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Abstract

We consider the Robe’s restricted three-body problem in which the bigger primary is assumed to
be a hydrostatic equilibrium figure as an oblate spheroid filled with a homogeneous incompressible
fluid, around which a circular motion is described by the second primary, that is a finite straight
segment. The aim of this note is to investigate the effect of oblateness and length parameters
on the motion of an infinitesimal body that lies inside the bigger primary. The locations of the
equilibrium points are approximated by the series expansions and it is found that two collinear
equilibrium points lying on the line segment joining the centers of the primaries, exist. The non-
collinear equilibrium points lie on a circle and are infinite in number. No out-of-plane equilibrium
point exists. Based on the linear stability analysis, it is observed that the collinear equilibrium
points can be stable under certain conditions whereas the non-collinear ones are always unstable.

Keywords: Robe’s circular restricted three-body problem; Oblate spheroid; Finite straight seg-
ment; Equilibrium points
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1. Introduction

Robe, in 1977, contemplated a new kind of restricted three-body problem, considering the bigger
primary as a rigid spherical shell filled with a homogenous incompressible fluid of density ρ1,
and the smaller primary is considered to be a point mass, that lies outside the bigger primary. He
analysed the motion of an infinitesimal body which is considered to be a small solid sphere of
density ρ3, that moves inside the bigger primary, under the influence of buoyancy force of the fluid
and attraction of the smaller primary. An equilibrium point at the center of the bigger primary was
found, and he discussed its linear stability for the circular and elliptical cases.

The origin of such three-body problems can be traced back to Robe’s work, that proved out to be
pivot point for further studies of finding equilibrium points and their stability under many perturb-
ing forces like oblateness and triaxiality, done by many researchers in the following years.

The study of effects of perturbation on the location of equilibrium points in the Robe’s model
(1977) for the circular case was carried out by Shrivastava and Garain in 1991. For the case when
ρ1 = ρ3, they noticed that there is only one equilibrium point certainly affected by the perturbation,
which lies between the origin and the center of the bigger primary. Both Robe (1977) and Shri-
vastava and Garain (1991) assumed that the pressure field of the fluid ρ1 has spherical symmetry
around the center of the shell. They considered only one of the three components of the pressure
field, that is due to its own gravitational field of the fluid ρ1.

The other two remaining components that are originating in the attraction of m2 and arising from
the centrifugal force were taken into account by Plastino and Plastino in 1995. They revisited the
Robe’s problem by assuming the hydrostatic equilibrium figure of the bigger primary as Roche’s
ellipsoid. In addition, they tentatively stated that the effect of buoyancy forces might be thought as
equivalent to a perturbation of the Coriolis force.

Hallan and Rana (2001) investigated the equilibrium points in the Robe’s circular restricted three-
body problem, in which there are two collinear and infinite number of non-collinear equilibrium
points, for certain values of mass and density parameters. They also studied the stability of all the
equilibrium points obtained for the problem.

The positions and linear stability of an infinitesimal body around the equilibrium points in the
framework of Robe’s restricted three-body problem, with the assumption that the bigger primary
is an oblate spheroid have been studied by Hallan and Mangang in 2007. They pointed out the
oblateness effect on the positions of the equilibrium points. Under certain conditions, two collinear
equilibrium points, lying on the line segment joining the centers of the primaries, and infinite
number of non-collinear points exist. By the stability analysis, it has been deduced that the collinear
equilibrium points are conditionally stable, whereas non-collinear ones are always unstable.

In addition to the framework of Hallan and Mangang (2007), Singh and Mohammed in 2012 as-
sumed the shape of smaller primary as a triaxial rigid body. A collinear equilibrium point is found
near the center of the first primary which is conditionally stable. The points lying on the ellipse and

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 1, Art. 25

https://digitalcommons.pvamu.edu/aam/vol16/iss1/25



AAM: Intern. J., Vol 16, Issue 1 (June 2021) 465

inside the bigger primary are called elliptical points by them, and they also pointed out the effect
of oblateness and triaxiality on these points which are infinite in number.

In 2012, Singh and Sandah worked on Robe’s circular restricted three-body problem, with both
primaries as oblate bodies. Singh and Mohammed in 2012 considered the problem by taking pri-
maries as oblate and triaxial bodies each, which can be seen as an extension of Hallan and Mangang
(2007). They performed stability analysis of collinear and elliptical points. Out-of-plane equilib-
rium points and their stability have been checked by them in 2013.

In 2001, Riaguas et al. studied the linear and non-linear stability of the equilibrium points in the
restricted three-body problem, with one body being taken as finite straight segment. Jain and Sinha
(2014b) studied the linear stability of equilibrium points and the regions of motion in the restricted
three-body problem, with both the primaries taken as finite straight segments. Also, Jain and Sinha
(2014a) discussed the non-linear stability of non-collinear equilibrium points with one primary
as finite segment under the resonance. Chauhan et al. (2018) examined the restricted three-body
problem under the effect of albedo with the smaller primary being a finite straight segment.

Recently Kumar et al. (2019) studied the Robe’s restricted three-body problem that comprises of
the smaller primary as a finite straight segment. The two collinear equilibrium points are found, that
are conditionally stable. Infinite non-collinear equilibrium points and two out-of-plane equilibrium
points are always unstable. Furthermore, the effect of viscosity in Robe’s circular restricted three-
body problem has been examined by Ansari et al. (2019) and Kaur et al. (2020b).

Many research works were undertaken in the restricted problem of 2 + 2 bodies. The problem of
Robe’s restricted three-body was extended to the problem of 2 + 2 bodies by Kaur and Aggarwal
(2012), in which the mutually attracting infinitesimal bodies were taken as small solid spheres. The
Robe’s restricted problem of 2 + 2 bodies where the bigger primary is a Roche ellipsoid has also
been studied by Kaur and Aggarwal (2013a). Later, Kaur and Aggarwal (2013b) and Aggarwal
and Kaur (2014) studied the Robe’s restricted problem of 2 + 2 bodies, when one of the primaries
is an oblate body.

We modify the model of Robe’s by considering the hydrostatic equilibrium figure (Chandrashekhar
(1987)) of the fluid ρ1 as an oblate spheroid and smaller one as a finite straight segment. Our main
focus of the study is to determine the influences on the positions and stability of equilibrium points
of a small solid sphere m3 of density ρ3 moving inside m1, caused by the oblateness A of m1 and
length l of m2. We have discussed the case of unequal densities, that is when ρ1 6= ρ3. For the sake
of completeness a particular case of equal densities is also presented as discussed by Robe (1977)
and Shrivastava and Garain (1991).

This paper is divided in the following sections. Section 1 includes the development of the problem
over the years. In Section 2, the problem has been stated and the equations of motion of m3 are
derived following the methodology as in Plastino and Plastino (1995) and Kumar et al. (2019),
with a separate subsection of mean motion that is obtained by using the necessary expression from
Brouwer and Clemence (1961). In Section 3, collinear and non-collinear equilibrium points are
calculated for the two cases when ρ1 = ρ3 and ρ1 6= ρ3 under the influences of A and l. Linear
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466 B. Kaur et al.

Figure 1. The Robe’s circular restricted three-body problem in a synodic reference frame with m1 as an oblate spheroid
and m2 a finite straight segment

stability analysis of the obtained equilibrium points has been performed in Section 4 by using the
characteristic equations. Section 5 includes the application of the work presented in the present
manuscript. Sections 6 and 7 provide a brief resume of the work carried out in this paper.

2. Equations of Motion

To begin with, we assume that the bigger primary of mass m1 is described by an oblate spheroid
filled with a homogeneous incompressible fluid of density ρ1. The smaller primary of mass m2(<
m1) lying outside m1 assumes the shape of a finite straight segment of length 2l′ and moves in
a circular orbit with angular velocity ω around m1. The infinitesimal mass m3(<< m2) having
density ρ3 moves inside m1. We adopt a coordinate system Oxyz with the origin at the center of
mass O of m1, Ox pointing towards m2 and Oxy being the orbital plane of m2 as shown in Figure
1.

Let the synodic coordinate system initially coincident with the inertial system (coincident in the
sense that the respective x−axes of the two systems overlap each other and the other axes are
parallel) that rotate with the same angular velocity ω of m2. We assume that the principal axes
of m2 is parallel to the synodic axes and their axes of symmetry be perpendicular to the plane of
motion of the bodies.
The various forces per unit mass acting on m3 are

• The gravitational force exerted by the finite straight segment of mass m2 on m3;
• The buoyancy force acting on m3 arising in the fluid;
• The attraction of the fluid of density ρ1.

Now, to make the system dimensionless, we take the unit of mass, and distance is such that the
sum of the masses of the primaries is 1 unit, and distance between the primaries is also 1 unit, that
is R = 1. We choose the unit of time such that G becomes unity. According to these choices of
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units, the equations of motion of m3 in the dimensionless variables are given by

ẍ− 2ωẏ = Ωx, (1a)
ÿ + 2ωẋ = Ωy, (1b)

z̈ = Ωz, (1c)

where

Ω =ρ

[
πρ1

(
I − A1x

2 − A1y
2 − A2z

2
)

+
1

2
ω2
(
(x− µ)2 + y2

)
+
µ

2l
log

(
r1 + r2 + 2l

r1 + r2 − 2l

)]
,

l =
l′

R
, A =

a21 − a22
5R2

, 0 < l << 1, 0 < A << 1,

µ =
m2

m1 +m2

, 0 < µ < 1, ρ = 1− ρ1
ρ3
,

r21 =(x− 1 + l)2 + y2 + z2, r22 = (x− 1− l)2 + y2 + z2,

A1 =a21a2

∫ ∞
0

du

∆ (a21 + u)
, A2 = a21a2

∫ ∞
0

du

∆ (a22 + u)
,

I =2a21A1 + a22A2, ∆2 =
(
a21 + u

)2 (
a22 + u

)
.

Here, a1 and a2 are the equatorial and polar radii of the bigger primary; Ωx,Ωy and Ωz are the
partial derivatives of Ω with respect to x, y and z, respectively, and dot signifies the differentiation
with respect to time in dimensionless variables.

Equations (1a)-(1c) are the equations of motion of m3 of our problem under the influence of the
buoyancy force of the fluid, oblateness of m1 and the gravitational attractions of m1 and m2. These
obtained equations are analogous to the equations as in Hallan and Mangang (2007) on taking the
length parameter l = 0. The equations of motion of Kumar et al. (2019) can be obtained from
Equations (1a)-(1c) by taking the center of m1 at (−µ, 0, 0) and neglecting the effect of oblateness
A.

2.1. Mean motion of the primaries

Let us consider the gravitational potential between two finite bodies of masses m1 and m2 be given
by

V ∗ =
Gm1m2

R
+
Gm2

2R3
(A11 + A12 + A13 − 3I1) +

Gm1

2R3
(A21 + A22 + A23 − 3I2) , (2)

where G is constant of gravitation; m1, m2 are the masses of the bigger and smaller primary,
respectively; R is the distance between the primaries; A11, A12, A13 are the moment of inertia of
m1 about the principal axes;A21, A22, A23 are the moment of inertia ofm2 about the principal axes;
I1 and I2 are the moment of inertia of m1 and m2 respectively about the line joining the center of
mass of the primaries.

Since the center of mass of the primaries lie on the x−axis, therefore, I1 = A11 and I2 = A21. In
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the present problem m1 is an oblate spheroid and m2 a finite straight segment, therefore,

A11 = A12 =
m1(a

2
1 + a22)

5
, A13 =

2

5
m1a

2
1, A21 = 0, A22 = A23 =

1

3
m2l

′2.

Therefore, Equation (2) reduces into the following form,

V ∗ =Gm1m2

(
1

R
+
a21 − a22
10R3

+
l′2

3R3

)
.

Thus, the gravitational force between m1 and m2 is

F1 =− ∂V ∗

∂R
= Gm1m2

(
1

R2
+

3(a21 − a22)
10R4

+
l′2

R4

)
.

Since m2 is moving in circular orbit around m1, therefore,

ω2R =G(m1 +m2)

(
1

R2
+

3(a21 − a22)
10R4

+
l′2

R4

)
.

Using dimensionless variables, we have

ω2 = 1 +
3

2
A+ l2.

It is observed that, the mean motion is affected by the oblateness and length parameters. A com-
parative study of mean motion is as follows.

• If smaller primary is considered as a point mass, that is, l = 0, mean motion agree with Sharma
and Subbarao (1976), Hallan and Mangang (2007), and Wang et al. (2018).
• If oblateness of bigger primary is neglected, that is, A = 0, mean motion becomes similar to

Kaur et al. (2020a).

3. Equilibrium Points

The points where the infinitesimal mass has zero velocity and zero acceleration in the rotating
frame are known as equilibrium points. By equilibrium point, we mean a point (x, y, z) in the
rotating frame, such that

Ωx(x, y, z) = 0, Ωy(x, y, z) = 0 and Ωz(x, y, z) = 0.

That is, the locations of equilibrium points are obtained by solving

ρ

[
ω2(x− µ)− 2πρ1A1x−

2µ

[(r1 + r2)2 − 4l2]

(
x− 1 + l

r1
+
x− 1− l

r2

)]
= 0, (3a)

ρ

[
ω2 − 2πρ1A1 −

2µ(r1 + r2)

r1r2[(r1 + r2)2 − 4l2]

]
y = 0, (3b)

ρ

[
2πρ1A2 +

2µ(r1 + r2)

r1r2[(r1 + r2)2 − 4l2]

]
z = 0, (3c)

simultaneously.
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For the particular case when the infinitesimal body has the same density as that of the fluid, that is
ρ1 = ρ3, it is indistinguishable from any of the fluid’s elements. On solving Equations (1a)-(1c),
we have

x = C1 cos(2ωt+ τ) + C2,

y = −C1 sin(2ωt+ τ) + C3,

z = C4t+ C5,

where C1, C2, C3, C4, C5 and τ are the constants of integration. Therefore, all triplets (x, y, z) are
the equilibrium points since the fluid is assumed to be in hydrostatic equilibrium in the rotating
frame.

Next, we find the equilibrium points when the infinitesimal body is denser than the fluid, that is
ρ3 > ρ1, consequently ρ > 0. From Equation (3c), we observe that either z = 0, or

2πρ1A2 +
2µ(r1 + r2)

r1r2[(r1 + r2)2 − 4l2]
= 0.

The second equation is not possible, therefore z = 0. The equilibrium points lie in the plane of
motion of the primaries, when the infinitesimal body is denser than the fluid (ρ > 0). Therefore,
the motion of m3 is possible only in xy−plane.

3.1. Collinear equilibrium points

The points lying on the x-axis are collinear equilibrium points. These are obtained from Equa-
tions (3a) and (3b) by taking y = z = 0. Therefore, they are of the form (x, 0, 0), where the
x-coordinates are the solutions of the equation

ω2(x− µ)− 2πρ1A1x−
2µ

[(r1 + r2)2 − 4l2]

(
x− 1 + l

r1
+
x− 1− l

r2

)
= 0,

where r1 = |x − 1 + l| and r2 = |x − 1 − l|. Since m3 lies inside m1 and the circular motion of
m2 is described around m1, therefore, x < 1− l. On simplifying the above equation, we obtain the
following expression(

1 + l2 +
3

2
A

)
(x− µ)− 2πρ1A1x−

µ

[l2 − (x− 1)2]
= 0. (4)

In the absence of oblateness and length parameters A and l, respectively, Equation (4) takes the
following form

x

[
(1− 2πρ1A1)x

2 + (−2− µ+ 4πρ1A1)x+ (1 + 2µ− 2πρ1A1)

]
= 0. (5)

It can be seen that the center of the bigger primary is an equilibrium point for all the parameters
involved since x = 0 is a trivial solution of Equation (5). The other non-trivial solution of Equation
(5) lying inside m1 is

x1 = 1 +
µ+

√
µ2 + 8πρ1A1µ− 4µ

2(1− 2πρ1A1)
,

7

Kaur et al.: Robe’s Circular Restricted Three-body Problem

Published by Digital Commons @PVAMU, 2021



470 B. Kaur et al.

provided 1− 2πρ1A1 + 3
4
µ < 0 and |x1| < a1.

Table 1. The locations of L1 and L2 for the different values of A

µ l A1 ρ1 A L1(x, 0, 0) L2(x
′, 0, 0)

0.1 0.0001 0.3 0.649 10−6 (−6.42767×10−6, 0, 0) (0.0705201, 0, 0)
0.1 0.0001 0.3 0.649 0.004 (−0.00245286, 0, 0) (0.0757452, 0, 0)
0.1 0.0001 0.3 0.649 0.01 (−0.06000460, 0, 0) (0.0803995, 0, 0)
0.1 0.0001 0.3 0.649 0.02 (−0.12156500, 0, 0) (0.0848725, 0, 0)
0.1 0.0001 0.3 0.649 0.04 (−0.26846000, 0, 0) (0.0894293, 0, 0)

Next, we find the roots of Equation (4) when the oblateness and length parameters A and l of m1

and m2 respectively, are considered to be non-zero. Let the roots of Equation (4) for this case be

x = 0 + p1 and x = x1 + p2 with |pi| << 1, i = 1, 2,

where the expressions for p1 and p2 are given by Equation (6) and are obtained by putting the above
values in Equation (4) with the first order terms of p1, p2, A and up to second order terms of l

p1 =
3

2

[
Aµ

1 + 2µ− 2πρ1A1

]
,

p2 =
−µl2(1− x1)−3 + (x1 − µ)(x1 − 1)(l2 + 3

2
A)

2µ+ (1− 2πρ1A1)(1− 3x1)
. (6)

Therefore, on taking the effects of oblateness and length parameter into consideration,
L1(p1, 0, 0) and L2(x1 + p2, 0, 0) are the equilibrium points near the center of the bigger primary.
L2 exists provided 1− 2πρ1A1 < −3µ

4
and |x1| < a1.

Table 2. The locations of L2 for the different values of l

µ A A1 ρ1 l L2(x
′, 0, 0)

0.1 0.0001 0.3 0.649 0.0001 (0.0706889, 0, 0)
0.1 0.0001 0.3 0.649 0.05 (0.0605384, 0, 0)
0.1 0.0001 0.3 0.649 0.07 (0.0506251, 0, 0)
0.1 0.0001 0.3 0.649 0.08 (0.0443311, 0, 0)
0.1 0.0001 0.3 0.649 0.09 (0.0370857, 0, 0)

For the notational convenience, we write x′ = x1 + p2. The coordinates of collinear equilibrium
points L1 and L2 for the different values of oblateness parameter A and the fixed values of µ, l, A1

and ρ1 are given in Table 1. From Figure 2, it is noticeable that increase in the effect of oblateness
parameter A results in the collinear equilibrium point L2 moving towards the center of m2 and
away from the center of m1. However, L1 drifts away from the center of m1 in its left direction.

From the expressions of p1 and p2, it is clearly seen that the length of m2 has a substantial effect on
the position of L2, and zero effect on L1. In Table 2, the effect of l is observed for the fixed values
of µ, A, A1 and ρ1, and varying values of l. The point L2 shifts towards the center of the bigger
primary with the increasing values of l. This effect is shown pictorially in Figure 3. As the mass
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(a)

L1
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-0.1

0.0

0.1
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(b)

L1 L2

m1
m2

x

y

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

(c)

L2
12

x

y

0.05 0.10 0.15 0.20

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Figure 2. The locations ofL1 andL2 for µ = 0.1, l = 0.0001,A1 = 0.3, ρ1 = 0.649 and different values of oblateness
parameter A = 10−6 (green), 0.004 (purple), 0.01 (red), 0.02 (blue), 0.04 (orange). The black dots represent
the positions of L1 and L2, that are shown in (b). The zoomed portions of the positions of L1 and L2 are
shown in (a) and (c), respectively.

parameter µ increases from 0.1 to 0.2, the abscissas of L1 and L2 decrease for the fixed values of
A, A1, ρ1 and l. Numerically this effect is computed in Table 3 and depicted in Figure 4.

Table 3. The locations of L1 and L2 for the different values of µ

A A1 ρ1 l µ L1(p1, 0, 0) L2(x
′, 0, 0)

0.0001 0.3 0.649 0.0001 0.10 (−0.0006416, 0, 0) (0.070688900, 0, 0)
0.0001 0.3 0.649 0.0001 0.12 (−0.0509388, 0, 0) (0.001047040, 0, 0)
0.0001 0.3 0.649 0.0001 0.15 (−0.2224320, 0, 0) (0.000292415, 0, 0)
0.0001 0.3 0.649 0.0001 0.18 (−0.3879910, 0, 0) (0.000197195, 0, 0)
0.0001 0.3 0.649 0.0001 0.20 (−0.4956600, 0, 0) (0.000169572, 0, 0)

9

Kaur et al.: Robe’s Circular Restricted Three-body Problem

Published by Digital Commons @PVAMU, 2021



472 B. Kaur et al.

(a)

L2
12

x

y
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(b)

L2

m1

m2

x

y

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.4

-0.2

0.0
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0.4

Figure 3. The locations of L2 for µ = 0.1, A = 0.0001, A1 = 0.3, ρ1 = 0.649 and different values of the length
parameter l = 0.0001 (green), 0.05 (purple), 0.07 (red), 0.08 (blue), 0.09 (orange). The black dots represent
the position of L2, that are shown in (b). The zoomed portion of the positions of L2 is shown in (a).

L1
L2

m1

m2

x

y

-1.0 -0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

Figure 4. The locations of L1 and L2 for A = 0.0001, A1 = 0.3, ρ1 = 0.649, l = 0.0001 and different values of the
mass parameter µ = 0.1 (green), 0.12 (purple), 0.15 (red), 0.18 (blue), 0.2 (orange). The black dots represent
the collinear equilibrium points L1 and L2.

3.2. Non-collinear equilibrium points

The locations of non-collinear equilibrium points are evaluated by taking x 6= 0, y 6= 0 and z = 0
in Equations (3a) and (3b). These are the solutions of equations:

ω2(x− µ)− 2µ

[(r1 + r2)2 − 4l2]

(
x− 1 + l

r1
+
x− 1− l

r2

)
− 2πρ1A1x = 0, (7a)

ω2 − 2µ

[(r1 + r2)2 − 4l2]

(
1

r1
+

1

r2

)
− 2πρ1A1 = 0. (7b)
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On solving Equations (7a) and (7b) by retaining the terms up to first and second order of the
oblateness and length parameters A and l, respectively, we have

(1− x)2 + y2 = 1−
(
A+

2

3
l2
)
. (8)

Figure 5. The points on the arc PQ lying inside m1 show the position of non-collinear equilibrium points.

The points on the above circle lying within the first primary m1 are the non-collinear equilibrium
(or circular) points as shown in Figure 5, provided

2πρ1A1 = (1− µ)

(
1 + l2 +

3

2
A

)
.

The positions of circular points are affected by the oblateness and length parameters. This fact
differentiates our results from Kumar et al. (2019), in which the position of circular points are
affected by the length parameter l of m2 only.

4. Stability Analysis

Just knowing the numbers of equilibrium points for a dynamical system is not sufficient – we also
need to determine the stability of these points. In this section, we will find the domain of linear
stability for the parameters characterizing the problem. To perform such analysis, let the third body
be displaced to (x0 + ξ, y0 + η, z0 + ζ) from the equilibrium point (x0, y0, z0) where (ξ, η, ζ) is
a small displacement. Expanding the equations of motion (3a)–(3c) up to first order terms with
respect to ξ, η and ζ , we get the variational equations

ξ̈ − 2ωη̇ = Ω0
xxξ + Ω0

xyη + Ω0
xzζ, (9a)

η̈ + 2ωξ̇ = Ω0
yxξ + Ω0

yyη + Ω0
yzζ, (9b)

ζ̈ = Ω0
zxξ + Ω0

zyη + Ω0
zzζ, (9c)

where the superscript “0” denotes that the second order derivatives being evaluated at the point
(x0, y0, z0).
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4.1. Stability of the collinear equilibrium point L1

At the collinear equilibrium point L1, the values of second order partial derivatives of Ω are

Ω0
xx =

3

2

ρµA

p1
= a11, Ω0

yy = 3ρµ

(
A

2p1
− 1

)
= a22,

Ω0
zz = −ρ

(
2πρ1A2 + µ(1 + 3p1 + 2µl2)

)
= a33,

Ω0
yz = 0, Ω0

xy = 0 and Ω0
xz = 0.

The variational Equations (9a)-(9c) become

ξ̈ − 2ωη̇ = a11ξ, (10a)

η̈ + 2ωξ̇ = a22η, (10b)

ζ̈ = a33ζ. (10c)

The motion of the infinitesimal mass along z-axis is stable since the solution of Equation (10c) is
bounded. Let the Equations (10a) and (10b) has solutions of the form

ξ = B1e
λtand η = B2e

λt,

whereB1,B2 are the arbitrary constants. On substituting these values in Equations (10a) and (10b),
we obtain [

λ2 − a11 −2ωλ
−2ωλ a22 − λ2

] [
B1

B2

]
=

[
0
0

]
.

For the non-trivial solution, we must have∣∣∣∣λ2 − a11 −2ωλ
−2ωλ a22 − λ2

∣∣∣∣ = 0,

equivalently

λ4 − v1λ2 + v2 = 0, (11)

where v1 = a11 + a22 − 4ω2 and v2 = a11a22. Equation (11) can be converted in to the following
quadratic equation by taking λ2 = Λ,

Λ2 − v1Λ + v2 = 0.

The equilibrium point is stable if v1 < 0 and v2 > 0. We observe the following:

• If p1 < 0, then a11 < 0 and a22 < 0, therefore, L1 is stable.
• If 0 < p1 < A/2, then a11 > 0 and a22 > 0. For this case v2 > 0. Further, if v1 < 0, then L1 is

stable.
• If 0 < (A/2) < p1, then a11 > 0 and a22 < 0. Therefore, L1 is unstable.
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4.2. Stability of the collinear equilibrium point L2

For the collinear equilibrium point L2, we have

Ω0
xx =ρ

[
1− 2πρ1A1 −

2µ

(1− x′)3
+

3A

2
+

(
1− 4µ

(1− x′)5

)
l2

]
= a′11,

Ω0
yy =ρ

[
1− 2πρ1A1 −

µ

(1− x′)3
+

3A

2
+

(
1− 2µ

(1− x′)5

)
l2

]
= a′22,

Ω0
zz =− ρ

[
2πρ1A2 +

µ

(1− x′)3
+

2µl2

(1− x′)5

]
= a′33,

Ω0
xy =0, Ω0

xz = 0 and Ω0
yz = 0.

The corresponding variational equations (9a)-(9c) are

ξ̈ − 2ωη̇ = a′11ξ, (12a)

η̈ + 2ωξ̇ = a′22η, (12b)

ζ̈ = a′33ζ. (12c)

The motion of the infinitesimal mass along z-axis is stable since the solution of Equation (12c) is
bounded. The characteristic equation of Equations (12a) and (12b) is

λ4 − v′1λ2 + v′2 = 0

where v′1 = a′11 + a′22 − 4ω2 and v′2 = a′11a
′
22. The point x′ < 0 if x1 < 0 since |p2| << 1. The

equilibrium point L2 is stable because v′1 < 0 and v′2 > 0. Also for the case when x′ > 0, the
equilibrium point is stable if the above two conditions are satisfied.

4.3. Stability of the non-collinear equilibrium points

As calculated earlier, the non-collinear equilibrium points lie on the circle given by Equation (8)
exist only when 2πρ1A1 = (1 − µ)

(
1 + l2 + 3

2
A
)
. The general coordinate of a circular point are

of the form (1 + r cos θ, r sin θ, 0) with the parameter θ. From Figure 5, we have

180o − φ ≤ θ ≤ 180o + φ,

where φ = sin−1
(
PN

O′P

)
.

Here PN = 2
√
s(s−OP )(s−O′P )(s− 1) with s = OP+O′P+1

2
, OP is the radius of m1 and

O′P is the radius of the circle given by Equation (8). At circular points, the values of second order
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partial derivatives are

Ω0
xx =ρµ

[
3

(
1 +

3

2
A

)
cos2 θ +

(
3

2
− 12 cos2 θ +

35

2
cos4 θ

)
l2

]
= a011,

Ω0
yy =ρµ

[
3

(
1 +

3

2
A

)
sin2 θ +

1

2

(
1− 5 cos2 θ + sin2 θ + 35 cos2 θ sin2 θ

)
l2

]
= a022,

Ω0
xy =ρµ

[
3

(
1 +

3

2
A

)
+

1

2

(
−9 + 35 cos2 θ

)
l2

]
sin θ cos θ = a012,

Ω0
zz =− ρ

[
µ+ 2πρ1A2 +

3

2
µA+

µ

2

(
1 + 5 cos2 θ

)
l2
]

= a033,

Ω0
yz =0 and Ω0

xz = 0.

The corresponding variational equations are

ξ̈ − 2ωη̇ = a011ξ + a012η, (13a)

η̈ + 2ωξ̇ = a012ξ + a022η, (13b)

ζ̈ = a033ζ. (13c)

Equation (13c) shows that the motion of m3 parallel to z−axis is always stable since a033 is always
negative for all values of the parameters involved. The characteristic equation corresponding to the
Equations (13a) and (13b) is

λ4 − v01λ2 + v02 = 0,

where v01 = a011 + a022 − 4ω2 and v02 = a011a
0
22 − (a012)

2. The non-collinear equilibrium points are
unstable since v02 < 0.

5. Applications

In the solar system many celestial bodies are not perfect spheres, they are either oblate or triaxial.
Also, many of them are elongated in shape like asteroids. In this regard, the present model is applied
to study the motion of submarine having some finite density ρ3 in the Earth-asteroid system. We
consider the Earth-asteroid-submarine system. The bigger and smaller primaries are considered as
Earth and asteroids respectively. Two asteroids, 216 Kleopatra and 22 Kalliope, are considered.
The minimum orbit intersection distance (MOID) is taken as the distance between the primaries.
The physical data for these systems is taken from Kaur and Aggarwal (2013b), Lang (1992), NASA
database (https://ssd.jpl.nasa.gov/sbdb.cgi) and Wikipedia which is given as follows:

1. Earth-216 Kleopatra system

Mass of the Earth (m1) = 5.97237 × 1024 kg, equatorial radius of the Earth (a1) = 6378 km,
polar radius of the Earth (a2) = 6356 km, ρ1 = 1027 kg/m3, ρ3 = 1100 kg/m3, mass of the
216 Kleopatra (m2) = 4.66 × 1018 kg, distance of 216 Kleopatra from the Earth = 1.486 A.U.
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= 222302436 km, and length of the 216 Kleopatra (2l) = 276 km.
In dimensionless system
m1 +m2 = 1 unit, that is 5.97237× 1024 kg = 1 unit.
Thus,

µ =
m2

m1 +m2

= 7.80259× 10−7.

Also, distance between the primaries = 1 unit, that is 222302436 km = 1 unit, therefore l =
6.20776× 10−7, A = 1.13378× 10−12, a1 = 0.0000286906, a2 = 0.0000285917, ρ1 = 1.8891×
1012, ρ3 = 2.02338× 1012, ρ = 0.0663642, A1 = 0.66574539.

2. Earth-22 Kalliope system

Mass of the 22 Kalliope (m2) = 8.42 × 1018 kg, distance of 22 Kalliope from the Earth = 1.638
A.U.= 245041312 km, length of the 22 Kalliope (2l) = 215 km.
In dimensionless system
µ = 1.40982 × 10−6, l = 4.38702 × 10−7, A = 9.33123 × 10−13, a1 = 0.0000260283, a2 =
0.0000259385, ρ1 = 2.53012× 1012, ρ3 = 2.70996× 1012, ρ = 0.0663626, A1 = 0.665744598.

Table 4. The locations of L1 and L2 for the Earth-216 Kleopatra and Earth-22 Kalliope system

system L1(p1, 0, 0) L2(x1 + p2, 0, 0)

Earth-216 Kleopatra (−1.67925× 10−31, 0, 0) (0.999387, 0, 0)
Earth-22 Kalliope (−1.86451× 10−31, 0, 0) (0.999736, 0, 0)

For Earth-216 Kleopatra and Earth-22 Kalliope system, the locations of the collinear equilibrium
points L1 and L2 are given in Table 4. It has been observed that for both the systems, the equilib-
rium point L1 collinear with the centers of the primaries exists. However, the condition |x1| < a1 is
not satisfied, therefore, L2 does not exist. Also, both the systems do not possess the non-collinear
equilibrium points since 2πρ1A1 = (1− µ)(1 + l2 + 3/2A) is not satisfied.

6. Discussion

We studied the original Robe’s problem in which the structures of the bigger and smaller primaries
are assumed to be hydrostatic equilibrium figure as an oblate spheroid filled with a homogeneous
incompressible fluid of density ρ1 and finite straight segment respectively. Due to the presence of
oblateness and length parameters, our equations of motion (1a)-(1c) are different from as those of
equations obtained in Robe (1977) and analogous with as that of Hallan and Mangang (2007) if the
effect of the finite straight segment is neglected. The equations of motion in Kumar et al. (2019)
can be attained from our equations of motion by taking m1 as a rigid spherical shell filled with
homogenous incompressible fluid instead of oblate spheroid and shifting the center of m1 from
(0, 0, 0) to (−µ, 0, 0).

In this note we have examined the motion of infinitesimal massm3 of density ρ3 moving insidem1.
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The equations of motion ofm3 are derived under the influence of attraction ofm2, the gravitational
force exerted by the fluid of density ρ1 and the full buoyancy force of the fluid ρ1. The main aim
of this work was to examine the effects of oblateness parameter A of m1 and length parameter l of
m2 on the positions and stability of the equilibrium points.

We have discussed the case of unequal densities, that is when ρ1 6= ρ3, since in practice it is very
hard to see the case when both the densities are equal. When A 6= 0 and l 6= 0, we found two
collinear equilibrium points L1(p1, 0, 0) and L2(x

′, 0, 0). The existence of L2 depends on the con-
ditions 1−2πρ1A1+ 3

4
µ < 0 and |x1| < a1. The position of first collinear equilibrium point L1 does

not depend on the length parameter of m2, but influenced by oblateness A of m1. These effects on
the positions of L1 and L2 are observed in Tables 1 and 2, and shown in Figures 2 and 3 respec-
tively. In Table 3, the effect of mass parameter µ is numerically evaluated and the corresponding
equilibrium points are plotted in Figure 4. Infinite number of non collinear equilibrium points lying
on the circle given by Equation (8) are also found provided 2πρ1A1 = (1−µ)

(
1 + l2 + 3

2
A
)
. The

another type of equilibrium points which lie on xz−plane are out-of-plane equilibrium points. Due
to the impossibility of 2πρ1A2 + 2µ(r1+r2)

r1r2[(r1+r2)2−4l2] = 0, the out-of-plane equilibrium points do not
exist in the present problem.

To study the linear stability of the equilibrium points, some displacement to the positions of the
infinitesimal mass have been imposed along the ox and oy axes. The equilibrium point is stable if
the infinitesimal mass oscillates around it and unstable if its motion is a rapid departure from its
vicinity. Using this notion of stability some conclusions were drawn for the equilibrium points in
the case whenA 6= 0 and l 6= 0. The collinear equilibrium point L1 is stable if p1 < 0, conditionally
stable for 0 < p1 < A/2 and unstable if 0 < A/2 < p1. The other collinear equilibrium point L2 is
stable if x′ < 0, and for x′ > 0 if v′

1 < 0 and v′

2 > 0, then L2 is stable. Non-collinear equilibrium
points are always unstable for all values of the parameters involved.

Further, we have considered two practical models namely Earth-216 Kleopatra-submarine and
Earth-22 Kalliope-submarine systems. For these two presented systems, only one collinear equi-
librium point L1 exist, whereas the collinear equilibrium point L2 and non-collinear points do not
exist, since they do not satisfy the conditions of their existence.

7. Conclusion

The present study holds the Robe’s restricted three-body problem with a bigger primary as an
oblate spheroid which is filled with a homogeneous incompressible fluid. The smaller primary
takes the shape of a finite straight segment that describes a circular motion around the bigger
primary. This investigation considers the combined effects of oblateness and length of the primary
bodies on the motion of an infinitesimal body, that moves inside the bigger primary. The locations
of the equilibrium points are calculated. Due to the involvement of the parameters in the problem,
it is observed that the motion of the infinitesimal body is possible in the plane of motion of the
primaries. The present model holds two collinear equilibrium points that lie on the line segment
joining the centers of the primaries. The non-collinear equilibrium points are found to lie on a circle
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and are infinite in number. The problem does not possess any out-of-plane equilibrium point. The
linear stability analysis is carried out and depending on the characteristic equation corresponding
to the variational equations, it is obtained that the collinear equilibrium points can be stable under
certain conditions, however the non-collinear are always unstable for any choice of the parameters.
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