technique	37
2.2	The experimental set-up for the photoelectrochemical degradation process: (a) front view and (b) cross section view	44
3.1	SEM micrographs of TiO ₂ heat-treated films at temperatures of (a)100°C and (b) 200°C, with 7500 x magnification	53
3.1	SEM micrographs of TiO ₂ heat-treated films at temperatures of (d) 300° C and (d) 400° C, with 7500 x magnification	54

LIST OF FIGURES

3.1	SEM micrographs of TiO ₂ films heat-treated at temperature of (e) 500°C, with 7500 x magnification	55
3.2	XRD patterns of heat-treated TiO ₂ dried gel	56
3.3	XRD patterns of heat-treated TiO ₂ /Ti thin films	57
3.4	FT-IR spectra of heat-treated TiO ₂ dried gel	59
3.5	Thermogravimetric (TG) curve of TiO ₂ dried gel	60
3.6	Differential Thermal Analysis (DTA) curve of TiO ₂ dried gel	61
3.7	Percentages of C, H, N and S elements in heat-treated TiO_2 dried gel	62
3.8	UV absorbance spectra of heat-treated thin films	63
3.9	Plot of $(Ahv)^{2/n}$ versuc hv , for the heat-treated films: (a) n=4, indirect transition, (b) n =1, direct transition	65
3.10	Current-potential curves for the electrode prepared at different calcinations temperature. The electrodes were immersed in 10 ppm methyl orange solutions containing 0.1 M NaCl and illuminated with a 300 W halogen lamp	68
3.11	Current-potential curves for the electrode (500 ⁰ C) in 10 ppm methyl orange solutions containing 0.1M NaCl and illuminated with a 300 W halogen lamp	69
3.12	Current-potential curves for electrode prepared at different calcinations temperature. The electrodes were immersed in 10 ppm methyl orange solutions containing 0.1 M NaCl	70
3.13	Photocurrent generated from TiO ₂ electrode heat-treated at 500°C upon illumination (\downarrow light switching on and \uparrow light switching off)	70
3.14	The methyl orange dye (10 ppm containing 0.1 M NaCl) degradation dependence on applied potential. The electrodes (500°C) were illuminated with a 300 W halogen lamp	71
3.15	Graph In C/Co Vs time, t/min for the effect of applied potential	75
3.16	Graph t/Q_t (min/ppm) Vs time, t/min for the effect of applied potential	77
3.17	The first order kinetic constant versus applied potential	79
3.18	The methyl orange dye (containing 0.1 M NaCl) degradation process dependence on initial concentration. Potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	80
3.19	Amount of methyl orange degraded with different initial concentration	81

3.20	Photocurrent density recorded for the electrode (500°C) immersed in methyl orange with different initial concentrations. Potential was fixed at 1.0 V and illumination source was a 300 W halogen lamp	82
3.21	The methyl orange dye (10 ppm and containing 0.1 M NaCl) degradation dependence on light intensity. Potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp with varying light intensity.	84 ity
3.22	Graph ln C/Co Vs time, t/min for the effect of light intensity	85
3.23	The first order kinetic constant versus percentage of light intensity	86
3.24	The methyl orange (10 ppm and containing 0.1 M NaCl) degradation dependence on different types of light sources. Potential was fixed at 1.0 V.	87
3.25	Graph In C/Co Vs time, t/min for the effect of different light sources	88
3.26	The methyl orange (10 ppm and containing 0.1 M NaCl) degradation process dependence on the photocatalyst coated area of electrode. Potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	90
3.27	Charges density and incident charge density versus electrode coated area	91
3.28	Repeated usage of electrode in degradation of 10 ppm methyl orange containing 0.1 M NaCl. Potential was fixed at 1.0 V and electrode was illuminated with a 300 W halogen lamp	93
3.29	Graph In C/Co Vs time, t/min for the effect repeated usage of electrode	94
3.30	A plot of kinetic constant versus number of electrode usage time	95
3.31	The methyl orange (10 ppm) degradation process dependence on supporting electrolyte exhibited with different anions. The potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	96
3.32	The methyl orange (10 ppm) degradation process dependence on the concentration of NaCl. Potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	98
3.33	Current-potential curves for methyl orange (10 ppm) containing with 0.01 M to 0.25 M NaCl. The potential was fixed at a 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	100
3.34	Photocurrent versus NaCl concentration. The photocurrent values obtained from curves refer to potential of 1.0 V in Figure 3.33	101
3.35	Percentage of dye degradation versus NaCl concentration. The percentage of dye degradation obtained based on Figure 3.32	102

3.36	Comparison of UV-Vis absorption spectra between methyl orange added with 0.1 M NaNO ₃ and other supporting electrolytes (Na ₂ SO ₄ , Na ₂ CO ₃ and Na	104 Cl)
3.37	UV absorption spectra of 10 ppm methyl orange containing 0.1 M to 0.3 M NaNO $_3$	104
3.38	Current-potential curves for electrode (500°C) in methyl orange (10 ppm) containing 0.1 M various types of supporting electrolyte. The electrodes were illuminated with a 300 W halogen lamp	105
3.39	Cyclic voltammetry curves for electrode (500°C) in methyl orange (10 ppm) containing different types of supporting electrolyte. The electrodes were illuminated with a 300 W halogen lamp	106
3.40	The methyl orange (10 ppm) degradation process dependence on supporting electrolyte exhibited with different cations. The potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	108
3.41	Current-potential curves for electrode (500°C) in methyl orange (10ppm) containing different types of supporting electrolyte. The electrodes were illuminated with a 300 W halogen lamp	109
3.42	The methyl orange (10 ppm) degradation process dependence on solution pH without supporting electrolyte ,(b) with 0.1 M NaCl. Potential was fixed at 1.0 V and electrodes (500°C) was illuminated with a 300 W halogen lamp	: (a) 111
3.43	Current-potential curves of methyl orange (10ppm and containing 0.1M NaCl) at: - (a) without illumination, (b) with illumination. Inset in (a) show I-V curves for solution with pH 12	113
3.44	Photoelectrochemical degradation percentage of methyl orange solutions with or without addition of 0.1 M NaCl in various pH	115
3.45	The methyl orange dye (10ppm and containing 0.1 M NaCl) degradation process dependence on agitation. The potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	118
3.46	Graph of ln C/Co Vs time, t/min for the effect of agitation	119
3.47	The apparent rate constant, k_{app} Vs agitation speed	120
3.48	The methyl orange (10 ppm and containing 0.1 M NaCl) degradation process dependence on solution temperature. The potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	121
3.49	Graph of ln C/Co vs time, t/min for the effect of solution temperature	122
3.50	An Arrhenius plot for methyl orange in photoelectrochemical degradation	123

Process

3.51	Photoelectrochemical degradation of various dyes with concentration of 10 ppm and containing 0.1 M NaCl. The potential was fixed at 1.0 V and electrodes (500°C) were illuminated with a 300 W halogen lamp	125
3.52	Graph of ln C/Co Vs time, t/min for the photoelectrochemical degradation of various dyes	12ú
3.53	UV-Vis absorption spectra of Rh 6G recorded at different time intervals	129
3.54	UV-Vis absorption spectra of MO recorded at different time intervals	129
3.55	UV-Vis absorption spectra of NBB recorded at different time intervals	130
3.56	UV-Vis absorption spectra of RB 2 recorded at different time intervals	130
3.57	UV-Vis absorption spectra of MIXED recorded at different time intervals	131
3.58	UV-Vis absorption spectra of DR 81 recorded at different time intervals	131
3.59	UV-Vis absorption spectra of MB recorded at different time intervals	132
3.60	Current - potential characteristic of various dyes with concentration of 10 ppm and containing 0.1 M NaCl. The electrode (500°C) was (a) without illumination (b) illuminated with a 300 W halogen lamp.	133
3.61	Cyclic voltammetry curves for :(a) MO, (b) MB and (c) Rh 6G with concentrations of 10 ppm and containing 0.1 M NaCl. The electrode (500°C) was illuminated with a 300 W halogen lamp.	136 137
3.613.62	Cyclic voltammetry curves for :(a) MO, (b) MB and (c) Rh 6G with concentrations of 10 ppm and containing 0.1 M NaCl. The electrode (500°C) was illuminated with a 300 W halogen lamp. Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for Rh 6G dye	136 137 138
3.613.623.63	Cyclic voltammetry curves for :(a) MO, (b) MB and (c) Rh 6G with concentrations of 10 ppm and containing 0.1 M NaCl. The electrode (500°C) was illuminated with a 300 W halogen lamp. Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for Rh 6G dye Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for MO dye	136 137 138 139
3.613.623.633.64	 Cyclic voltammetry curves for :(a) MO, (b) MB and (c) Rh 6G with concentrations of 10 ppm and containing 0.1 M NaCl. The electrode (500°C) was illuminated with a 300 W halogen lamp. Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for Rh 6G dye Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for MO dye Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function of irradiation time for MO dye 	136 137 138 139 140
 3.61 3.62 3.63 3.64 3.65 	 Cyclic voltammetry curves for :(a) MO, (b) MB and (c) Rh 6G with concentrations of 10 ppm and containing 0.1 M NaCl. The electrode (500°C) was illuminated with a 300 W halogen lamp. Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for Rh 6G dye Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for MO dye Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function of irradiation time for NBB dye Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function of irradiation time for NBB dye 	136 137 138 139 140 140
 3.61 3.62 3.63 3.64 3.65 3.66 	 Cyclic voltammetry curves for :(a) MO, (b) MB and (c) Rh 6G with concentrations of 10 ppm and containing 0.1 M NaCl. The electrode (500°C) was illuminated with a 300 W halogen lamp. Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for Rh 6G dye Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for MO dye Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function of irradiation time for NBB dye Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function of irradiation time for NBB dye Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function of irradiation time for RB 2 dye Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function of irradiation time for RB 2 dye 	136 137 138 139 140 140 141

3.68 Depletion in TOC and changes in absorbance (UV/Vis analysis) as a function 142

of irradiation time for MB dye

3.69	TOC removal in photoelectrochemical degradation process on various dyes	143
3.70	Graph of Ln C/Co Vs time, t/min for the photoelectrochemical degradation of various dyes	144
3.71	UV/Vis absorption spectra of textile effluents:	
	(a) without pre-treatment	146
	(b) with pre-treatment recorded at different time intervals	147
3.72	Depletion in TOC and change in absorbance values (UV/Vis analysis) as a function of irradiation time for without pre-treated textile effluent	148
3.73	Changes of TOC and TIC contents for without pre-treated textile effluents in irradiation times of 150 minutes	148
3.74	Depletion in TOC and change in absorbance (UV/Vis analysis) as a function of irradiation time for with pre-treated textile effluent	150
3.75	Changes of TOC and TIC contents for with pre-treated textile effluent in irradiation times of 150 minutes	150
3.76	Graph of Ln C/Co vs time, t/min for the photoelectrochemical degradation of textile effluents	151
3.77	Graph of t/Q_t (min/ppm) Vs time, t/min for the photoelectrochemical degradation of textile effluents	152
3.78	Comparison between UV/Vis analysis, TOC analysis and COD analysis for various dyes and textile effluents	155

LIST OF ABBREVIATIONS

APHA	American Public Health Association
BOD	Biochemical Oxygen Demand
СВ	Conduction Band
COD	Chemical Oxygen Demand
CV	Cyclic Voltammetry
DR 81	Direct Red 81
DTA	Differential Thermal Analyser
Ea	Activation Energy
Eg	Energygap
EDX	Energy Disperse X-ray
EHP	Electron Hole Pair
FAS	Ferum Ammonium Sulphate
FTIR	Fourier Transform-Infra Red
IPCE	Incident Photon Charge Exchange
ΙΤΟ	Indium Tin Oxide
JCPDS	Joint Committee of Powder Diffraction Standard
LSV	Linear Sweep Voltammetry
MB	Methylene Blue
MIXED	Mixed dye
МО	Methyl Orange
NBB	Naphtol Blue Black
PC	Photocatalytic
PEC	Photoelectrocatalytic
RB 2	Reactive Blue 2

xxiii