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Abstract 

In this paper, we investigate the effects of nonlinear behaviour of the dimensionless 

concentrations of the ethanol and acetaldehyde in a fixed bed laboratory reactor. The work is 

based on solving the nonlinear differential equation of concentration of the ethanol and 

acetaldehyde by means of the He’s variational iteration method (VIM). Also, the numerical 

simulation (4th order Runge – Kutta method) is reported using Matlab software. The analytical 

solutions are compared with numerical results in order to achieve conclusions based on not 

only for accuracy and efficiency of the solutions, but also the simplicity of the taken 

procedures which would have remarkable effects on the time devoted for solving process. The 

analytical result reported in this work is useful to understand the behaviour of the system. 

Furthermore, due to the accuracy and convergence of obtained solutions, it is proved that the 

VIM could be applied through other nonlinear problems even with high nonlinearity. 
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1. Introduction 

Many chemicals, petrochemical and allied industries are releasing volatile organic compounds 

(VOCs) (see Khan and Goshal (2000), Baker et al. (1987) and  Deng et al. (1996)). Some 

common VOCs are as follows: Acetaldehyde, ethyl acetate, ethanol, methyl chloride, various 

chlorohydrocarbons and perfluorocarbons, which are emitted from several chemical 

industries (see Okumura et al. (2003), Morales et al (2008) and Sax et al.  (2004)). In addition, 

ethyl acetate and ethanol are common VOC emitted in printing processes (Sax et al.  (2004)). 

Also, it is necessary to limit and control VOCs because they affect the change of climate, the 

growth and decay of plants, the health of human beings (such as liver and kidney damage and 

cancer) and all animals (see Larsson and Andersson (2000) and Delimaris  and Ioannides 

(2008)). Catalytic combustion is one important technology for eliminating VOC emissions.  

Agustina Campesi et al. (2011) reported the kinetic study of ethanol on an efficient catalyst 

identified as Mn/Cu catalyst. To study the kinetic parameters of a model, it is necessary to 

find the analytical solution for that model.  
 

In this work, we apply the VIM (Agustina Campesi et al. (2011), He (1999), Wazwaz  and 

Rach (2011), Wazwaz (2009)  and Odibat and Momani (2006)) to systematically obtain a 

rapidly convergent analytic approximate solution of the concentrations of ethanol, 

acetaldehyde and ethyl acetate that is convenient for numerical simulations. Also, the obtained 

analytical expression is validated by graphs of the error analysis that features the error 

remainder functions and the maximal error remainder parameters instead of comparison to an 

alternate solution technique alone. 

 

We remark that the VIM has been efficiently used to solve a wide variety of nonlinear 

problems in engineering and science (Soliman (2005), He and Wu (2006), Batiha (2009), 

Rafei et al (2007), Batiha et al. (2007), especially including several in theoretical chemistry  

(see Jamshidi and Ganji (2010), Bildik and  Konuralp (2006),  Mo et al. (20018), Ganji  and 

Sadighi  (2007), Tari et al. (2007), Sadighi and  Ganji (2007) and Barari et al. (2008)).  

  

 

2. Problem Description 

In Agustina Campesi et al. (2011), a mathematical model that relates the molar concentrations 

of ethanol and acetaldehyde inside the catalyst particle is established as nonlinear differential 

equation. Consider nonlinear differential equations as the following: 
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The boundary conditions related Equations (1) and (2) are given by  
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The reaction rates 1r  and 2r  are as follows: 
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where EtC  and AcC represent the molar concentrations of ethanol and acetaldehyde inside the 

catalyst particle, 
EtefD ,

 and 
AcefD ,

 are the effective diffusivities of ethanol and acetaldehyde,

refT  is reference temperature, GR  is a gas constant, 
EtCK and 

AcCK are  the adsorption 

equilibrium constant of ethanol and constant of  acetaldehyde, respectively, z  is the axial 

length of the reactor, 1E  and 2E  are activation energies, respectively.  

We introduce the following dimensionless variables: 
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If we view these dimensionless variables, then Equations (1) and (2) can be reduced to the 

following coupled system of nonlinear differential equations, respectively: 
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and the boundary conditions (3) and (4)  are also listed as follows, respectively: 

0 ,0 0 ===
dx

dW

dx

dU
x ,          (9) 

1,1 1 === WUx ,          (10) 

where the functions U(x) and W(x) are the concentration of the ethanol and acetaldehyde, 

respectively, x is axial length of the reactor inside the catalyst particle, and the system 

nonlinearities are 
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3. Mathematical Procedures and Default He’s Variational Iteration   

Method 

 
In this section, the VIM method has been investigated. We explain the basic ideas of He 

(1999) about the VIM. We now consider the following nonlinear differential equation: 

 

)(tgNuLu =+ , 

where L and N are linear and nonlinear operators, respectively, and g(t) is the source 

inhomogeneous term. According to the VIM, we can write down a correction functional as 

follows: 

1
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where  is a general Lagrange multiplies. Some information about general Lagrange 

multiplies such as    can also be find in He (1998; 2006) and Skeel et al. (1990). It should be 

noted that   can be a constant or a function, and it can be identified optimally via the variation 

theory, the subscript n indicates the nth approximation and nu~  is a restricted variation which 

means that 0~ =nuδ .The successive approximations un+1, for n ≥ 0, of the solution u(t) can  be 

readily obtained upon any selective function u0(t). Consequently, the exact solution, if it 

exists, will be given by  

 

)(lim)( xuxy nn →= . 

Furthermore, in particular cases,  for some recent papers on soliton solutions to wave motion 

equation, solitary wave structures to fractional Schrodinger equation and Bogoyavlenskii 

equations, good Boussinesq equation, etc.,  we referee the readers to Alam and Tunç (2020a, 

202b,  2020c), Almatrafi et al. (2020), Al-Asad et al. (2021) and Islam et al. (2021)).  

 

4. Application of Described Manners in the Issue and He’s Variational 

Iteration Method 

 

In this section, we apply the VIM to nonlinear ordinary differential Equations (7), (8) with 

the boundary conditions (9), (10).  

To use the VIM, we first determine the correction functional in the form: 
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The Lagrangian multiplier can be identified as 
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x
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= . As a result, we derive the 

following iteration formula:  
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The above formulation needs to start with the best choice for the zeroth approximations U0(x) 

and W0(x), which satisfy the boundary conditions, that accelerate the convergence of the 

successive approximations, and they have the following selections: 
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where the undetermined constants δ  and δ  are approximated by using the boundary 

conditions U(1) and W(1). This kind of selections has been proved to be effective to achieve 

convergent successive approximations. Moreover, one significant feature of the VIM is that 

it can be applied in a straightforward manner without any restrictive assumptions such as 

linearity and perturbation. Also, the VIM does not require the use of the Adomian 

polynomials. The obtained solutions for U(x) and W(x) will be provided in a convergent power 

series as proved in He (1999), Wazwaz and Rach (2011), Wazwaz (2009) and Odibat and 

Momani (2006)). We obtain the following approximations: 
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 … 

Substituting the boundary conditions U(1) = 1 and W(1) = 1 into (11) and solving the resulting 

equation, we can obtain the numerical values for  and . Also, it is obvious that the initial 

values U0(1) =  and W0(1) =  are not fixed and depend mainly on the constants

2121321 and,,,,, ββγγΦΦΦ .Therefore, the approximate solution functions are as follows: 
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5. Solution with MATLAB Software 

The diffusion equations (Equations (7) and (8)) for the boundary conditions (9) and (10) are 

solved by numerical methods. The function pdex1 in MATLAB software is used to solve the 

initial-boundary value problems for the nonlinear differential equations. This numerical 

solution is compared with our analytical results in Figure 1 and Figure 2. Upon comparison, 

it yields a satisfactory agreement for all values of the dimensionless parameters

212121 and,,,, ββγγΦΦ .  

 

Figure 1. Comparison between numerical and the VIM solution results for dimensionless concentration of the 

ethanol U(x) when 5,1 1232121 ======= γγΦΦΦββ . Key to the plot: (—) represents 

Equation (12) and (•••) numerical simulation Equation (7) 

 

Figure 2. Comparison between numerical and VIM solution results for dimensionless concentration of the 

acetaldehyde W(x) when 1,001.0,100 211231 ====== γγΦΦΦβ . Key to the plot: (—) 

represents Equation (13) and (•••) numerical simulation Equation (8) 
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6. Validation of the Model 

The analytical results for the fixed bed laboratory reactor model using Equations (7), (8) with 

the boundary conditions (9), (10) are validated against the numerical results. Our analytical 

expression of dimensionless concentration of the ethanol U(x) and acetaldehyde W(x) are 

compared with simulation results in Tables 1 and 2 for various values of the dimensionless 

parameters 212121 and,,,, ββγγΦΦ , respectively. From these tables, it can be noticed that our 

analytical results match quite well with the numerical results. The relative error between our 

analytical and numerical result does not exceed 1.5% for all values of parameters considered 

in the simulation. In addition, the maximum relative errors between our results with numerical 

simulation results are   0.0949% and 0.7939 %, respectively.  

7. Results and Discussions 

In this paper, the VIM has been utilized in order to solve the strongly nonlinear differential 

equation of dimensionless concentration of the ethanol U(x) and acetaldehyde W(x) with in 

the fixed bed laboratory reactor model. We have shown the VIM efficiency and accuracy 

through proper figures and tables. Figures 3, 4 show the difference between obtained solution 

by the VIM and numerical simulation (4th order Runge – Kutta method) in which we have 

introduced error percentage as follows: 

 

% Error = 100
)(

)()(


−

NM

VIMNM

xZ

xZxZ
,                                  (14) 

where NMxZ )( and VIMxZ )(  are the values obtained by numerical method and  the VIM. Here,  

Equation  (14) has been applied through functions of Equations (12),  (13) so the parameter Z 

has only been defined as symbol of data in this case. 

 

Comparison between the VIM and numerical results for various values of the reaction 

parameters are shown in Figures 1, 2 and Tables 1, 2. The obtained results in comparison with 

numerical simulations show that the VIM has been enough accuracy and efficiency   so it 

would be applicable for solving strongly nonlinear equations of coupled system.  

Subsequently, the effect of different parameters such as  2121321 and,,,,, ββγγΦΦΦ  on the 

concentration characteristics is discussed. Figures 5, 6 show the set of figures which in each 

of these effects on the reaction parameter has been represented. The plots of a dimensionless 

concentration of the ethanol U(x) versus dimensionless distance x are shown in Figures 5(a) 

- (d)  using Equation  (12). The dimensionless concentration of the ethanol U(x) as attain 

maximum (i.e. 1U ) for the dimensionless reaction parameters 2111 and,, ββγΦ  is greater 

than 0.001. 

 

Figures 6 (a) - (d) show the dimensionless concentration of the acetaldehyde W(x) versus 

dimensionless distance x using Equation (13). The graphs are plotted for various values of 

2132 and,, ββΦΦ and for some fixed values of other existing parameters. From Figure 6 (a),           

it is also inferred that the concentration is uniform (i.e. 1W ), when 001.03 Φ . Also, Figures 

6 (b) – (d) represent that the concentration of the acetaldehyde W(x) decreases when the value 
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of the reaction parameters 212 and, ββΦ  increase for all possible values of the other existing 

parameters. 

 

Figure 3. Obtained error for dimensionless concentration of the ethanol U(x) when    

 (a)
1 2 1 2 3 2 11, 5,   = =  =  =  = = =  (b) 

1 2 1 2 3 11, 2.5,  = =  =  =  = =       

2 0.5, =             (c) 1,10 2132121 ======= γγΦΦΦββ  

 

Figure 4. Obtained error for dimensionless concentration of the acetaldehyde W(x) when       

(a)
1 3 2 1 1 2 2100, 0.1, 1, 0.001,   =  = =  = = =  = (b

,01.0,100 2231 ==== ΦβΦβ 1 1 =  
2 1,= =      (c)

1 2 1 2 2 3 11, 75, 10   = = =  = =  = =  
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Figure 5. Effect of 1121 ,,, γΦββ  on dimensionless concentration of the ethanol U(x)    when 

 (a) 
1 2 1 2 3 2 1,  = =  =  =  = =  (b) 

1 2 2 1 2 30.001, 10,   = =  = = =  =  

 (c)
2 1 2 3 1 20.01, 10, 1,  =  =  =  = = = (d)

1,10,01.0 213211 ====== γγΦΦΦβ
 

 

Figure 6. Effect of 3221 ,,, ΦΦββ  on dimensionless concentration of the acetaldehyde W(x) when (a) 

1 2 1 2 2 11, 10,   = =  =  = = =  (b) 
1 2 1 1 2 30.1, 1, 100,   = =  = = =  =  

 (c)
2 1 3 1 1 20.1, 0.001, 100, 1,  =  =  =  = = =      (d) 

1 3 2100, 0.001, =  =  =     
1 1 =  

2 1= =  
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8. Conclusions 

In this work, the VIM have been successfully applied to find the solution of the concentration 

of the ethanol U(x) and acetaldehyde W(x) with in the fixed bed laboratory reactor model. 

Comparisons have been done among the VIM and numerical method by different reaction 

parameters values. Data from error figures represents that obtained solutions with the VIM 

has minor differences with numerical simulations. Furthermore, according to achieved results, 

these works are useful to understand the behaviour of the system. Also, it is obvious that the 

VIM is convenient analytical method due to its accuracy, efficiency and convergence.  It could 

be applicable for solving strongly nonlinear differential equations.  
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Nomenclature  

 

Et,efD
 

Effective diffusivities of ethanol (cm2/s) 

AcefD ,  
Effective diffusivities of acetaldehyde (cm2/s) 

EtC
 

Concentration of ethanol (mol m-3) 

AcC
 

Concentration of acetaldehyde (mol m-3) 

EtCK
 

Adsorption equilibrium constant of ethanol (m3 mol-1) 

AcCK
 

Adsorption equilibrium constant of acetaldehyde (m3 mol-1) 

refK  Reparameterized preexponential factor of step 1 at a reference temperature refT (s-1) 

refK  Reparameterized preexponential factor of step 2 at a reference temperature 

refT (mol s-1 m-3) 

E  Activation energy (J mol-1) 

E  Activation energy (J mol-1) 

refT
 

Reference temperature (K) 

T  Temperature (K) 

GR  Gas constant (J/ (mol k)) 

z  Axial length of the reactor (cm) 
b

EtC
 

Molar concentration of ethanol (mol m-3) 

b

AcC
 

Molar concentration of acetaldehyde (mol m-3) 

R  Particle radius (cm) 

U
 

Dimensionless molar concentration of ethanol (unitless) 

W
 

Dimensionless molar concentration of acetaldehyde (unitless) 

x  Dimensionless distance (unitless) 

2121 ,,, ββγγ  Dimensionless parameters (unitless) 
2

iΦ  Thiele modulus (unitless) 
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Table 1. Comparison of dimensionless concentration of the ethanol U(x) with numerical results for various values of dimensionless distance x 

and some fixed values of dimensionless parameters 2121321 and,,,,, ββγγΦΦΦ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 

Dimensionless concentration of the ethanol U(x)
 

1and1,1

,5,1,1,1

212

1321

===

====

ββγ

γΦΦΦ
 

1and1,5.0

,5.2,1,1,1

212

1321

===

====

ββγ

γΦΦΦ
 

10and10,1

,1,1,1,1

212

1321

===

====

ββγ

γΦΦΦ

 

 =0.4998591318,  = 0.4925620054 = 0.4982850925,  = 0.4892725513 =0.4986086302,  =0.4999961282 

Num. VIM % of Error Num. VIM % of Error Num. VIM % of Error 

0 0.9996 0.9997 0.0100 0.9954 0.9966 0.1206 0.9970 0.9972 0.0201 

0.2 0.9996 0.9997 0.0100 0.9956 0.9972 0.1607 0.9971 0.9973 0.0200 

0.4 0.9997 0.9998 0.0100 0.9961 0.9990 0.2881 0.9975 0.9977 0.0201 

0.6 0.9997 0.9998 0.0100 0.9983 0.9983 0.0000 0.9981 0.9982 0.0100 

0.8 0.9998 0.9999 0.0100 0.9983 0.9983 0.0000 0.9989 0.9990 0.0100 

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 

Average error % 8.34×10-03 Average error % 0.0949 Average error % 0.0134 
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Table 2. Comparison of dimensionless concentration of the acetaldehyde W(x) with numerical results for various values of dimensionless 

distance x and  some fixed values of dimensionless parameters 2121321 and,,,,, ββγγΦΦΦ  

 

 

X 

Dimensionless concentration of the acetaldehyde W(x)
 

1.0and100,1

,1,100,001.0,1

212

1321

===

====

ββγ

γΦΦΦ
 

01.0and100,1

,1,100,001.0,1

212

1321

===

====

ββγ

γΦΦΦ
 

01.0and100,1

,1,75,001.0,1

212

1321

===

====

ββγ

γΦΦΦ

 

 =0.4997014895,  = 

3.485105005 

= 0.4996996549,  = 3.503451128 = 0.4999990531,  = 0.4976888928 

Num. VIM % of Error Num. VIM % of Error Num. VIM % of Error 

0 7.0400 6.9702 0.9915 7.0680 7.0069 0.8645 0.9940 0.9954 0.1409 

0.2 6.7984 6.7314 0.9855 6.8250 6.7666 0.8557 0.9941 0.9956 0.1507 

0.4 6.0744 6.0150 0.9779 6.0458 6.0970 0.8469 0.9950 0.9961 0.1106 

0.6 4.8674 4.8209 0.9553 4.8837 4.8444 0.8047 0.9962 0.9970 0.0803 

0.8 3.1764 3.1493 0.8532 3.1850 3.1625 0.7064 0.9979 0.9983 0.0401 

1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 

Average error % 0.7939 Average error % 0.6797 Average error % 0.0871 
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