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ABSTRACT The detection of small concentrations of cancer cells before cancer takes over the primary
organ completely, or metastasizes to other areas of the body is important for early screening of cancer. One
approach to address cancer early screening is through cell ion exchange bioelectricity, which characterizes
voltage potential in non-neuronal cells to regulate shape changing, proliferation, differentiation, migration,
and cancer formation. Herein, novel ion-sensitive field-effective transistor (ISFET) modality is shown to
measure cell behavior during the change of cell properties at molecular levels. ISFETs produce low resistance
signals and consume low power. The small size of ISFETs enables miniature diagnosis devices that can
be affordably fabricated in a massive array format. A large number of cells can be measured in parallel.
Therefore, ISFET allows the combination of low sample requirements and prompt response. ISFETs have
the ability to measure the effect of ions from complex biological samples and can be used as affordable point
of care devices.

INDEX TERMS Cancer, biological interactions, cellular biophysics, biochemical analysis, diseases.

I. INTRODUCTION
In the United States and worldwide, cancer has become a
major public health concern. In 2018, about 1,735,350 can-
cer cases are expected to be diagnosed in just the United
States, with an estimated cancer mortality of 609,640. There
is a medical necessity to enhance early cancer screening
approaches so the treatment for cancer patients can be fea-
sible in the early stages of cancer. In the early stages, there
are more chances that cancer is not spread to other parts of
the patient’s body. Each cell class has a distinguishing profile
based on its mechano-physical properties [1]. Cells are active
microstructures arranged in a coherent formation. Cells con-
tain certain concentrations of components like water, organic,
and inorganic molecules. The organic molecules include
nucleic acids, proteins, and lipids. Sodium, potassium, mag-
nesium, calcium, chloride, phosphate and bicarbonate ions
are examples of inorganic compounds. In addition, cells can
handle incoming information signals using parallel cellular

pathways. The activation of signaling is according to the
types of inputs from physical or chemical stimuli. For can-
cer screening, measuring cells’ accurate physical, chemical,
electrical, and biological properties is essential for cancer
patients.

A cell is a charged entity. In 1971, Cone theorized a general
correlation between the proliferation of a cell and its mem-
brane potential (Vm) [2]. The resting potential of cell mem-
brane differs from cell to cell and fluctuates from−100mV to
−20 mV. Bioelectricity of the cell is controlled by K+, Na+,
Cl−, and Ca+2 ion channels [3]. The ion channels regulate
key cell behaviors such as proliferation, cancer initiation, and
progression [4]–[6]. These ion channels have been identified
as fundamental parameters in cancer pathology. The mea-
surements of Vm can be used to detect and identify tumor
cells.

The microscale and nanoscale environments are known
to modulate cellular behavior [8]. The micropatterned
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and nanopatterned engineered surfaces have demon-
strated the influence of topography on a variety of
cellular functions, like the migration of endothelial
cells and fibroblasts [9], [10], osteogenic differentiation
of stem cells [11]–[14], mechano-sensitive gene expres-
sions in fibroblast cells [15]–[18], directional polariza-
tion of neurons [19]–[24], and immobilization of tumor
cells [25], [26]. Researchers have utilizedmicro/nanostructures
and nanotextured surfaces for various applications to modu-
late the cellular responses. Small diameter nanowires with
high aspect ratios are known to penetrate the cell membrane.
Therefore, these have been used for applications requiring
intracellular access, such as for drug delivery [27]–[32]. Sili-
con micropillar arrays have been used for the efficient isola-
tion and capture of circulating tumor cells through enhanced
local topographic interactions [33], [34].

Ion-selective field effect transistors (ISFETs) have been
used to detect methylated nucleotides in a DNA sample,
which is a critical step in tumorigenesis for most types of
cancers [7]. Here, we introduce an ISFET semiconductor
sensor device to report the changes in cell ion exchange at the
molecular levels, and in particular the enhanced ion exchange
that occurs during the diseased cell proliferation. Ion flux trig-
gers the proliferation process so that cells can divide, differ-
entiate, or die (Fig. 1(a)). The surface engineering approach
with 3D features enhances the device’s electrical properties in
comparison to a flat surface device. Introducing an innovative
surface with 3D micropillars at gate area improved the tumor
cell detection. The modification on the gate thus lowered the
transistor threshold voltage. Therefore, cancer cell molecular
bioelectricity could be used to turn the device ON easily. The
transistor channel length and width were 10 µm × 15 µm
such as to hold only single cell at a given time. An array
of micropillars in the channel length would capture single
cell on top of the transistor gate without penetrating the cell.
The array of silicon dioxide micropillars was simulated on
top of the doped silicon channel area and two diameters for
micropillars were used. Two diameters of the micropillars
were chosen such that these sizes were not too wide to impede
the free-flowing ions from reaching the gate area and not too
thin that they would penetrate the cell wall. The effects of the
micropillars’ physical diameters on the device performance
were also studied.

The cells were modeled to be on top of the micropillars,
while the spaces around micropillars were filled with biolog-
ical buffer. This allowed unimpeded ion exchange between
the cell membrane and extracellular environment. The ions
migrated to the cell outside surface and accumulated on the
surface. The uneven distribution of ions between intracellular
and extracellular environment created a potential difference
across the cellular membrane. The measurements of cell
ion exchange at the molecular level were affected by the
cell membrane potential. The micropillar surface engineered
gate enhanced the sensitivity of ISFET and made it suit-
able for measuring tumor cells in a simultaneous screening
environment.

FIGURE 1. ISFET with micropillared gates. (a) Schematic illustration of cell
ion channels. Cells are depolarized or hyperpolarized (b) 3D schematic of
ISFET device. This shows a cell on top of micropillar array.

II. METHODS AND PROCEDURES
A. CELL TRANSMEMBRANE POTENTIAL
The voltage difference between inside and outside of a cell
exists due to cell wall selective permeability of different ions.
The Goldman–Hodgkin–Katz equation (1) below shows that
theVm depends on the permeabilities (P), and the intracellular
and extracellular concentrations of major ions [35], [36]:

Vm =
RT
F

ln(
PNa

[
Na+

]
o+PK

[
K+

]
o+PCl

[
Cl−

]
o

PNa
[
Na+

]
i+PK

[
K+

]
i+PCl

[
Cl−

]
i

) (1)

where R is ideal gas constant, T is temperature and F is
Faraday constant. The brackets with subscripts define the
concentration of specific ions inside (i) or outside (o) the cell
membrane. The concentrations of respective ions can be sev-
eral orders of magnitude different across the cell membrane.

The cell cycle distinguishes into phases and one of the
most significant factors that regulate cell cycle is the mem-
brane potential (Vm) [4], [37]. As a result of ion channel
and ion transport activities, the Vm of a resting cell is neg-
ative. The cells are said to be depolarized when the Vm is
altered to relatively less negative state, whereas the cells are
said to be hyperpolarized when the membrane potential is
moved to more negative values than the resting membrane
potential [38].
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Direct in vitro and in vivo comparisons of Vm levels
between normal and cancerous breast cells [39], hepato-
cytes and hepatocellular carcinoma cells [40], [41], normal
and neoplastic adrenocortical tissues [42], and between nor-
mal and cancerous ovarian tissues have shown that can-
cer cells tend to be more depolarized than their normal
counterparts [43].

B. ISFET MODEL
The COMSOL Multiphysics R©Modeling Software was used
to build the 3D geometric model (Fig. 1(b)). The silicon
substrate was defined to be n-type with a donor concentration
of 1.5 × 1016/cm3. The model terminals (source and drain)
were designated as p-type doping with a concentration of
1×1018/cm3. The electrostatic model was represented by two
terminals for source and drain. The source terminal voltage
was set to zero. The drain terminal was set to −10 mV.
A third terminal was used to apply the voltage at the gate
area and at the edges of the micropillars to mimic cell mem-
brane potential when the cell touched the micropillars. The
semiconductor model was defined with twometal contacts on
the source and drain (Fig. 2). The area with no micropillars
between source-drain was separated from the channel by a
thin 5 nm layer of silicon dioxide (SiO2). A third metal
contact was placed on that area to represent gate voltage.
For the interface area between micropillar and the silicon
substrate, a fourth metal contact was used to simulate the
micropillars effect on the substrate.

C. VARIATION IN MICROPILLAR DIAMETER
In order to study the effect of physical parameters on the
device performance, the diameters of the micropillars were
varied. First, a 2 µm diameter was modeled and simulated.
Next, 1 µm diameter was modeled and simulated. The sim-
ulations provided the DC electrical characteristics of both
devices.

D. ELECTROSTATIC POTENTIAL
Both semiconductor and electrostatic models were executed
simultaneously to simulate the DC characteristics of ISFET
with the effects of electrostatic potential from the micropil-
lars. The device turn-on voltage was determined by plotting
the drain current. A low voltage of −10 mV was applied to
the drain terminal. The voltages at the gate and edges of the
micropillars (device surface) were swept from −200 mV to
+100 mV. Then, drain voltage was swept from −100 mV
to 0 mV while the surface voltage was swept from −200 mV
to−100 mV. A plot of drain current versus drain voltage was
generated with several values of surface voltage (i.e. voltage
at the gate and edges of the micropillars). The electrostatic
model captured the capacitor effect from SiO2 micropillars,
where the silicon substrate was grounded. The scalar electri-
cal potential (VES ) satisfied Poisson’s equation.
The carriers’ charges were solved by semiconductor

model. From Poisson’s equation (2), the left-side term shows
electric field value. The right-side term shows the space

FIGURE 2. The boundary condition of model. (a) Ideal MOS capacitor
(b) Metal contact boundary in semiconductor model

charge densities, where q is the charge of the carrier, and
the electron and hole surface concentrations are denoted by
n and p, respectively. N−a and N+d are the acceptor and donor
ion concentrations. At the steady state, the total charge contri-
butions of the carriers can be calculated from the following:

∇. (−ε∇VSemi) = q
(
p− n+ N+d − N

−
a
)

(2)

E. CHARGE DISTRIBUTION
Fig. 2(a) shows the boundary conditions for the model. The
ideal MOS capacitor is modeled as SiO2 micropillar. The
silicon substrate under micropillars had equivalent charges as
in the defined metal contact at the interface between Si-SiO2.
This resulted in a very narrow charge distribution near the
interface at accumulation and inversion modes. At the deple-
tion modes, the charges resulted in a depletion width (Wdep).
Hence, the hole concentration near the interface equaled the
donor concentration. This entailed:

1
C
=

1
Cox
+

1
Cdep

(3)
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1
Cdep

=
Wdep

ε × Area
(4)

pinterface = Nd = nie[
Ei−interface−Ef

kT ]
= nie[

Ef −Ei
kT ] (5)

These metallic contacts were placed in the semiconductor
model between Si-SiO2 boundaries to mimic the electrical
potential caused by the SiO2 micropillar’s capacitor effect
(Fig. 2(b)). Themetal contact voltage was set to be the voltage
output from the electrostatic model solution (V = VES ). The
silicon substrate area under SiO2 pillar was doped with p-type
doping. The electrical insulation was assumed throughout the
device boundary.

III. RESULTS AND DISCUSSION
The simulation results were plotted to obtain DC charac-
teristics of the ISFET sensor. At the end of the simulation,
the data clearly indicated membrane potential changes at the
interfaces of the micropillars.

A. ISFET DC CHARACTERISTICS
The ISFET working principle is based on the monitoring
of the changes of surface charges at the interface of the
insulator and the overlying layer. This was mimicked by the
applied voltage. The change in surface charges resulted in
work function change that in turn was measured as a shift
in the transistor threshold voltage. Fig. 3 shows the device
electric potential for 2 µm × 3 µm and 1 µm × 3 µm array
of micropillars. The electrical field is depicted by the arrow
lines. By applying Poisson’s equation at the SiO2 micropil-
lars, and by design, there are no charges in the SiO2:

dEoxide
dx

= ρ = 0, Eoxide = constant (6)

VES (x, y) =
∫
Eoxide−xdx +

∫
Eoxide−ydy (7)

The electrical potential changed linearly for both cases,
where it was going away from the micropillars. The max-
imum electric potential was seen at the device gate and
Si-SiO2 boundary. The ISFET design allowed the achieve-
ment of a physiological response to ion exchange activity
(cell molecular bioelectricity) toward cancer cell character-
ization. The micropillar diameter impacted the electric field
direction as shown in Fig. 3. The 2 µm diameter micropillar
shows electrical field direction covering the entire micropil-
lars. However, 1 µm diameter shows electric field direction
in only part of the micropillar for the same conditions (Vd =
−10 mV, Vg = −100 mV). Micropillar diameter imposes a
higher effect on the electric field when in contact with cells.
The 2µm×3µm device shows a higher electrical field effect
than that for 1 µm× 3 µm device.
Fig. 4(a) shows the ISFET drain current with respect to the

surface voltage at a low constant drain voltage of−10 mV for
both 2 µm× 3 µm and 1 µm× 3 µm devices. The threshold
voltage (VT ) of the devices was extracted from a log scale plot
of Id−Vg by plotting and extrapolating to find VT (Fig. 4 (b)).

FIGURE 3. Device electrical potential results with micropillar sizes of
(a) 1 µm× 3 µm, and (b) 2 µm× 3 µm. The color depicts the electrical
potential magnitude as depicted on the color scale on the right. Arrows
depict electrical field direction in x-y direction.

TABLE 1. ISFET DC characteristics summary.

The Idsat was extracted from Id −Vd graph where (Vg < VT ,
Vd < Vg + |VT |) (Table 1).
The micropillar diameters showed a correlation with

VT and Idsat . The VT of the device was lower when
the micropillar diameter was larger, which increased the
drain channel current. The effective length of the device
gate changed as the micropillar diameter changed. The
effective gate length was 6 µm and 8 µm for the
2 µm × 3 µm and 1 µm × 3 µm device, respec-
tively. The micropillar diameter controlled the device turn
on/off voltage.
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FIGURE 4. Drain current vs. surface voltage (Vd = −10 mV). (a) Linear plot, and (b) Drain current plotted in log scale to extract VT .

FIGURE 5. Drain current vs. drain voltage simulation analysis. (a) Drain current vs. drain voltage without micropillar effect (b) Drain current vs. drain
voltage for device with 2 µm× 3 µm micropillar (c) Drain current vs. drain voltage for device with 1 µm× 3 µm (d) ILIN vs. log values of the voltage
applied to device surface micropillar and gate.

B. DRAIN CURRENT VS. DRAIN VOLTAGE WHILE
RAMPING Vg

The drain current versus drain voltage simulation of ISFET
without the effect of micropillars is shown in Fig. 5(a).
The linear current (ILIN ) value was described as the drain
current that passed through the device at Vd = −10 mV.
The ILIN was extracted from the plot of the drain cur-
rent at (Vd = −10 mV) versus the surface voltage.
A device sensitivity of 6.5 pA/dec was seen between−70mV
and −30 mV.

For the two SiO2 micropillar diameters used in this sim-
ulations, the drain current output curves were recorded at
different surface voltages (Figs. 5(b), 5(c)). With decreasing
surface voltage, the output curves changed to the positive
drain current through the device. Also, the micropillared
devices showed an increase in drain current as the voltage
amplitude |Vd | decreased as a result of the coupling of the
semiconductor and electrostatics models. The two models
were executed concurrently to capture the micropillar elec-
trostatic effect on FET.

VOLUME 6, 2018 72679
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FIGURE 6. Device simulated capacitance behavior vs. surface voltage. Redline depicts the data for the 2 µm× 3 µm micropillar
device, and the blue line shows the behavior of the 1 µm× 3 µm micropillar device.

To quantify the sensitivity of the devices, the linear cur-
rents were extracted from the curves. The value of ILIN was
0.98 nA/dec and 0.13 nA/dec for 2 µm and 1 µm diameter
micropillars, respectively (Fig. 5(d)).

The results showed that introducing the micropillar
increased the device sensitivity (ILIN ). The current was higher
when the diameter was larger. Here, a 2 µm diameter
showed ∼7.5 times more ILIN than that for 1 µm diameter
micropillars.

The limit of detection (LOD) of a device can be defined as:

LOD =
3σ
S

(8)

where S is the sensitivity, σ is the standard deviation of the
device current with no micropillar. The LOD of devices with
nomicropillars, 2µmmicropillars and 1µmmicropillars was
43 mV, −2 mV and −0.3 mV, respectively.

C. CAPACITANCE-VOLTAGE (C–V) CHARACTERISTICS
The C-Vmeasurements of MOS capacitor structure provided
device information. The MOS structure was modeled as a
series connection of two capacitors: capacitance of the oxide
and capacitance of depletion layer (3). The device capac-
itance depended on three operating modes: accumulation
capacitance, which was oxide capacitor with no depletion
layer, depletion capacitance, which was equal to the series
connection of oxide and depletion layer capacitance, and
inversion capacitance which became independent of the sur-
face voltage.

For this simulation, all metal contacts were set to ground
and the surface voltage was swept from −1 V to +1 V
to record device capacitance from gate to bulk. The device
capacitance behavior was recorded for the two micropillar

diameters. The results showed that the capacitance depended
on the micropillar diameters (Fig. 6).Whenmicropillar diam-
eter increased, device capacitance lowered. Accordingly,
the device flat band voltage changed, and we captured the
change in VT .

The 2 µm × 3 µm device capacitance simulation showed
lower capacitance when compared to 1 µm × 3 µm device
and this described lower |VT |.

D. CARRIER CONCENTRATIONS
The simulation showed no channel was formed between drain
and source at T = 0. When surface voltage became positive,
the silicon substrate showed electron accumulation in the sil-
icon substrate channel area. The electron concentration in the
channel area increased as the surface voltage increased and
the device operated in accumulation mode: n-type became

TABLE 2. Carrier concentrations under the micropillars.
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more ‘‘n’’. Similarly, the positive charges gathered in silicon
substrate channel area when surface voltage got negative.
The electron concentration in the channel area decreased
and the device operated in depletion mode. At Vg � 0,
the drain current was generated equal to the total charge in
the inversion layer. Therefore, hole concentration increased
as the applied surface voltage on the device became more
negative. At the end of the simulation, the carrier concentra-
tions of the channel area (beneath SiO2 micropillars) were
extracted from the model. Table. 2 shows carrier concentra-
tions versus the applied surface voltage. The hole concentra-
tion increased as applied potential became negative, which is
shown from charge model (5). The electrons in channel area
were exchanged by holes and formed an inversion channel of
holes from source-drain.

IV. CONCLUSION
A simulation of measuring cell membrane voltage potential
has been done on the ISFET devices with micropillars in the
gate area. The simulation of the micropillars physical diame-
ter was done (2 µm× 3 µm and 1 µm× 3 µm). The change
in the ISFET output current was measured as the voltage
mimicking the cell membrane potential was applied to the
device. The ISFET sensing principle related to the change
in the device threshold current due to surface charges, which
changed the operative voltage potential of the semiconductor
channel. These surface charges would be contributed by the
Vm of cell in a practical device. The cells would be sitting atop
the micropillars. The micropillar diameters played a key role
in controlling device DC characteristics and performance.
An enhancement of device performance was observed for
micropillar diameter of 2 µm. The results showed that cancer
cell could be characterized by ISFET sensor, based on their
enhanced ion concentrations in the solution. The simulations
showed the enchantment of ISFET device sensitivity when
micropillars were introduced. ISFETs can be manufactured
at an economical price and would be cost-effective for point
of care application.
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