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The split population model is a flexible way of extending the standard survival analytical 

methods to failure time data in which susceptibles and long-term survivors coexist. 

Susceptibles would develop the event with certainty if complete follow-up were 

possible, but the long-term survivors would never experience the event. 

A study was conducted to allow the effects of covariates on the probability that an 

individual is immune, and the immune probability vary from individual to individual. In 

effect, we are associating with each individual a distinct probability of being immune, 

which depends on the covariate information specific to that individual. And then fitted a 

few models using the maximum likelihood estimation to determine whether the 

covariates are significant or not. Several popular distributions on the survival data 

analysis as endorsed by graphical techniques were used. 

We applied the split exponential and the split Weibull models together with deviance 

test, a parametric test for the presence of immunes, and a test for outlier, to test for 



sufficient follow-up in the samples where there may or may not be immunes presences. 

We presented the probability of eventual immune for the ith individual as the logit 

model and logistic model. We will work with two data sets, firstly a Clinical Trial in the 

Treatment of Carcinoma of the Oropharynx and secondly Stanford Heart Transplant 

data. 

The results from the data analyses for a Clinical Trial in the Treatment of Carcinoma of 

the Oropharynx data show that the simple exponential model produces a fit not 

significantly worse than the simple Weibull model and the simple split Weibull model 

no better than the simple split exponential model, also shown that no evidence of 

immune population and all covariates are not significant. 

The results from the data analyses for Stanford Heart Transplant data show that the 

simple Weibull model is significantly better than the simple exponential model, and the 

simple split Weibull model is better than the simple split exponential model. We have 

calculated the maximum log-likelihood function value for both the logit exponential and 

logistic exponential models. They are exactly similar for both the Clinical Trial in the 

Treatment of Carcinoma of the Oropharynx and Stanford Heart Transplant data. So, we 

suggest that both the logit exponential and logistic exponential models are equally 

superior. 
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Model populasi terpisah merupakan kaedah perluasan yang anjal dalam kaedah 

analisis hayat kepada data masa gaga1 dimana wujud dua kelompok individu iaitu 

peka dan kebal. Individu yang peka iaitu individu yang mengalami peristiwa ke atas 

kajian yang dibuat, manakala individu yang kebal iaitu individu yang tak pernah 

mengalami peristiwa ke atas kajian yang dibuat. 

Suatu kajian telah dibuat kepada kesan kovariat keatas kebarangkalian suatu individu 

kebal dan kebarangkalian kebal berubah dari individu ke individu. Kami 

menggabungkan dengan setiap individu kebarangkalian wujudnya kebal, yang 

bergantung kepada maklurnat kovariat khusus pada individu tersebut. Dan kemudian 

menggunakan beberapa model menggunakan anggaran kebolehjadian maksimum 

untuk menentukan sama ada kovariat bererti atau tidak. Beberapa taburan yang 

popular dalam analisis data hayat disokong oleh kaedah gambar darjah telahpun 

digunakan. 

Kami telah menggunakan model terpisah eksponen dan model terpisah Weibull 

bersamaan dengan ujian sisihan, ujian parameter kepada wujudnya kebal, dan satu 



ujian kepada data terpencil, untuk menguji kepada tindakan susulan dalam sampel 

dimana wujud atau tidak wujud kebal. Kami telah membentangkan kebarangkalian 

kebal kepada setiap individu dalarn model logit dan model logistik. Kami 

menggunakan dua kumpulan data iaitu data "Clinical Trial in the Treatment of 

Carcinoma of the Oropharynx " dan data "Stanford Heart Transplant". 

Keputusan daripada analisis data Clinical Trial in the Treatment of Carcinoma of the 

Oropharynx menunjukkan bahawa model simpel eksponen menghasilkan signifikan 

yang tidak lebih buruk dari model simpel Weibull dan model terpisah simpel Weibull 

tidak lebih baik dari model terpisah simple eksponen, juga ditunjukkan bahawa tidak 

terbukti populasi kebal dan semua kovariat adalah tidak bererti. 

Keputusan daripada analisis data Stanford Heart Transplant pulak menunjukkan 

bahawa model simpel Weibull menghasilkan signifikan lebih baik dari model simpel 

eksponen dan model terpisah simpel Weibull adalah lebih baik dari model terpisah 

simple eksponen. Kami telah mengira nilai bagi fungsi kebolehjadian maksimum 

kepada model logit eksponen dan model logistik eksponen. Nilai tersebut adalah 

sama bagi data Clinical Trial in the Treatment of Carcinoma of the Oropharynx dan 

data Stanford Heart Transplant. Jadi, kami menunjukkan bahawa model logit dan 

logistik model adalah serupa. 
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CHAPTER 1 

m-TRODUCTION 

I .I Split Population Models 

In standard survival analysis, data come in the form of faiIure times that are 

possibly censored, aIong with covariate information on each individual. It is 

also assumed that if complete foIIow-up were possible for all individual, each 

would eventually experience the event. Sometimes however, the failure time 

data come from a population where a substantial proportion of the inhviduals 

does not experience the event at the end of the observation period. In some 

situations, there is reason to believe that some of these survivors are actually 

"cured or "long-term survivors" the sense that even after an extended follow- 

up, no further events are observed on these individuals. Long-term survivors 

are those who are not subject to the event of interest. For example, in a medical 

study involving patients with a fatal disease, the patients would be expected to 

die of the disease sooner or later, and all deaths could be observed if the 

patients had been followed long enough. However, when considering endpoints 

other than death, the assumption may not be sustainable if long-term survivor 

are present in population. In contrast, the remaining individuals are at the risk 

of developing the event and therefore, they are called susceptibles. Examples in 

which long-term survivors exist can be found in many different areas. 

In the fieId of radiation research, patients with tumors of the neck and head are 

frequently treated with radiation. The endpoint of particular interest is local 



recurrence of the tumor. It has been observed that only between 5% and 50% of 

patients will experience local recurrences (Taylor, 1995). It is extremely 

unlikely, if not impossible, that local recurrences will occur later than 5 years 

after treatment. Therefore, the patients without experience of local recurrences 

within 5 years afier treatment may be treated as long-term survivors. 

In criminology, a criminologist may be interested in the probability that an 

indwidual will not return to prison after being released. If recidwism is the 

event of interest, many individuals who are released from prison will not 

experience the event because one experience of prison is sufficient (Maller and 

Zhou, 1996). 

Examples can be found even in engineering reliability (Meeker, 1987). Usually, 

the proportion of defective electronic components from a production process is 

assessed using a life testing procedure. Electronic components will fail the test 

if they have manufacturing defects, which cannot be detected in a simple 

inspection. Only a small fraction of electronic components have such defects. If 

a component is free of the defects, the chance that it will fail under carefully 

controlled condtions will be virtually zero. 

The above examples suggest that long-term survivor exist in the populations 

under study. However, the long-term survivors can never be identified and as 

the result of thls, they are manifested as censored observations in the data. 

Except those long-term survivors who withdraw from the study early and are 



censored at the time of their withdrawal, the remaining long-term survivors will 

be censored at the end of the study. Their large censored survival times will 

usually make the Kaplan-Meier estimate of the survival function level off at the 

right extreme, a Kaplan-Meier survival curve that levels off or shows a long 

and stable plateau is deemed to provide empirical evidence of a cured fraction. 

The use of standard survival analysis for such data would be inappropriate 

since not all of the long-term survivors can be considered as censored 

observations from the same population as those that do experience the event 

(Pierce, Stewart, and Kopecky, 1979; Farewell, 1982). 

Split population models are also known as "cure model". The objective of the 

cure model is to study the survival Qstribution and cure rate of such a 

population. In general term, we have an endpoint or event that we are interested 

in such as death from a specific cause, disease recurrence, or some other type of 

failure. The failure time or survival time is the time to the occurrence of such 

an event. In an individual we are interested in whether the event can occur 

which we shall call incidence, and when it will occur (given that it can occur) 

which we shall call conditional latency or simply latency. A cure would 

correspond to an event-flee outcome, and the cure rate would be one minus the 

incidence probability. As in standard survival analysis, we also want to study 

the effect of covariates on the outcome. An individua17s covariates can affect 

the incidence probability (more or less probability) andor the latency (earlier or 

later occurrence) and the effect of the covariates may be different on these two 

aspects of the outcome. 



Split population models in the biometrics literature, i.e., part of the population 

is cured and will never experience the event, and have both a long history (e-g. 

Boag 1949; Berkson and Gage 1952) and widespread applications and 

extensions in recent years (e.g.Farewel1 1982; Aden 1988; Kuk and Chen 

1992). The intuition behind these models is that, while standard duration 

models require a proper Qstribution for the density which makes up the hazard 

(i.e., one which integrates to one; in other words, that all subjects in the study 

will eventually fail), split population models allow for a subpopulation which 

never experiences the event of interest. This is typically accomplished through 

a mixture of a standard hazard density and a point mass at zero (Maller and 

Zhao 1996). That is, split population models estimate an additional parameter 

(or parameters) for the probability of eventual failure, which can be less than 

one for some portion of the data. In contrast, standard event history models 

assume that eventually all observations will fail, a strong and often unrealistic 

assumption. 

Suppose that F, (t) is the usual cumulative Qstribution function for recidivists 

only, and w is the probability of being subject to reconviction, h c h  is also 

usually known as the eventual recidwism rate. The probability of being 

immune is (1- w ), which is sometimes described as the rate of termination. This 

second group of immune individuals will never reoffend. Therefore their 

survival times are infinite (with probability one) and so their assow#& 
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cumulative distribution function is identically zero, for all finite t > 0. If we 

now define Fs(t)=o FR(t), as the new cumulative distribution function of 

failure for the split-population, then this is an improper distribution, in the 

sense that, for 0 < o < 1, Fs(ao)= o< 1. 

Let X be an indicative variable, such that 

yi= { 0 ; ith individual will never fail (immunity) 
1 ;  ith individual will eventually fail (recrdivist) 

and follows the discrete probability distribution 

Pr[yi=l]=o 

and 

For any individual belonging to the group of recidivists, we define the density 

function of eventual failure as FR (t) with corresponding survival function 

S d ) ,  while for individual belonging to the other (immune) group, the density 

function of failure is identically zero and the survival function is identically 

one, for all finite time t. 

Suppose the conditional probability density function for those who will 

eventually fail (recidivists) is 

f(tIY = I ) =  fR(t)= ~ ; ( t )  



wherever FR ( t )  is differentiable. The unconditional probability density function 

of the failure time is given by 

f , ( t )= f(tI Y =O)Pr[Y =0]+ f ( t  IY =l)Pr[Y = 1 ]  

Similarly, the survival function for the recidivist group is defined as 

= J fR ( u ) ~ u  = 1 - FR (t). 

The unconditional survival time is then defined for the split population as 

which corresponds to the probability of being a long-term survivor plus the 

probability of being a recidivist who reoffends at some time beyond t. In this 

case, 

Fs (0 = OF' 0)  

is again an improper distribution function for w < 1. The likelihood fkxtim 

can then be written as 



and the log-likelihood function becomes 

where Si is an indicator of the censoring status of observation ti, and 0 is 

vector of all unknown parameters for f, (t) and S, (t) . The existence of these 

two types of release, one type that simply does not reoffend and another that 

eventually fails according to some distribution, leads to what may be described 

as simple split-population model. When we modify both fR (t) andSR (t) to 

include covariate effects, f, (t I z) and S, (t I z) respectively, then these will be 

referred to as split-population models. 

Several authors have fitted the model in Fs (t) = w FR (t) to recidivist data 

through various parametric forms of FR (t) . Schmidt and Witte (1988) consider 

a great number of possible parameterisations to model their North Carolina 

datasets, includmg the log-normal, the exponential and the Weibull 

distributions. They also consider "standard parametric survival model, i.e. 

when all individuals are assumed to be susceptibles (w =l). They find that all 

split-population models fit their data far better than the standard model. Rhodes 

(1989) and Farewell (1986), however, emphasize that, to use the split- 

population model, the dataset should be extensive enough to distinguish 

between desisters and persisters. 


