

UNIVERSITI PUTRA MALAYSIA

EFFECTS OF AMBIENT TROPOSPHERIC OZONE ON MR-219 RICE IN THE MUDA IRRIGATION SCHEME AREA

MARZUKI HAJI ISMAIL.

FPAS 2005 6

EFFECTS OF AMBIENT TROPOSPHERIC OZONE ON MR-219 RICE IN THE MUDA IRRIGATION SCHEME AREA

.

By

MARZUKI HAJI ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

April 2005

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF AMBIENT TROPOSPHERIC OZONE ON MR-219 RICE IN THE MUDA IRRIGATION SCHEME AREA

By

MARZUKI HAJI ISMAIL

June 2005

Chairman:Associate Professor Ahmad Makmom Haji Abdullah, PhDFaculty :Environmental Studies

Rice, the most important crop in Malaysia contributes about one-third of daily calorie intake among Malaysians, and it is the primary source of carbohydrates. As in many other developing countries in Asia, food security has been an integral national policy objective in Malaysia's development pursuits since the 1950s. The focus of the self-sufficiency programme has been on rice, as it is the staple food for the vast majority of the population. Domestic consumption of rice is projected to increase with increase in population; whereby the increase in production has to come from higher productivity in the existing granary areas since there is no plan to increase the area under paddy cultivation.

It has long been recognized that pollutant gases cause significant impacts on crops and forests in both developed and developing countries. Tropospheric ozone (O_3) is recognised as the pollutant most likely to cause widespread crop damage. For this pollutant an AOT40 (accumulative O_3 concentration above a threshold of 40 ppb) value causing 5% yield loss for all agricultural crops has been established as 3000 ppb·h, which is applicable during daylight hours over a growing season (UN-ECE, 1996). Comparatively, very few studies of tropospheric ozone impact on vegetation have been conducted in developing countries; majority of which; located along the

equatorial belt. This is a serious omission because of the greater importance of this issue in developing countries due to increasing demand for higher crop production in the face of growing populations, rapid deterioration of ambient air quality associated with industrialisation and urbanisation as well as land constrains. Moreover, Malaysia, which is located at the equatorial region, may be at an even greater risk because the climate that is characterised by high temperature and high levels of solar radiation, promote the formation of photochemical pollutants such as O₃.

For the above purpose, there is a pressing need to determine the actual air pollution impacts on vegetation especially rice plant, which is the main staple food of Malaysia. Forecasting crop yield well before harvest is crucial to enable planners and decision makers to predict how much to import in case of shortfall or optionally, to export in case of surplus. It also enables governments to put in place strategic contingency plans for redistribution of food during times of famine. Therefore, monitoring of crop development and of crop growth, and early yield prediction is very crucial. In order to have a complete estimate of air pollution damage i.e., O₃ to paddy plantation area, a dose-response, or yield-loss function have to be developed. In this study, data was gathered from tests in open-top chambers (OTCs), whereby four OTCs were fabricated; two of which were exposed to ambient air pollution (NF) of which ozone is the major perpetrator whilst the remaining were provided with clean air i.e. charcoal filtered air treatment (F). The response of a popular local rice cultivar, MR-219 to current ambient air pollution of which O3 is the overwhelming dominant pollutant was investigated for five successive seasons in Muda Irrigation Scheme Area (MADA); the largest and imperative rice growing area in Malaysia. This method has been widely employed to assess crop yield responses to ozone.

The results of the study clearly indicate that at ozone concentrations even lower than the Malaysian air quality guidelines (60 ppb 8 hr mean) level, there exist a significant impact on the growth and yield of the popular rice cultivar MR-219. Even though weeds, diseases, and insect pests were absent, water and nutrients were in abundance, no adverse soil conditions, and that no extreme weather event such as

typhoons occurs; the physiological, growth and development performances of rice plants exposed to ambient ozone were found to be significantly (P< 0.05) reduced by AOT40 compared to control rice plants in filtered chamber. This study discovered that the root was the most significantly affected component of MR-219 rice plant. Meanwhile, reproductive stage is the most vulnerable period of growth to ozone impact followed by grain filling and vegetative stages, respectively. For plant growth and development study, yield is the most critical parameter. Statistically, a square root-Y equation epitomize the best fitting compared to other curvilinear models in describing yield reduction of rice plant due to ambient O₃ stress (DWF_G); represented by the following equation: $DWF_G = [9.636 - (0.0000303 * AOT40)]^2$. This study finding is undeniable imperative and it bestows the first algorithmic yield-loss model of crop to ozone in this country, ever.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Doktor Falsafah

KESAN OZON TROPOSPERIK UDARA KASA KE ATAS PADI MR-219 DI KAWASAN SKIM PENGAIRAN MUDA

Oleh

MARZUKI HAJI ISMAIL

April 2005

Pengerusi:Profesor Madya Ahmad Makmom Haji Abdullah, PhDFakulti:Pengajian Alam Sekitar

Beras adalah makanan ruji utama di Malaysia; di mana ianya membekalkan satu pertiga kalori bagi rakyat Malaysia dan juga merupakan sumber utama karbohidrat di negara ini. Sama seperti kebanyakan negara membangun yang lain di Asia, isu keselamatan makanan adalah sebahagian daripada agenda penting di dalam aspek pembangunan Negara Malaysia semenjak ianya mencapai kemerdekaan pada lewat 1950an. Tumpuan program sara diri ini adalah kepada penanaman padi memandangkan ianya adalah makanan ruji kebanyakan warga Malaysia. Pengambilan domestik beras negara diramalkan akan meningkat sejajar dengan peningkatan penduduk, namun peningkatan ini perlu datang dari kawasan penanaman padi sedia ada memandangkan tiadanya rancangan perluasan kawasan penanaman padi oleh pihak penggubal dasar negara.

Pencemar udara yang mana ozon troposperik adalah bahan utamanya, telah lama dikenalpasti memberi impak yang signifikan terhadap tumbuhan tanaman dan hutan di negara maju maupun di negara yang sedang membangun. Bagi ozon troposperik (O₃) ini, AOT40 (kumulatif kepekatan O₃ melebihi had 40 bahagian per billion) yang mengakibatkan 5% pengurangan hasilan bagi semua tanaman pertanian telah diwujudkan, iaitu sebanyak 3000 ppb h, relevan bagi jam diwaktu siang yang dilimpahi cahaya matahari, untuk suatu musim tanaman (UN-ECE, 1996). Secara

perbandingan, amat sedikit kajian tentang kesan ozon troposfera ke atas tanaman yang telah dijalankan di negara membangun, yang mana kebanyakan negara-negara ini terletak di kawasan Khatulistiwa. Ini merupakan suatu pengabaian yang serius kerana isu ini adalah lebih kritikal dan mendesak di negara membangun. Negaranegara membangun secara amnya memerlukan hasilan tanaman yang lebih tinggi akibat pertumbuhan kadar penduduk yang pesat, kualiti udara yang semakin merosot kesan daripada proses industrialisasi dan urbanisasi, disamping kekangan kawasan pertanian. Lebih membimbangkan lagi ialah disebabkan lokasi Malaysia yang terletak di Khatulistiwa, risiko kesan ozon troposfera ke atas tanaman adalah lebih tinggi. Ini kerana iklim tropika yang bercirikan suhu yang tinggi serta keamatan cahaya suria yang melimpah sepanjang tahun menggalakkan pembentukan ozon troposfera.

Sayugia itu, terdapatnya keperluan yang mendesak bagi penentuan secara kuantitatif kesan pencemar udara ke atas tanaman terutamanya padi, yang merupakan makanan asasi rakyat Malaysia. Ramalan secara saintifik jumlah hasilan tanaman padi adalah sangat penting bagi membolehkan para pentadbir dan penggubal dasar negara menganggarkan jumlah yang perlu diimpot sekiranya terdapat kekurangan pengeluaran ataupun andaikata berlebihan, mengekspotkannya. Ini membolehkan kerajaan melaksanakan pelan kecemasan bagi pembahagian makanan semasa kejadian bencana. Oleh itu, pemantauan pertumbuhan dan perkembangan tanaman serta ramalan awal jumlah hasilan tanaman adalah amat penting. Bagi mendapatkan anggaran tepat tentang kesan ozon tropospera ke atas kawasan penanaman padi, suatu dos-respon, atau dikenali juga sebagai fungsi kehilangan hasil perlu diwujudkan. Dalam kajian ini, data-data dikumpulkan dari ujikaji yang dijalankan didalam kebuk terbuka di atas (open top chamber). Empat unit kebuk atas terbuka telah dibina; dua unit dibekalkan dengan udara kasa(NF) dimana ozon tropospera merupakan bahan pencemar utama; sementara dua unit lagi mendapat udara bersih yang ditapis menggunakan penapis arang (F). Kaedah ini digunakan secara meluas bagi mengetahui tindakbalas ozon ke atas tanaman. Kajian ini dijalankan selama lima musim berturut-turut di Kawasan Skim Pengairan Muda (MADA) yang

merupakan kawasan penanaman terpenting di Malaysia, melibatkan jenis padi tempatan yang amat popular, iaitu kultivar MR-219.

Keputusan kajian ini jelas menunjukkan bahawa walaupun pada kepekatan ozon tropospera yang lebih rendah daripada Garispanduan Kualiti Udara Malaysia (60 ppb 8 jam purata), terdapatnya kesan yang signifikan terhadap tumbesaran dan hasilan pada padi MR-219. Walaupun tidak terdapatnya rumpai, penyakit serta serangga perosak, air dan nutrien yang mencukupi, tanah yang subur serta tiadanya bencana yang melanda; namun kadar tumbesaran pokok padi yang terdedah kepada ozon udara kasa mengalami pengurangan yang signifikan (P<0.05) berbanding dengan pokok padi yang ditanam di dalam kebuk terbuka di atas (open top chamber). Kajian ini mendapati bahawa akar merupakan parameter yang paling teruk menerima kesan ozon udara kasa sementara peringkat pertumbuhan adalah peringkat yang paling terjejas diikuti peringkat pengisian bijirin. Bagi kajian tumbesaran tanaman, hasilan merupakan parameter yang paling kritikal. Secara statistiknya, algoritma punca kuasadua adalah persamaan yang paling tepat bagi menggambarkan dos-respon pengurangan hasilan padi kesan ozon udara kasa iaitu: $DWF_{G} = [9.636 - (0.0000303 * AOT40)]^{2}$. Tidak dapat disangkal lagi, hasil kajian ini adalah amat penting dan ianya telah mengwujudkan model algorithma dosrespon pengurangan hasilan padi kesan ozon udara kasa yang pertama bagi Malaysia.

ACKNOWLEDGEMENT

In the name of ALLAH, the Merciful, the Compassionate. Praise be to God, Lord of the Universe, The Gracious, the Merciful. Amin.

Al-Qur'an, 1:1-3.

First and foremost, I would like to express my heartfelt thanks and appreciation to my supervisory committee chairman, Assoc. Prof. Dr. Ahmad Makmom Abdullah for his advice, guidance, constructive criticisms, valuable suggestions and most of all, for his kindness, throughout this study.

My deepest gratitude also to the members of my supervisory committee, Assoc. Prof. Dr. Wan Nor Azmin Sulaiman, Assoc. Prof. Dr. Mohd. Kamil Yusoff and Assoc. Prof. Dr. Azizi Muda without whose help, this project would never achieve success. Their contribution and numerous critical comments are profoundly appreciated.

Special note of gratitude and sincere thanks to Mohd. Asimi, Shamsuddin and Sharifah Azlina for their assistance all through this study.

Ultimately, no single phrase or expression can adequately reflect my gratefulness and love to my family, above all Saien Muzalifah Ismail, Hajjah Amnah Hj. Salleh, Hajjah Hasnah Abd. Hamid and Haji Ismail Rahmad for their moral support, sacrifices, inspiration and understanding.

The Author

I certify that an Examination Committee met on 19th April 2005 to conduct the final examination of Marzuki Haji Ismail on his Doctor of Philosophy thesis entitled "The Effect of Ambient Tropospheric Ozone on MR-219 Rice in the Muda Irrigation Scheme Area" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ramdzani Abdullah, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Chairman)

Mohd Nasir Hassan, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Internal Examiner)

Mohd Fauzi Ramlan, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Peter Brimblecombe, PhD

Professor School of Environmental Sciences University of East Anglia United Kingdom (External Examiner)

GULAM RUSUL RAHMAT ALI, PhD Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 20 JUN 2005

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory committee are as follow:

Ahmad Makmom Hj. Abdullah, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Chairman)

Wan Nor Azmin Sulaiman, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Member)

Mohd. Kamil Yusoff, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Member)

Azizi Muda, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Member)

e 2

AINI IDRIS, PhD Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date: 1 4 JUL 2005

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations that have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia (UPM) or any other institution.

human

MARZUKI HJ. ISMAIL

Date: 14/4/2=05

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLE	XV11
LIST OF FIGURE	xviii
ABBREVIATIONS/NOTATIONS/GLOSSARY OF TERMS	XXIV

CHAPTER

.

1	INTR	ODUCTI	ON	1
-	1.1	Backgro		1
	1.2		of Air Pollution on Agriculture	3
	1.3		d for Ozone Exposure Response Curve Relationship	3 5 7
	1.4		Statement	7
	1.5	Hypothe	eses	8
	1.6	Assump	tion	9
	1.7	Objectiv	ves of the Study	10
	1.8	Signific	ance of the Study	11
	1.9	Structur	e of the Thesis	12
2	LITE	RATURE	REVIEW	13
_	2.1	Air Qua	lity Status in Malaysia	13
	2.2		t Air Quality Monitoring	14
	2.3		ssion Sources	15
		2.3.1	Mobile Source Emissions	15
		2.3.2	Stationary Source Emissions	16
		2.3.3	Open Burning Source Emissions	16
	2.4	Air Poll	utant Index in Malaysia	16
	2.5	Effects	of Air Pollution on Crops	18
		2.5.1	Air Pollution Damage to Crops	20
	2.6	Troposp	oheric Ozone	21
		2.6.1	Formation of Tropospheric Ozone	24
		2.6.2	Chemistry of Ozone Formation	25
		2.6.3	Nitrogen oxides	27
		2.6.4	Volatile organic compounds	27
		2.6.5	Sources of Tropospheric Ozone	29
		2.6.6	Tropospheric Ozone Concentrations	30
		2.6.7	AOT40 - Accumulated Ozone Exposure over Threshold	31
			of 40 ppb	
		2.6.8	Effects of Ozone on Crops	32
		2.6.9	Ozone Uptake by Plant	34

27	2.6.11 Open To		fects on Physiological Process fects on Plant Growth and Development	39
27	Open To			42
2.7	open re	op Chamber		43
2.8	Overvie	w of rice pr	oduction in Malaysia	44
	2.8.1	Importan		45
	2.8.2	Rice envi	ronment	47
	2.8.3	Productio	on constraints	47
	2.8.4	Morpholo	bgy and growth of the rice plant	48
	2.8.5	Morpholo	ogy	49
		2.8.5.1	Seeds	49
		2.8.5.2	Seedlings	50
		2.8.5.3	Tillering plants	51
		2.8.5.4	Panicle and spikelets	53
	2.8.6	Growth		54
		2.8.6.1	Vegetative phase	54
		2.8.6.2	Reproductive phase	55
2.9		Determining	g Crop Growth	56
	2.9.1	Light		56
	2.9.2	Temperat	ure	59
	2.9.3	Day-leng	th	60
	2.9.4	Carbon D	Pioxide	61
	2.9.5	Air pollut	ants	62
	2.9.6	Water		63
	2.9.7	Nutrition		64
2.10	Potentia	l Productior	n of Rice	66
2.11	Previous	Study of A	ir Pollution Impacts on Vegetation in Malaysia	67
			- •	

IVLL I	HODOLC	JGY	71
3.1	Study A	Area	71
	3.1.1	Population	74
	3.1.2	Climatic	77
	3.1.3	Climatologically Data	77
	3.1.4	Solar Radiation	79
	3.1.5	Rainfall	81
	3.1.6	Temperature	83
	3.1.7	Relative Humidity	91
	3.1.8	Day length	93
	3.1.9	Wind	94
	3.1.10	Soils and topography	102
	3.1.11	Soils Characteristics	105
	3.1.12	Rice Cropping Calendar	108
3.2	Researc	h Materials and Instruments	109
	3.2.1	Plant material	109
	3.2.2	Open Top Chambers and Filters	109
	3.2.3	Experimental Design and Structure	115
	3.2.4	Design Construction	116
	3.2.5	The Research Problem	117

3.3	Experin	nental Procedures	118
	3.3.1	Microclimate monitoring	118
	3.3.2	Light Intensity	119
	3.3.3	Relative humidity	121
	3.3.4	Wind speed and temperature	121
	3.3.5	Ambient Ozone Data Collection	122
	3.3.6	O ₃ concentration of Carbon Filtered and Non Filtered	122
		Chambers	
	3.3.7	Gas Exchange Measurements	123
3.4	Data an	alysis	125
	3.4.1	Analysis of Photosynthetic Data	125
	3.4.2	Fitting Nonrectangular Hyperbolae to Leaf	125
		Photosynthesis Curve	
	3.4.3	Transpiration	126
	3.4.4	Stomatal Conductance	126
	3.4.5	Light availability to a crop canopy	127
	3.4.6	Light interception - Leaf Area Index	128
	3.4.7	Extinction coefficient (k)	129
	3.4.8	Light interception by a crop	129
	3.4.9	Relation between absorbed radiation and LAI	130
	3.4.10	Instantaneous CO ₂ assimilation rate	130
	3.4.11	Daily Rate of Gross CO ₂ Assimilation	131
3.5		rowth and Development	131
	3.5.1	Growth Analysis	131
	3.5.2	Plant Height	132
	3.5.3	Harvest Procedure	132
3.6		al analysis	133
	3.6.1	Testing for Normality and statistical analysis	133
RESI	ULTS ANI	DDISCUSSION	135
4.1		imate conditions of Open Top Chambers (OTC)	135
	4.1.1	Diurnal trends of photon flux density for OTC and	135
		ambient plot	
	4.1.2	Light interception – distribution in a crop	142
	4.1.3	Middle Level Canopy Extinction Coefficient	145
	4.1.4	Bottom Level Canopy Extinction Coefficient	147
	4.1.5	Relative humidity	149
	4.1.6	Temperature	151
	4.1.7	Wind speed inside the Chambers	152
	4.1.8	Ozone Concentrations	154
4.2	Gas Exc	change Measurements	155
	4.2.1	Photosynthetic Light Response Curve	156
	4.2.2	Photosynthetic Filter Light Response Curve for Plants	156
		Grown in Filtered Chamber	
	4.2.3	Photosynthetic Filter Light Response Curve for Plants	158
		Exposed to Ambient Ozone	
	4.2.4	Transpiration	160

4

	4.2.5	Transpira	tion of rice plant inside the filtered chamber	161
	4.2.6	Transpira	tion of rice plant exposed to ambient ozone	164
	4.2.7		Conductance	166
	4.2.8	Stomatal	Conductance of rice plant inside the filtered	167
		chamber	-	
	4.2.9	Stomatal	Conductance of rice plant exposed to ambient	169
		ozone		
	4.2.10	Light inte	erception – LAI	171
	4.2.11	Extinction	n coefficient (k)	174
	4.2.12	Light inte	rception by a crop	177
	4.2.13	Instantand	eous CO ₂ Assimilation Rate for Filtered	178
		MR219 C	Canopy	
	4.2.14	Daily CO	² Assimilation Rate for Filtered MR219	179
		Canopy		
	4.2.15	Instantand	eous CO ₂ Assimilation Rate for MR219	180
		Canopy E	xposed to Ambient Ozone	
	4.2.16		² Assimilation of MR219 Canopy Exposed to	181
		Ambient	Ozone	
4.3		rowth and D		181
	4.3.1		Iodel of MR219 for Different Ambient AOT40	182
		Treatmen	ts	
		4.3.1.1	Treatment 1: MR219 Plants Grown in	183
			Filtered Chamber	
		4.3.1.2	Treatment 2: MR-219 Plant Exposed to	185
			AOT40 of 3007 ppb h	
		4.3.1.3	Treatment 3: MR-219 Plant Exposed to	188
			AOT 40 of 10765 ppb h	
		4.3.1.4	Treatment 4: MR-219 Plant Exposed to	190
			AOT 40 of 11494 ppb h	
		4.3.1.5	Treatment 5: MR-219 Plant Exposed to	193
			AOT 40 of 14,692 ppb h	
		4.3.1.6	Treatment 6: MR-219 Plant Exposed to	195
			AOT 40 of 15,461 ppb h	
4.4	Dry We		Harvesting (DWF)	198
	4.4.1		ht of Total Biomass/Weight at Final	198
		Harvestin	•	
		4.4.1.1	MR-219 Plant Total Biomass Reduction due	200
			to Ambient O ₃ Stress	
	4.4.2	-	Root at Final Harvesting	204
		4.4.2.1	Root Weight Reduction due to Ambient O ₃	205
			Stress	
	4.4.3		Leaf at Final Harvesting	209
	4.4.4		Tillers at Final Harvesting	210
	4.4.5		ight at Final Harvesting	212
	_	4.4.5.1	Grain Reduction due to Ambient O ₃ Stress	214 217
4.5	Influence of Open Top Chamber			
4.6			ide F and NF Chambers	219
4.7	Effect of	f AOT40 on	Physiology	220

	4.8	Effect of 4.8.1 4.8.2 4.8.3	AOT40 on Plant Growth's Dry Weight Stage I: Vegetative Stage Stage II: Reproductive Stage Impact of AOT40 during Grain Filling Stage	225 228 228 229
	4.9	Effect of	AOT40 on Dry Weight at Final Harvesting	232
5	CONC	LUSION	AND RECOMMENDATIONS	236
	5.1	Summary	of Research Findings	237
	5.2	Recomm	endations	242
		5.2.1	Recommendation 1: Investigations of Tropospheric O ₃ Impact on Other Malaysian's Crops	242
		5.2.2	Recommendation 2: Modifications of Varietal Traits for Deteriorating Tropospheric O ₃ Condition	242
		5.2.3	Recommendation 3: Revision of Nutrients Application Regime for Declining Tropospheric O ₃ Condition	243
		5.2.4	Recommendation 4: Temporal and Spatial Yield Loss Prediction for Aggregated MADA Area	243
		5.2.5	Recommendation 5: Tropospheric O ₃ Improvement Program	244
6	REFEI	RENCES/	BIBLIOGRAPHY	246
APPE	APPENDICES 266			

BIODATA OF THE AUTHOR

354

LIST OF TABLE

Table		Page
1	Recommended Malaysian Air Quality Guidelines (Ambient Standards)	17
2	Phytotoxic air pollutants, in order of importance to crop systems	19
3	Common symptoms of foliar ozone injury	33
4	Overview of the general effects of O ₃ on crops in single exposure mode	42
5	Essential plant nutrients	65
6	Location and total area of each locality (PPK)	76
7	Nutrients availability and crop DRIS index of Kg. Sg. Baru Tengah A	107
8	Additional fertilizer for rice cropping	107
9	Blower specifications for chamber 1, 2, 3 and 4	114
10	Light transmission percentage of the chambers	139
11	Wind speed inside the chambers	153
12	Chamber's air exchange rate	153
13	The values of maximum growth rate at the point of inflexion	230

LIST OF FIGURE

Figure		Page
1	O ₃ Production versus NO _x concentration	28
2	Cross section of a leaf	35
3	Ozone Uptake in Plant Cell	36
4	Growth phases in rice crop	49
5	Cross section of rice grain	50
6	Diagram of rice seedling	51
7	Diagram of tillering plant for rice	53
8	Gross CO_2 assimilation for C_3 and C_4 leaves	58
9	Effect of increased CO ₂ and temperature on gross CO ₂ assimilation rate	62
10	Location of the study area	72
11	Close-up of the study area	73
12	Pertubuhan Peladang Kawasan in MADA Area	75
13	Average Monthly PAR for Alor Star (1996-2002)	80
14	Monthly Maximum, Minimum and Mean PAR for Alor Star (1996-2002)	80
15	Annual total rainfall for Alor Star from 1996 to 2002	81
16	Average monthly rainfall pattern for Alor Star from 1996-2002	82
17	Diurnal Temperature Distribution for Alor Star (1996)	84
18	Diurnal Temperature Distribution for Alor Star (1997)	85
19	Diurnal Temperature Distribution for Alor Star (1998)	86
20	Diurnal Temperature Distribution for Alor Star (1999)	87
21	Diurnal Temperature Distribution for Alor Star (2000)	88
22	Diurnal Temperature Distribution for Alor Star (2001)	89
23	Diurnal Temperature Distribution for Alor Star (2002)	90

24	Daily Relative Humidity Distribution for Alor Star (1996-2002)	92
25	Alor Star's average day-length from 1996-2002	93
26	Wind rose pattern for Alor Star, Year 1996	95
27	Wind rose pattern for Alor Star, Year 1997	96
28	Wind rose pattern for Alor Star, 1998	97
29	Wind rose pattern for Alor Star, Year 1999	98
30	Wind rose pattern for Alor Star, Year 2000	99
31	Wind rose pattern for Alor Star, Year 2001	100
32	Wind rose pattern for Alor Star, Year 2002	101
33	Soil Classes in MADA region	103
34	Soil Series in MADA region	104
35	Open top chambers constructed in the study area	111
36	Plan view of chambers arrangements	112
37	Design of chambers 1, 2, 3 and 4	113
38	Experimental plot in Kg. Sg. Baru Tengah A	114
39	Sampling points for relative humidity, temperature and wind speed	118
40	Height and arrangements of sensors inside the OTCs	120
41	Light profile of chamber 1	135
42	Light profile of chamber 2	136
43	Light profile of chamber 3	136
44	Light profile of chamber 4	137
45	Comparisons of light transmission (I_c) between chambers utilizing Box and Whisker plot	138
46	Diurnal mean pattern of I_a and I_c	139
47	Plot of fitted model for I_c versus I_a	141

48	Plot of observed versus predicted for I_c versus I_a	141
49	Light distribution inside the chamber for three canopy levels	143
50	Box and Whisker plot for comparing the light intensity of three different canopy levels	144
51	Plot of fitted model for I_m versus I_o	146
52	Plot of observed versus predicted for I_m	146
53	Plot of fitted model for I_b versus I_o	148
54	Plot of observed versus predicted for I_b versus I_o	148
55	Box-and-Whisker plot for comparing RH of chambers and ambient condition	149
56	Comparisons of for mean RH_a and mean RH_c utilizing Box and Whisker plot	150
57	Comparison between T_a and T_c for 3 different days utilizing Box and Whisker plot	151
58	Ambient O ₃ concentration of the study area	154
59	Gas exchange measurement	155
60	Light response curve for MR219 rice plant in filtered chamber	156
61	Generalized light response curve for filtered MR219 plants	158
62	Light response curve for MR219 rice plant exposed to ambient ozone	159
63	Generalized light response curve for rice plant exposed to ambient ozone	160
64	Transpiration rate for rice plant inside the filtered chamber and rice plants exposed to ambient ozone versus PFD	161
65	Plot of transpiration for filtered MR219 plants versus PFD	163
66	Residual plot for transpiration of filtered plant versus PFD	163
67	Plot of fitted E_{NF} model versus PFD	165
68	Plot of residual for E_{NF} versus PFD	165
69	Graph of stomatal conductance rates for filtered MR219 plant and MR219 plant exposed to ambient ozone	166

70	Plot of fitted g_{sF} model versus PFD	168
71	Plot of residual for g_{sF} versus PFD	168
72	Fitted model of g_{sNF} versus PFD	170
73	Plot of residual for g_{sNF} versus PFD	170
74	Graph of LAI versus days	171
75	Fitted model for LAI versus DAP	173
76	Plot of observed versus predicted for LAI	173
77	Plot of residual for LAI versus DAP	174
78	Graph of ln I/I _o versus LAI	175
79	Fitted model for $\ln I/I_o$ versus LAI	176
80	Plot of observed versus predicted for $\ln I/I_o$	177
81	Daily <i>I_{net}</i> of MR219 Canopy	178
82	Gross Assimilation Rate for Filtered Canopy	179
83	Gross Assimilation Rate for MR-219 Canopy Exposed to Ambient Ozone	180
84	Fitted model for DW_F versus DAP	184
85	Plot of cumulative percent versus DAP for DW_F	184
86	Plot of observed versus predicted for DW_F	185
87	Fitted model for DW_{3007} versus DAP	186
88	Plot of cumulative percent for DW_{3007}	187
89	Plot of observed versus predicted for DW ₃₀₀₇	187
90	Fitted model for DW ₁₀₇₆₅ versus DAP	189
91	Plot of cumulative percent for DW ₁₀₇₆₅	189
92	Plot of observed versus predicted for DW ₁₀₇₆₅	190
93	Fitted model for DW ₁₁₄₉₄ versus DAP	191

94	Plot of cumulative percent for DW ₁₁₄₉₄	192
95	Plot of observed versus predicted for $DW_{1/494}$	192
96	Fitted model for DW ₁₄₆₉₂ versus DAP	194
97	Plot of cumulative percent for DW14692	194
98	Plot of observed versus predicted for DW14692	195
99	Fitted model for DW ₁₅₄₆₁ versus DAP	196
100	Plot of cumulative percent for DW ₁₅₄₆₁	197
101	Plot of observed versus predicted for DW ₁₅₄₆₁	197
102	Relative Weight of Total Biomass from 6 Different AOT40 Treatments	199
103	Box and Whisker Plot for DWF_T from 6 Different AOT40 Treatments	200
104	Fitted model for relative yield loss of DWF_T versus AOT 40	202
105	Plot of observed versus predicted for relative yield loss of DWF_T	203
106	Plot of residual for relative DWF_T of MR-219 cultivar	203
107	Root dry weight of MR-219 plant exposed to 6 AOT 40 concentration	204
108	Fitted model of relative root weight of MR-219 rice cultivar against AOT40	207
109	Graph of observed versus predicted for relative DWF_{R} of MR-219 rice cultivar plant	208
110	Plot of residual for relative DWF_R of MR-219 rice cultivar plant versus AOT40	208
111	Leaf weight of MR219 cultivar exposed to 6 AOT40 treatments	209
112	Weight of tillers for MR219 cultivar exposed to 6 different AOT40 treatments	210
113	Box and Whisker plot of MR-219 cultivar tillers weight subjected to 6 AOT40 treatments	211
114	Grain weight of MR-219 rice cultivar plant exposed to six different ambient AOT40 at final harvesting	212
115	Scatter-plot of MR-219 rice cultivar plant grain weight subjected to six AOT40 treatments	213

116	Plot of Box and Whisker for grain weight of MR-219 subjected to different AOT40 exposures	214
117	Fitted model for grain weight of MR-219 rice cultivar (DWF _G) versus AOT40 concentration	216
118	Observed versus predicted plot for grain weight of MR-219 rice cultivar plant versus AOT40 concentration	216
119	Generalized plot of stomatal conductance for MR-219 plant	222
120	Generalized plot of E_F and E_{NF} for MR-219 plant	223
121	Growth function of MR219 rice cultivar exposed to different AOT40 concentrations	227
122	Relative maximum growth rate versus ambient ozone	231
123	DWF _T of MR-219 rice plant function to ozone	233
124	DWF _R of MR-219 rice cultivar function to AOT40	233
125	MR-219 rice cultivar grain weight function to AOT40	234

LIST OF ABBREVIATION

*	-	Multiply
α	-	Light utilization efficiency
3	-	Initial light use efficiency
θ	-	Convexity
A_{\max}	-	Maximum assimilation rate
AFO	-	Area Farmer Organization
ANOVA	-	Analysis of variance
AOT40	-	Accumulative O_3 concentration above a threshold of 40 part per billion
API	-	Air Pollution Index
°C	-	Degree Celsius
СО	-	Carbon monoxide
CO ₂	-	Carbon dioxide
DAP	-	Days after planting
DOE	-	Department of Environment
DRIS	-	Diagnosis and Recommendation Integrated System
DW	-	Dry weight of MR219 rice plant
Ε	-	Transpiration
EQA	-	Environmental Quality Act
f	-	Function of
G s	-	Stomatal conductance
H ₂ O	-	Water
k	-	Extinction coefficient
LAI	-	Leaf area index
MADA	-	Muda Development Authority
MAQI	-	Malaysian Air Quality Index

