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Abstract

In this article, in the form of the heat conduction equation with memory-dependent-derivative
(MDD), a new model in magneto-thermoelasticity was developed with modified Ohm’s law. To
obtain the solutions, normal mode analysis is used. The obtained solution is then exposed to time-
dependent thermal shock and stress-free boundary conditions. The effect of the modified Ohm’s
law coefficient, time-delay, and different kernel functions under the magnetic field effect on differ-
ent quantities are evaluated and observed graphically on all field variables.

Keywords: Generalized thermoelasticity; Time-delay; Magneto-thermoelasticity; Memory-
dependent derivative; Modified Ohm’s law; Kernel function

MSC 2010 No.: 74F05, 74F15

1. Introduction

The interaction of temperature, strain, and magnetic field deals with magneto-thermoelasticity. The
concept for generalized thermoelasticity was introduced by Shulman and Lord (1967) known as the
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504 L. C. Bawankar and G. D. Kedar

“LS model.” The elastic term is coupled with temperature in this model and introduced relaxation
time for the finite speed of propagation of the heatwave. Several generalizations to thermoelasticity
theory can be found in literature such as Green and Naghdi (1993), Chandrasekharaiah (1986),
Hetnarski (1986), and Green and Lindsay (1972). Lata and Kaur (2019) deal with the study of
the transversely isotropic thermoelastic beam in the context of Green-Naghdi’s theory of thermo-
elasticity. The Laplace Transform technique has been used to find expressions for displacement
components, lateral thermal moment, deflection, and axial stress. Kumar and Devi (2017) study
the thermoelastic beam in modified couple stress theory. It uses the Euler-Bernoulli beam theory
to model the vibrations in a homogeneous isotropic thin beam. The Laplace transform technique is
applied to solve the system of equations.

The first fractional order generalized thermoelasticity method was formulated by Povstenko
(2004), which interpolates classical thermoelasticity, and generalized thermoelasticity by “Green-
Naghdi (GN).” Some researchers (Youssef (2010), El-Sayed and Sherief (2010), Ezzat et al.
(2011)) developed different problems of fractional thermoelasticity based on the ‘LS model’. Dual
and three-phase-lag (DPL, TPL) problems of thermoelasticity were discussed by Ezzat et al. (2012)
and El-Karamany and Ezzat (2011) using fractional calculus. Yu et al. (2013a), by using a frac-
tional calculus in all models “LS, GL, and DPL,” introduced unified fractional order generalized
electro-magneto and micro-modeling thermoelasticity. Abbas (2014) developed the model of frac-
tional thermoelasticity theory based on the “GN model.”

Some researchers (Nayfeh and Nemat-Nasser (1972) and Agarwal (1979)), based on their appli-
cations in many areas such as geophysics and medical sciences, have investigated the effect of
magnetic fields on elastic media due to thermal loading. Paria (1966) discussed the effect of the
magnetic field in different problems of elasticity and thermoelasticity. Ezzat and Othman (2019)
studied a two-dimensional generalized magneto-thermoelastic model under a state-space approach
in a perfect conductivity medium. Othman and Song (2009) discussed the two-dimensional ther-
mal shock problem under three different theories with the effect of rotation. The effect of rotation
on magneto-thermoelastic waves without energy dissipation was discussed by Othman and Song
(2006). The generalized half-space problem with one relaxation time subjected to thermal shock in
presence of electromagnetic field for thermoelastic plane waves was discussed by Othman (2005).
Yu et al. (2013b) and Ezzat (2011) studied different problems of generalized fractional magneto-
thermoelasticity.

In thermoelasticity theory, the use of the temporal and spatial fractional calculus incorporates mem-
ory dependence and nonlocality. In generalized fractional thermoelasticity, have no accepted com-
mon agreement and require further study. Recently instead of fractional calculus instant rate change
depends on its previous change called memory response come into the picture due to its exhaustive
force. The influence of MDD is because of its superiority due to the respective kernel function and
memory scale parameter with much practical application. In fractional derivative, memory func-
tion called as kernel function but lagging in the integer order calculus. The order of the fractional
derivative represents the memory index. The memory-dependent derivative is specified in a [t−τ, t]
interval and integral of the kernel function and common derivative. This shows memory response
better than fractional one. In MDD, the function in real-time depends on its past time. Li and Wang
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(2011) proposed that a memory-dependent derivative is better than a fractional one to represent
a memory effect on generalized thermoelasticity. Yu et al. (2014) developed an extension to LS
generalized thermoelasticity by using MDD and introduced modified LS theory with the rate of
heat flux as MDD.

In the form of heat conduction with MDD, a model of magneto-thermoelasticity theory has been
constructed by Ezzat and El-Karamany (2015). Magneto-thermoelastic responses in a perfectly
conducting thermoelastic solid half-space based on MDD, investigated by Atwa and Sarkar (2019).
In-plane wave, the reflection of memory response in generalized magneto-thermoelasticity theory
was studied by Sarkar et al. (2019a). The effect of reflection on thermoelastic waves with memory-
dependent heat transfer under isothermal stress-free boundary conditions studied by Sarkar et
al. (2019b). By using the memory-dependent derivative, Sarkar et al. (2018) studied the two-
dimensional magneto-thermoelastic phenomenon of generalized thermoelasticity for two temper-
atures. Siddhartha (2019) proposed the effect of the magnetic field on the three-phase lag model
of memory-dependent derivative in an orthotropic condition. Othman and Mondal (2019) prepared
a two-dimensional Lord-Shulman model of the generalized thermoelastic rotating medium due to
the effect of memory-dependent derivative.

The relation between current density and the temperature gradient term gives modified Ohm’s law.
Inclusion of temperature gradient term in modified Ohm’s law improves the strength of the current
at each point which is proportional to the gradient of electric potential. Due to this temperature
gradient, elastic deformation occurs. So this theory is useful where extremely high temperatures
are used such as nuclear devices, heat exchangers, boiler tubes, in the development of highly sen-
sitive magnetometer, electrical power engineering, plasma physics, etc. This flow proportional to
the gradient can be more readily tested by modern measurement methods. Abd Elall and Ezzat
(2009) explained the effect of modified Ohm’s law in the two-dimensional problem of half-space
with thermal shock. Sarkar (2014) introduced two-dimensional generalized magneto-thermoelastic
problems with modified Ohm’s law and discussed the effect of the coefficient of modified Ohm’s
law on all field variables. We motivated and extend the work of Abd Elall and Ezzat (2009) and
Sarkar (2014) by introducing MDD and studied its effects on field variables. This study will be
useful to the researchers working on memory response problems of thermoelastic materials under
the influence of temperature gradient and magnetic field.

The purpose of this work is to study the influence of modified Ohm’s law on two-dimensional
magneto-thermoelastic problem with the memory-dependent derivative. Lord Shulman’s model
of thermoelasticity is considered with the heat equation involves a memory-dependent derivative
on a slipping time interval. The novelty of this work is the usage of modified Ohm’s law which
relates with current density and temperature gradient terms due to the memory-response. By using
the memory-dependent derivative the magneto-thermoelastic problem is analyzed in presence of
modified Ohm’s law. The coupled effect of temperature and the current density changes the nature
of displacement and stresses in presence of memory response. Normal mode analysis is used to find
the solutions. Complete and comprehensive analysis, of the results with modified Ohm’s law and
time delay parameter due to memory response, has been presented graphically. Since the numerical
analysis has been carried out due to the presence of the memory-dependent derivative, under the
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effects of the magnetic field upon temperature, displacement, stress components, and presented
graphically.

Nomenclature

αt Linear thermal expansion coefficient τ Delay time parameter
B Magnetic field induction vector θ Thermodynamic temperature
D Electric displacement vector CE Specific heat at constant strain
E Induced electric field vector e Cubical dilatation
H Magnetic Intensity vector H0 Componenent of initial magnetic field
h Induced magnetic field vector vector
J Current density vector K Thermal Conductivity
δij Kronecker delta function m0 Magnetic Permeability
ε0 Electric Permeability T Absolute temperature
λ, µ Lame’s Constant t Time
ρ Density T0 Reference temperature chosen so that
σ0 Electric Conductivity | (T − T0)/T0 |<< 1
αt Linear thermal expansion coefficient τ Delay time parameter
σij Stress tensor components u, v Components of displacement

2. Governing Equations

In the generalized thermoelasticity theory, we consider the two-dimensional problem of homo-
geneous, isotropic, electrically, and thermally conducting half-space with memory-response. The
magnetic field operates parallel to the bounding plane with constant strength H = (0; 0; H0) and is
applied to the medium that generates induced electric field E, and induced magnetic-field h which
represent in Figure 1. The governing Maxwell’s equation for a homogeneous conducting solid are
as follows (see Paria (1966)),

J + Ḋ = rot h, (1)

−Ḃ = rot E, (2)

div B = div D = 0, (3)

B = m0(h + H0), D = ε0 E. (4)

We consider an equation that relates current density and temperature gradient known as modified
Ohm’s law (see Abd Elall and Ezzat (2009)),

J + π0∇T = σ0(E + m0u̇×H), (5)

4
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where π0 is the modified Ohm’s law coefficient.

Figure 1. The geometry of the problem

The temperature deviation with the reference temperature is considered to be infinitesimal in the
coupled and generalized thermoelasticity theory. The stress-strain relationship equation is given by
Hooke-Duhamel-Neumann law (see Noda (1993)).

The equation of motion is:

ρüi = Fi + σij,j, (6)

where Fi = (J×B)i is the Lorentz force.

The heat conduction equation with MDD in absence of heat sources is:

K∇2T = (ρCEṪ + γT0ė) +

∫ t

t−τ
K(t− ζ)

(
ρCE

∂2T

∂ζ2
+ γT0

∂2e

∂ζ2

)
dζ, (7)

where superposed dot denotes the derivative with respect to time t.

3. Problem Formulation

We consider the magneto-thermoelastic half-space whose state depends on the space variable x1, x2
and time t. The components of displacement are ux1

= u(x1, x2, t), ux2
= v(x1, x2, t), ux3

=
0. The constant magnetic field produces the medium in absence of external magnetic field. The
components of strain are given by,

ex1x2
=

1

2
(u,x2

+ v,x1
), ex1x3

= ex2x3
= ex3x3

= 0. (8)

From the equation of stress, the stress components are:

σx1x1
= (2µ+ λ) u,x1

+ λ v,x2
− γ (T − T0), (9)

σx2x2
= (2µ+ λ) v,x2

+ λ u,x1
− γ (T − T0), (10)

σx3x3
= λ (u,x1

+ v,x2
)− γ (T − T0), (11)
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σx1x2
= µ (u,x2

+ v,x1
). (12)

The elements of the magnetic field H are:

Hx1
= 0, Hx2

= 0, Hx3
= H0 + h(x1, x2, t). (13)

The vectors of displacement and the magnetic intensity are normal to the electric strength vector,
so the components are:

Ex1
= E1, Ex2

= E2, Ex3
= 0. (14)

The current density components of vector J which is parallel to the intensity of electric vector E
are given by

Jx1
= J1, Jx2

= J2, Jx3
= 0. (15)

From Equation (5) the components of current density after linearization become:

J1 + π0 T,x1
= σ0(E1 + m0 H0 v̇), (16)

J2 + π0 T,x2
= σ0(E2 − m0 H0 u̇). (17)

We obtain the following equations using Equations (16) and (17) in Equation (1). We get:

h,x1
= −σ0[E2 −m0 H0 u̇]− π0 T,x2

− ε0 Ė2, (18)

h,x2
= σ0[E1 +m0 H0 v̇]− π0 T,x1

+ ε0 Ė1. (19)

From Equations (1) to (4), we get the relation as follows:

m0 ḣ = (E1),x2
− (E2),x1

. (20)

The component of Lorentz force is obtained from Equations (16) and (17) as:

Fx1
+ π0 T,x2

= m0 H0 σ0 (E2 − m0 H0 u̇), (21)

Fx2
+ π0 T,x1

= −m0 H0 σ0 (E1 + m0 H0 v̇), (22)

Fx3
= 0. (23)

Using Equations (9) to (12) and Equations (21) to (23) in Equation (6), we can write:

(µ+ λ) e,x1
− γ T,x1

+ µ∇2u +m0 H0 σ0 (E2 − m0 H0 u̇) = ρ ü+ π0 T,x2
, (24)

(µ+ λ) e,x2
− γ T,x2

+ µ∇2v −m0 H0 σ0 (E1 + m0 H0 v̇) = ρ v̈ − π0 T,x1
. (25)

We introduce the following non-dimensional variables as:

(x�1, x
�
2) = c1 η (x1, x2), (t�, τ �) = c21 η (t, τ) , (u�, v�) = c1 η (u, v), θ� =

θ

T0
,

σ�
ij =

σij
µ
, h� =

η h

m0 H0 σ0
, (E�

1 , E
�
2) =

η (E1, E2)

σ0 m2
0 H0 c1

, (J�
1 , J

�
2 ) =

η (J1, J2)

σ2
0 m

2
0 H0 c1

,

π�
0 =

m0 H0 π0
γ

, θ = T − T0, η =
ρCE
K

, c21 =
λ+ 2µ

ρ
.

(26)
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Using Equation (26) in Equations (24) and (25), we obtain the dimensionless equations as:

(β2
2 − 1)e,x1

+∇2u− β2
2θ,x1

+ β2
2αβ1(β1E2 − u̇) = β2

2 ü+ π0θ,x2
, (27)

(β2
2 − 1)e,x2

+∇2v − β2
2θ,x2

− β2
2αβ1(β1E1 + v̇) = β2

2 v̈ − π0θ,x1
. (28)

This first-order memory-dependent derivative has the form:

D1
τf(t) =

1

τ

∫ t

t−τ
f

′
(ζ)K(t− ζ)dζ, (29)

where τ stands for memory size, Dτ is a non-local operator and integration is a local operator.
The kernel function can be selected to be suitable for the problem, and the function should be
monotonically increased within the [t− τ, t] interval.

The non-dimensional heat conduction can be reduced as:

∇2θ = (1 + τDτ )(θ̇ + ε1ė), (30)

where ε1 is the parameter for dimensionless thermoelastic coupling, ∇2 =

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
, and the

kernel function is K(t− ζ). The kernel function can freely be selected as:

K(t− ζ) = 1− 2s(t− ζ)

τ
+
r2(t− ζ)2

τ 2
=


1, if r = s = 0,

1− (t−ζ)
τ
, if r = 0, s = 1/2,

1− (t− ζ), if r = 0, s = τ/2,

(1− (t−ζ)
τ

)2, if r = s = 1,

(31)

where r, and s are constants.

From Equation (26), Equations (18) and (19) become:

h,x1
− π0 θ,x2

= −β1E2 − ε2 Ė2 + u̇, (32)

h,x2
+ π0 θ,x1

= β1E1 + ε2 Ė1 + v̇, (33)

ḣ = (E1),x2
− (E2),x1

. (34)

The stress components in non-dimensionless form by using Equation (26) to Equations (9) to (12)
are:

σx1x1
= (β2

2 − 2) e+ 2 u,x1
− β2

2 θ, (35)

σx2x2
= (β2

2 − 2) e+ 2 v,x2
− β2

2 θ, (36)

σx3x3
= (β2

2 − 2) e− β2
2 θ, (37)

σx1x2
= (u,x2

+ v,x1
), (38)

where constants are defined (see Appendix B).

We obtain by differentiating Equation (24) with x1, and Equation (25) with x2 and then adding:

∇2e− β1αė− ë−∇2θ − β2
1αḣ = 0. (39)
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We obtain by differentiating Equation (32) with x1, and Equation (33) to x2 and then adding:

∇2h− β1ḣ− ε2ḧ− ė = 0. (40)

4. Problem Solution

The solution to the problem can be preferred by using the normal mode analysis in the following
form (see Sarkar (2014)),

[θ, e, u, v, h, E1, E2, σij][x1, x2, t] = [θ?, e?, u?, v?, h?, E?
1 , E

?
2 , σ

?
ij](x1)e

($t+ia1x2), (41)

where the angular-frequency is $, i =
√
−1, and the wave number a1 is in the direction of x2.

Using Equation (41) in Equations (30), (39), and (40), we get:

(D2 − a21 − d1)θ? = d2e
?, (42)

(D2 − a21 − β1$ − ε2$2)h? = $e?, (43)

(D2 − a21 − β1α$ −$2)e? = (D2 − a21)θ? + β2
1α$h

?. (44)

where d1 and d2 are constants (see Appendix B).

Eliminating θ? and h? from Equations (42) to (44), we get the following six order PDE:

(D6 −BD2 + AD4 − C)e?(x1) = 0. (45)

Similarly, we get:

(D6 − AD4 +BD2 − C)(θ?, h?)(x1) = 0. (46)

The roots of Equation (45) are:

(D2 −m2
1)(D

2 −m2
2)(D

2 −m2
3)e

?(x1) = 0. (47)

The characteristic equation has roots m2
i given by

m6 − Am4 +Bm2 − C = 0. (48)

The roots of Equation (48) are obtained (see Appendix B).

The solution of Equation (45) is given by

e?(x1) =
3∑

n=1

Rn(a1, $)e−mnx1 . (49)

Similarly, the solution of Equation (46) is obtained as:

θ?(x1) =
3∑

n=1

R
′

n(a1, $)e−mnx1 , (50)

h?(x1) =
3∑

n=1

R
′′

n(a1, $)e−mnx1 , (51)
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where Rn(a1, $), R
′

n(a1, $), R
′′

n(a1, $) are some parameters depending on a1 and $.

The solution of Equations (50) to (51) can be written as:

θ?(x1) =
3∑

n=1

d2
(m2

n − a21 − d1)
Rn(a1, $)e−mnx1 , (52)

h?(x1) =
3∑

n=1

$

(m2
n − a21 − β1$ − ε2$2)

Rn(a1, $)e−mnx1 . (53)

To get the solution for displacement u?(x1), we use Equation (41) in Equation (27) satisfied as:

u?(x1) = Ge−kx1 − A
3∑

n=1

mn

(m2
n − k2)

Rn(a1, $)e−mnx1 , (54)

where depending on a1, and $, G = G(a1, $) is a certain parameter.

Substituting Equation (41) into Equation (28), we obtain displacement component as:

v?(x1) =
i

a

[
kGe−kx1 + A

3∑
n=1

(1−m2
nA)

(m2
n − k2)

Rn(a1, $)e−mnx1

]
. (55)

Using Equations (41), (52), (53), and (55) into Equation (33), we deduce that:

E?
1(x1) =

1

β1 + ε2$

{
ia1$Rne

−mnx1

(m2
n − a21 − β1$ − ε2$2)

+
i$

a1

[
kGe−kx1 + A

3∑
n=1

(1−m2
nA)

(m2
n − k2)

Rn(a1, $)e−mnx1

]
− π0mnd2

(m2
n − a21 − d1)

Rn(a1, $)e−mnx1

}
.

(56)

Substituting Equations (41), (52), (53), and (55) into Equation (32), we get:

E?
2(x1) =

$

β1 + ε2$

{
Ge−kx1 +mn

[
(1− A)m2

n + [A(a21 + β1$ + ε2$
2)− k2]

(m2
n − k2)(m2

n − a21 − β1$ − ε2$2)

]
+

ia1π0d2
$(m2

n − a21 − d1)

}
Rn(a1, $)e−mnx1 .

(57)

Similarly using Equations (41), (49), (52), (54), and (55) into Equations (35), (36), (37), and (38),
the stress components are:

σ?x1x1
= −2kGe−kx1 +

3∑
n=1

[
A

2m2
n

(m2
n − k2)

+ (β2
2 − 2)− β2

2d2
(m2

n − a21 − d1)

]
Rn($)e−mnx1 , (58)

σ?x2x2
= 2kGe−kx1 +

3∑
n=1

[
A
β2
2(m2

n − a21 − d1 − d2)
(m2

n − a21 − d1)
+

2[1−m2
n(1 + A) + k2]

(m2
n − k2)

]
Rn($)e−mnx1 ,

(59)

σ?x3x3
=

3∑
n=1

[
β2
2(m2

n − a21 − d1 − d2)− 2(m2
n − a21 − d1)

(m2
n − a21 − d1)

]
Rn($)e−mnx1 , (60)
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σ?x1x2
= ia1

[
k2 + a21
a21

Ge−kx1 −
3∑

n=1

A
(a21 +m2

n)A− 1

a21(m
2
n − k2)

]
Rn($)e−mnx1 . (61)

Now, taking into account the free space, electric and magnetic-field intensities denoted by
h1, E10, E20, respectively.

The non-dimensional field equations that these variables satisfy are given by

(h1),x2
= ε2(Ė10), (62)

(h1),x1
= −ε2(Ė20). (63)

Equation (20) becomes:

ḣ1 = (E10),x2
− (E20),x1

, (64)

where h1, E10, and E20 is decomposed as follows:

[h1, E10, E20] = [h?1, E
?
10, E

?
20](x1)e

($t+ia1x2). (65)

Using Equations (62) and (63) to Equation (65), and then solving the solution obtained for x1 < 0
as:

h?1 = Q(a1, $)e(n1x1), (66)

E?
10 =

(
ia1
ε2 $

)
Q(a1, $) e(n1x1), (67)

E?
20 =

(
−n
ε2 $

)
Q(a1, $) e(n1x1), (68)

where Q(a1, $) is the parameter depends on a1, $ , and n1 =
√
a21 + ε2$2.

5. Application

To evaluate the Ri, G, and Q parameters, the following boundary condition must be considered at
x1 = 0. In non-dimensional form, and half-space at x1 = 0, the boundary condition is taken into
account.

(1) Thermal Boundary condition: The x1 = 0 surface is exposed in the form of time-dependent
thermal shock,

θ(0, x2, t) = f(x2, t). (69)

(2) Mechaincal Boundary condition: The half-space surface is free of traction,

σx1x1
(0, x2, t) = σx2x2

(0, x2, t) = σx3x3
(0, x2, t) = 0. (70)

(3) Electric Boundary condition: The vector component of the electrical-field is continuous over
the half space x1 = 0,

E1(0, x2, t) = E10(0, x2, t), E2(0, x2, t) = E20(0, x2, t). (71)
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(4) Magnetic Boundary Condition: The magnetic-field strength vector is continuous across half
space for x1 = 0,

h(0, x2, t) = h1(0, x2, t). (72)

Using Equation (41), and obtained solutions in Equations (69) to (72), we get:
3∑

n=1

d2Ri(a1, $)

(m2
n − a21 − d1)

Gn($) = f ?(a1, $), (73)

−2kG+
3∑

n=1

[
2Am2

n

m2
n − k2

+ (β2
2 − 2)− β2

2d2
(m2

n − a21 − d1)

]
Ri(a1, $) = 0, (74)

ia1

3∑
n=1

[
m2
n + a21
a21

G(a1, $)− [(a21 +m2
n)A− 1]

a21(m
2
n − k2)

mnRi(a1, $)

]
= 0, (75)

$

(β1 + ε2$)

3∑
n=1

{
G(a1, $) +mn

[
(1− A1)m

2
n + [A1(a

2
1 + β1$ + ε2$

2)− k2]
(m2

n − k2)(m2
n − a21 − β1$ − ε2$2)

]
+

ia1π0d2
$(m2

n − a21 − d1)

}
Ri(a1, $) =

−n1

ε2$
Q(a1, $),

(76)

3∑
n=1

$

(m2
n − a21 − β1$ − ε2$2)

Ri(a1, $) = Q(a1, $). (77)

6. Discussions and Numerical Results

Copper material, and $ = $0 + iξ, are chosen for the numerical calculations, but we can take
$ = $0 (real) for small values of “t.” The numerical values of constant are referred as follows (see
Sarkar (2014)),

ε1 = 0.0168, ε2 = 1.921× 10−10, β1 = 0.008, β2 = 2.01, α = 0.249, θ0 = 1, τ = 0.02.

Values of some constants can be chosen as:

L = 4, a1 = 2, $0 = 3, ς = 1.

The f(x2, t) function applied to the boundary surface can be taken as:

f(x2, t) = θ0 H(|L| − x2) e−ςt,

where θ0 is constant, the displaced Heaviside unit step function H(|L| −x2) indicates that the heat
along the x2 axis has a 2L width to sustain a θ0 temperature while it has no temperature on the rest
of the surface.
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By using Equation (41) to f(x2, t) we obtain:

f ∗(a1, $) =

√
2θ0 sin(a1L) (1 + ia1πδ(a1))√

π a1($ + ς)
.

The numerical computations are done and the results presented in graphical form. The graphs are
seen with t = 0.1, and x2 = 0.1 for a space value and time. Kernel function can be chosen for

the variations with time-delay parameter as K(t, ζ) =

(
1 − t−ζ

τ

)2

, r = s = 1 for all the figures.

As well as suitable kernel can be consider for variations with respect to modified Ohm’s law and
time delay parameter as K(t, ζ) = 1 − (t − ζ)/τ i.e. r = 0, s = 0.5, and for the variation with
time can be chosen as K(t, ζ) = 1 − (t − ζ), r = 0, s = τ/2 in all figures. Figure 2 illustrates
the temperature distribution for the various values of the modified Ohm’s law coefficient and time
delay parameter. The values of the coefficient of modified Ohms’ law is taken as π0 = 5, 10, and
time delay equal to τ = 0.02, 0.002. Figure 3 describes a distribution of temperature with the
different kernel functions. Figure 4 shows the distribution for displacement with values of time
delay, and coefficient of modified Ohm’s law.

The effects of various kernel functions on displacement are expressed by Figure 5. Here we con-
sider the kernel K(t, ζ) = 1, i.e., r = s = 0 given by dashed and dotted line, K(t, ζ) =
1− (t− ζ)/τ , i.e., r = 0, s = 0.5 represented by dashed line. Dotted line represented by K(t, ζ) =

1 − (t − ζ), i.e., r = 0, s = τ/2. Solid line shows for the case of kernel K(t, ζ) =

(
1 − t−ζ

τ

)2

,

i.e., r = s = 1. Displacement has significant change, i.e., increases initially and then decreases
slowly and formed a peak. The variation in the stress of the different time-delay parameter values
that correspond to the modified Ohm’s law parameter is seen in Figure 6 and 8. Figures 7 and 9
shows the stress distribution for different kernel function. Stress distribution σx1x1

, has maximum
value in the beginning but changes slowly, i.e. tensile nature but σx2x2

is compressing in nature.

Figure 10 specifies the variation of temperature with different time-delay parameter
τ = 0.02, 0.002, and 0.0002. Displacement shift for different time-delay values τ =
0.02, 0.002, and 0.0002 is indicated in Figure 11. Variation of stress for several values of time
delay parameter is present in Figures 12 and 13. Figure 14 is deviation of temperature for various
time values t = 0.05, 0.1, and 0.2. A significant difference between the time delay parameter, the
modified ohm’s law coefficient, and the time values are observed. In all the figures, the temperature
rises and the peak developed at the various magnitude and then gradually decreases over time. The
displacement variation with many time value t = 0.05, 0.1, and 0.2 shows in Figure 15. The stress
distribution for the various time values is indicated in Figures 16 and 17.

The three-dimension representation of the temperature, stress, magnetic field and displacement
ranges from x1to x2 shows in Figures 18 to 21. Different values for the modified Ohm’s law coef-
ficient are seen in the graph. Values of the coefficient of modified Ohm’s law are taken as π0 = 5.
The significant change is examined in all the field variables. All figures showed, that in an enclosed
space region the field variables were obtained and disappear outside of the region. The waves are
propagated with finite speed. The boundary status indicates that the response varies over time in
a small area of space. Thus the main shift is noted in the use of MDD with modified Ohm’s law
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in a double dimension model. The boundary condition shows the response in a bounded region of
space varies with time. Hence a significant change is observed due to modified Ohm’s law in a
two-dimensional model with the memory response.

Figure 2. Temperature variation (θ) for several π0 and τ values

Figure 3. Temperature variation (θ) for several kernel function

Figure 4. Displacement variation (u) for several π0 and τ values
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Figure 5. Displacement variation (u) for several kernel functions

Figure 6. Stress variation (σx1x1 ) for several π0 and τ values

Figure 7. Stress variation (σx1x1 ) for several kernel function

Figure 8. Stress variation (σx2x2 ) for several π0 and τ values
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Figure 9. Variation of stress (σx2x2 ) with various kernel functions

7. Conclusion

This paper represents a two-dimensional magneto-thermoelastic problem due to the effect of mod-
ified Ohm’s law with memory response. Using normal mode analysis, the problem is solved, and
the effects of time delay, modified Ohm’s law coefficient, time, and various kernel functions are
observed. We infer from the graphical illustration that the following facts help design new material
in the development of magneto-thermoelasticity theory.

(1) The kernel function and the time delay play an important role in the heat conduction equation
due to the finite speed of wave propagation.

(2) With the change in the time delay parameter, the significant result of the coefficient of the
modified Ohm’s law is observed.

(3) The strong effect of the kernel function and time delay on all field quantities is observed,
indicating heat passing through the medium.

The numerical results presented here should prove useful to improve the efficiency of a thermoelas-
tic material. Introducing modified Ohm’s law in magneto-thermoelastic problems with the memory
response gives a novel contribution to this field.
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Appendix A: Graphical Results

Figure 10. Temperature variation (θ) for several τ val-
ues

Figure 11. Displacement (u) variation for several τ
values

Figure 12. Stress variation (σx1x1 ) for several τ val-
ues

Figure 13. Stress variation (σx2x2 ) for several τ val-
ues
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Figure 14. Temperature variation (θ) for several t val-
ues when k(t, ζ) = 1− (t− ζ)

Figure 15. Displacement (u) variation for several t
values when k(t, ζ) = 1− (t− ζ)

Figure 16. Stress variation (σx1x1 ) for several t val-
ues as k(t, ζ) = 1− (t− ζ)

Figure 17. Stress variation (σx2x2 ) for several t val-
ues as k(t, ζ) = 1− (t− ζ)

Figure 18. Three-dimensional temperature variation
(θ) with modified Ohm’s law coefficients
(π0)

Figure 19. Three-dimensional displacement variants
(u) with modified Ohm’s law coefficients
(π0)
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Figure 20. Three-dimensional stress combinations of
(σx1x1) with modified Ohm’s Law coeffi-
cients of (π0)

Figure 21. Three-dimensional variants of the (h)
magnetic field with modified Ohm’s law
coefficients (π0)

Appendix B: Equations

c2 =
1

ε0m0

, ε1 =
γ2T0

ρCE(λ+ 2µ)
, γ = (3λ+ 2µ)αt, α =

µ H2
0

λ+ 2µ
, β1 =

σ0 m0

η
,

A = (3a21 − d1 + d2) + β1$(1 + α) + (1 + ε2)$
2,

B = (β1αε2 + β1)$
3 + ε2$

4 + ((ε2 + 1)d1 − ε2d2)$2 + β1[(1 + α)d1 − d2]$
+ 2(d1a

2
1 − a41 + a21d2),

C = [ε2(a
2
1 − d1)$4 + β1(a

2
1 − d1)(αε2 + 1)$3 + (a41ε2 + β2

1αa
2
1 − a21ε2d1 − 2β2

1αd1

+ a41 − a21d1 + ε2a
2
1 − β2

1αa
2
1)$

2 + (a41β1(1 + α)− β1d1(a21 + α) + β1a
2
1)$ + a41],

d1 = $[1 +M(τ,$)], d2 = ε1$[1 +M(τ,$)], β2
2 =

λ+ 2µ

µ
, ε2 =

c21
c2
,

M(τ,$) =

{
(τ 2$2 − 2sτ$ + 2r2) + e−$τ [τ 2$2(2s− 1− r2) + 2τ$(s− r2)− 2r2]

τ 2$3

}
,

m2
1 =

1

3
[A+ 2 N1 sin(Λ)], m2

2 =
1

3

[
A− 2 N1 sin

(
Λ +

π

3

)]
,

m2
3 =

1

3

[
A+ 2 N1 cos

(
Λ +

π

6

)]
,

N1 =
√
A2 − 3 B, N2 =

√
3

9
(9AB − 2 A3 − 27 C),

N3 =
√
A2B2 + 18ABC − 4A3C − 4B3 − 27C2, Λ =

1

3
tan−1

(
N2

N3

)
,

k2 = a21 +$β2
2αβ1 + β2

2$
2 − $β2

2αβ
2
1

(β1 + ε2$)
,
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A = 1− β2
2 +

3∑
n=1

{
d2[β

2
2mn(β1 + ε1$)]

mn(m2
n − a21 − d1)

− d2[π0ia1(β1 + ε1$) + π0ia1β
2
2αβ

2
1 ]

mn(m2
n − a21 − d1)

+
d22β

2
2αβ

2
1$mn(β1 + ε2$)

mn(m2
n − a21 − β1$ − ε2$2)

}
,

∆1 = f ?(a1, $) [Y3 Z2 − Y2 Z3], ∆2 = f ?(a1, $) [Y1 Z3 − Y3 Z1],

∆3 = f ?(a1, $) [Y2 Z1 − Y1 Z2], ∆ = X1 [ − Y2 Z3 + Y3 Z2]

+X2 [ − Y3 Z1 + Y1 Z3] +X3 [ − Y1 Z2 + Y2 Z1],

Ri(a1, $) =
3∑

n=1

∆n

∆
, G(a1, $) =

1

k2 + a21

3∑
n=1

[(a21 +m2
n)A1 − 1]

(m2
n − k2)

mnRi(a1, $),

Xi =
3∑

n=1

d2
(m2

n − a21 − d1)
, Zi = Vi +Ni,

Yi =
3∑

n=1

[
[(a21 +m2

n)A1 − 1]

(a21 + k2)(m2
n − k2)

mn +mn

[
(1− A1)m

2
n + [A1(a

2
1 + β1$ + ε2$

2)− k2]
(m2

n − k2)(m2
n − a21 − β1$ − ε2$2)

]
+

ia1π0d2
$(m2

n − a21 − d1)
+

n1(β1 + ε2$)

ε2$(m2
n − a21 − β1$ − ε2$2)

]
,

Vi =
3∑

n=1

[
−2k[(a21 +m2

n)A1 − 1]

(a21 + k2)(m2
n − k2)

mn + 2A1m
2
n

]
,

Ni =
3∑

n=1

[
[β2

2 − 2](m2
n − a21 + k2)− β2

2d2
(m2

n − a21 + k2)

]
.
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