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The objective of this work was to develop a pulsed laser ablation technique for the 

formation of carbon nanotubes (CNTs). This study was divided into three parts. The 

first part involved the development of pulsed laser ablation (PLA) system. The 

second part dealt with the growth of CNTs by using the pulsed laser ablation 

technique, and finally the last part dealt with the analysis of microstructure and 

surface morphology of the deposited sample collected and the influence of the laser 

ablation on the surface morphology of the sample target. 

A vacuum chamber was designed for the formation of CNTs. The stainless steel 

chamber used in this system has a cylindrical shape, with diameter of about 15cm 

and 45cm length. CNTs were formed by laser ab!ation using a graphite pellet, 

graphite-Ni, graphite-Co and graphite-Ni-Co, each with 10 weight percentage 

catalysts. The Nd:YAG laser with 532nrn wavelength, 10.24 W laser power was used 

to ablate the target to form the CNTs. Argon (Ar) gas was kept flowing into the 

chamber, keeping the pressure inside chamber at 4 Torr. 



Web-liked CNTs were found in the deposited sample collected after 30 minutes laser 

ablation by using the graphite pellet and the graphite filled with mono-catalyst and 

bi-catalyst. The XRD pattern for the deposited sample shows the CNTs peak located 

at about 26.5". The SEM micrograph show that the diameter size of the CNTs 

formed by the Co, Ni, NiCo catalysts and without catalyst follow the order 

C>CCo>CNi>CNiCo. The range of the diameters of the CNTs was found to be 

about 35-150nm. The sphere-liked carbon structures were found deposited in the 

substrate after laser ablation without the Ar gas flowing into the chamber during the 

ablation process. TEM micrograph confirmed the formation of CNTs. It was found 

that by using a bi-metal catalyst (Ni-Co), a bamboo-like structure of CNTs was 

formed. 
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Objektif kerja ini adalah untuk membangunkan teknik denyutan ablasi laser untuk 

penghasilan nanotiub karbon. Kajian ini dibahagikan kepada 3 bahagian. Bahagian 

pertama, melibatkan pembangunan teknik denyutan ablasi laser. Bahagian kedua, 

menggunakan teknik denyutan ablasi laser untuk menghasilkan nanotiub karbon, dan 

bahagian yang terakhir adalah analisis mikro struktur dan morfologi permukaan 

sampel yang dihasilkan dan pengaruh ablasi laser pada morfologi permukaan sampel 

sasaran. 

Kebuk telah dibangunkan untuk menghasilkan nanotiub karbon. Kebuk besi nir-karat 

yang digunakan dalam denyutan ablasi laser mempunyai bentuk silinder, dan 

diameter adalah 15sm dan panjang adalah 45sm. Nanotiub karbon telah dihasilkan 

oleh ablasi laser dengan menggunakan pelet grafit, grafit-Ni, grafit-Co dan grafit-Ni- 

Co, dengan peratus berat untuk setiap sampel adalah 10. Laser Nd:YAG dengan 

panjang gelombang 532nm dan kuasa 10.24 W telah digunakan untuk ablasi sasaran 



sampel untuk menghasilkan nanotiub karbon. Gas Argon (Ar) telah dialirkan ke 

dalam kebuk dan tekanan dalam kebuk ditetapkan pada 4 Torr. 

Nanotiub karbon berbentuk jaring telah ditemui dalam sampel yang dihasilkan 

selepas 30 min ablasi laser dengan menggunakan pelet grafit dan pelet grafit yang 

dicampurkan dengan mono-mangkin dan bi-mangkin. Keputusan XRD menunjukkan 

nanotiub karbon puncak pada 26.5'. SEM mikrograf menunjukkan diameter nanotiub 

karbon yang dihasilkan dengan menggunakan mangkin Co, Ni, NiCo dan tidak 

menpunyai mangkin mengikuti susunan C X C o X N i X N i C o .  Julat saiz diameter 

nanotiub karbon yang ditemui adalah 35-150nm. Bentuk sfera struktur karbon 

didapati kumpul di atas substrat selepas ablasi laser dengan tiada gas Ar dialirkan ke 

dalam kebuk pada masa proses ablasi. TEM mikrograf telah menentukan penghasilan 

nanotiub karbon. Nanotiub karbon struktur berbentuk buluh telah ditemui dengan 

menggunakan mangkin NiCo. 
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CHAPTER 1 

INTRODVCTION 

1.1 Introduction 

In recent years nanotechnology has become one of the most important and exciting 

forefront field in physics, biology, chemistry and engineering. Nanotechnology is 

deals with structures which are smaller than lOOnm impart to nanostructures built 

from them a new chemistry and physics, leading to new behavior which depends on 

the size. The conductivity, mechanical and electrical properties have all been 

observed to change when the particles become smaller than a critical size. The 

reduction of size into the nanometer size often results in characteristic properties of 

substances and materials which can be exploited for new applications and which do 

not appear in macroscopic pieces of the same materials. These include significantly 

higher hardness, breaking strength and toughness at low temperatures, the emergence 

of additional electronic states, and high chemical selectivity of surface sites and 

significantly increased surface energy. Because of this technology has enormous 

potential to contribute to significant advances over the wide and diverse range of 

technologies areas, nanotechnology not will only influence technological 

development in the near future, but will also have economic and society impact. 

Promising application of carbon nanotubes (CNTs) represent an interesting new era 

of nanotechnology. Various nanotubes are promising because of their unusual 

mechanical, electronic properties and stability. CNTs were discovered accidentally 

by Sumio Iijima in 1991, while studying the surfaces of graphite electrodes used in 



an electric arc discharge (Iijima.. 1991). A year later, Thomas Ebbesen and P.M 

Ajayan at NEC found a way to produce these nanotubes in high yields and make 

them available for studies by different technique. In 1996, Smalley and Robert Curt 

were awarded a Nobel Prize in Chemistry for this field of work (Yahya et al., 2004). 

CNTs are made of sheets of carbon atoms with a cylindrical shape, and generally 

consist of co-axially arranged 2 to 20 cylinders with maximum length up to a fraction 

of micrometer. Each cylinder of the tubules is made by rolling a honeycomb sheet of 

carbon atom hexagonal rings. Furthermore, in many cases the hexagons are arranged 

on a cylinder with a helical pattern along the tube axis. CNTs of a single-atom wall 

thickness have been discovered: with much smaller diameters, of the order of one 

molecule. Such small CNTs are expected to show some unique properties not seen in 

conventional materials. Other unique properties of the CNTs include surface 

dominant structures where all atoms are facing to the surface, superb mechanical 

strength, flexibility, chemically and thermally stable materials. 

Since the discovery of CNTs many techniques have been created to produce the high 

quality of CNTs. The earliest approach to produce nanotube was an arc process as 

pioneered by Iijima (Iijima et al., 1991). Three of the techniques have become a 

common technique to grow nanotubes; there are Chemical Vapor Depositions (CVD) 

(Dai et al., 1996; Su et al., 2000; Delzeit et al., 2001), Arc discharge (Ebbesen et al., 

1993; Seraphin et al., 1993; Journet et al., 1997) and Pulsed Laser Ablation (PLA) 

(Zhigilei et al., 1999; Sen et al., 2000; Wal et al., 2003). The effects of various 

processing conditions on the growth yield of CNTs for these techniques were 

extensively studied by many researchers (Ajayan et al., 1993; Li et al., 2001; 

Kukovitsky et al., 2002). 



A successful production of SWNTs (Single Wall Carbon Nanotubes) by using 

technique laser ablation has been reported, the yield of SWNTs out of the carbon 

consumed more than 70% (Yudasaka et al., 1997). In addition to the growth of thin 

films by pulsed laser deposition, laser vaporization is an established nanomaterial 

synthesis tool. Laser ablation method is the very useful and powerful technique for 

producing CNTs. In this technique. a Comi graphite composite pellet was used as a 

target, where the graphite pellet with some metal catalysts absorbs the laser beam, 

heat up and transforms into molten carbon (C). When the ambient pressure is high, 

the NiCo particles in the target gain heat from the laser and form a solution with the 

molten C. Droplets of the molten C containing Ni and Co were expelled from the 

target and deposited to the substrate. 

1.1.1 Potential application of carbon nanotubes 

Since the discovery of CNTs, many studies on the formation, structure and properties 

of CNTs have been made (Yudasaka et al., 1997). Nanotubes have remarkable 

mechanical, electrical and thermal properties with strong, light and high toughness 

characteristics. The most important application of nanotubes based on their 

mechanical properties will be as reinforcements in composite materials. 

Since nanotubes have relatively straight and narrow channels in their cores, it was 

speculated from the beginning that it might be possible to fi l l  these cavities with 

foreign materials to fabricate one-dimensional nanowires. A large body of work now 

exists to concerning the filling of nanotubes with metallic and ceramic materials. 

Thus, nanotubes have been used as templates to create nanowires of various 

compositions and structures (Ebbesen, 1997). 



When a small electric field is applied parallel to the axis of a nanotube, electrons are 

emitted at a very high rate from the ends of the tube. This is called field emission. 

This effect can easily be observed by applying a small voltage between two parallel 

metal electrodes: and spreading a composite paste of nanotubes on one electrode. A 

sufficient number of tubes will be perpendicular to the electrode so that electron 

emission can be observed. One application of this effect is the development of flat 

panel displays (Poole, 2003). 

CNTs have applications in battery technology. Lithium, which is a charge carrier in 

some batteries. can be stored inside CNTs. It is estimated that one lithium atom can 

be stored for every six carbons of the tube. Storing hydrogen in CNTs is another 

possible application, one that is related to the development of fuel cell as sources of 

electrical energy for future automobiles. A fuel cell consists of two electrodes 

separated by a special electrolyte that allows hydrogen ions, but not electrons, to pass 

through it. Hydrogen is sent to the anode, where it is ionized. The freed electrons 

travel through an external circuit wire to the cathode. The hydrogen ions diffuse 

through the electrolyte to the cathode. where electrons, hydrogen, and oxygen 

combine to form water. The system needs a source of hydrogen. One possibility is to 

store the hydrogen inside CNTs (Poole, 2003) 

The high electrical conductivity of CNTs means that they will be poor transmitters of 

electromagnetic energy. A plastic composite of CNTs could provide lightweight 

shielding materials for electromagnetic radiation (Poole, 2003). 


