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Abstract

In this paper, we deal with a wavelet operational method based on Haar wavelet to solve the fuzzy
fractional differential equation in the Caputo derivative sense. To this end, we derive the Haar
wavelet operational matrix of the fractional order integration. The given approach provides an
efficient method to find the solution and its upper bond error. To complete the discussion, the
convergence theorem is subsequently expressed in detail. So far, no paper has used the Harr wavelet
method using generalized difference and fuzzy derivatives, and this is the first time we have done
so. Finally, the presented examples reflect the accuracy and efficiency of the proposed method.

Keywords: Generalized Hukuhara differentiability; Hilbert space; Fractional calculus; Haar
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1. Introduction

In this paper, we deal with a wavelet operational method based on Haar. In the real world, to model
and analyze a huge amount of problems, we need to apply fractional differential equations. Frac-
tional calculus is used in many fields of mathematical and engineering sciences, including power
grids, fluid mechanics, control theory, electromagnetism, biology, chemistry, propagation, and vis-
coelasticity (Diethelm et al. (2004); Kiryakova (1994); Podlubny (1999); Samko et al. (1993);
Arikoglu et al. (2009)). In recent years, there has been many consideration to solve the ordinary
fractional differential equations, integral equations, and differential equations with fractional par-
tial derivatives.

Since there is no accurate analytical answer for fractional differential equations, we widely use
numerical and approximation methods, such as Laplace transforms (Podlubny (1999)), Fourier
transforms (Gaul et al. (1991)), Adomian decomposition method (Momani (2007)), fractional dif-
ferential transformation method (Arikoglu et al. (2009); Erturk et al. (2008)), Haar wavelet opera-
tional matrix the fractional order differential equations (Wu (2009); Yi et al. (2014)) and fractional
difference method (Meerschaert et al. (2006)), to solve them. Also, the fuzzy differential equations
and fuzzy fractional differential equations have many applications in other sciences (Allahviranloo
et al. (2016)).

The authors (Allahviranloo et al. (2012); Salahshour et al. (2012b)) considered the generalization
of H-differentiability for the fractional case. A lot of research has been devoted to find the accurate
and efficient methods for solving fuzzy fractional differential equations (FFDEs). It is well known
that the exact solutions of most of the FFDEs cannot be found easily; therefore, in the recent
years, attempts have been made to address this problem (Mazandarani et al. (2013); Salahshour et
al. (2012a)). So far, no paper has used the Harr wavelet method using generalized difference and
fuzzy derivatives. It is with this motivation that we introduce in this paper Haar wavelet method
for solving FFDEs.

The paper is organized as follows. In Section 2, some necessary definitions, fuzzy integration and
the fuzzy Caputo differentiability are brought, respectively. In Section 3, we explain Haar wavelet
and function approximation and also how to solve fuzzy fractional differential equations using
Haar wavelet. In Section 4, convergence analysis and error bound of the solution are expressed. In
Section 5, several examples are solved for more illustration of the method.

2. Preliminaries

In this section, we present some definitions and introduce the necessary notation, which will be
used throughout the paper.

We denote by RF , the set of fuzzy numbers, that is normal, fuzzy convex, upper semi-continuous
and compactly supported fuzzy sets which defined over the real line. For 0 < r ≤ 1, set [u]r of a
fuzzy number u is the subset of points t ∈ R with membership grade u(t) of the least amount of r.
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That is, [u]r = {t ∈ R | u(t) ≥ r} = [u−(r), u+(r)] and [u]0 = cl{t ∈ R | u(t) > 0}. If u ∈ RF ,
the set [u]r is a bounded closed interval for all r ∈ [0, 1]. For arbitrary u, v ∈ RF and k ∈ R,
the addition and scalar multiplication are defined by [u ⊕ v]r = [u]r + [v]r and if k ≥ 0, then
k � u = (ku−(r), ku+(r)), if k < 0 then k � u = (ku+(r), ku−(r)).

Remark 2.1.

Throughout the rest of this paper, we assume that the gH−difference always exists.

Remark 2.2.

If f : [a, b]→ RF be a fuzzy function with no switching point in interval [a, b], then

i. If f(t) is [i− gH]−differentiable, then
∫ b
a
f ′i.gH(t)dt = f(b)	 f(a).

ii. If f(t) is [ii− gH]−differentiable, then
∫ b
a
f ′ii.gH(t)dt = (−1)f(a)	 (−1)f(b).

Lemma 2.1.

Suppose that f(t) : [a, b]→ RF be a fuzzy-valued function, then

(i) If f(t) is [i− gH]−differentiable, then
∫ b
a
f ′i.gH(t)dt = 	

∫ a
b
f ′i.gH(t)dt.

(ii) If f(t) is [ii− gH]−differentiable, then
∫ b
a
f ′ii.gH(t)dt = 	

∫ a
b
f ′ii.gH(t)dt.

Proof:

According to Remark 2.2 (i), we get

	
∫ a

b

f ′i.gH(t)dt = 	
(
f(a)	 f(b)

)
= f(b)	 f(a) =

∫ b

a

f ′i.gH(t)dt.

For prove the second part by using Lemma 2.2 (ii), we have

	
∫ a

b

f ′ii.gH(t)dt = 	
(
(−1)f(b)	 (−1)f(a)

)
= (−1)f(a)	 (−1)f(b) =

∫ b

a

f ′ii.gH(t)dt. �

Lemma 2.2.

Let f(t) : [a, b]→ RF is gH−differentiable and f ′gH(t) continues on [a, b]. Then

(i) 	(−1)
∫ b
a
f ′ii.gH(t)dt =

∫ b
a
f ′i.gH(t)dt.

(ii)
∫ b
a
f ′ii.gH(t)dt = (−1)

∫ a
b
f ′i.gH(t)dt.
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Proof:

According to Remark 2.2 (ii), we get

0	 (−1)
∫ b

a

f ′ii.gH(t, r)dt = 0	 (−1)[
∫ b

a

(f ′)+(t, r)dt,

∫ b

a

(f ′)−(t, r)dt]

= 0	 [−f−(b, r) + f−(a, r),−f+(b, r) + f+(a, r)]

= [f−(b, r)− f−(a, r), f+(b, r)− f+(a, r)]

= [f−(b, r), f+(b, r)]	 [f−(a, r), f+(a, r)]

=

∫ b

a

f ′i.gH(t, r)dt.

The proof of part (ii) according to Remark 2.2 (i), is easily obtained:

0⊕ (−1)
∫ a

b

f ′i.gH(t, r)dt = 0⊕ (−1)[
∫ a

b

(f ′)−(t, r)dt,

∫ a

b

(f ′)+(t, r)dt]

= (−1)[f−(a, r), f+(a, r)]	 (−1)[f−(b, r), f+(b, r)]

=

∫ b

a

f ′ii.gH(t, r)dt. �

Proposition 2.1.

Suppose that f : [a, b] → RF , such that t ∈ [a, b] and there is Hukuhara difference. Then,
(−1)f(t)	 (−1)f(t) = 0.

Proof:

(−1)f(t, r)	 (−1)f(t, r) = (−1)[f−(t, r), f+(t, r)]	 (−1)[f−(t, r), f+(t, r)]

= [−f+(t, r) + f+(t, r),−f−(t, r) + f−(t, r)]

= 0. �

Lemma 2.3.

Let f : [a, b] → RF is both continuous and gH−differentiable over [a, b] such that type of differ-
entiability f in [a, b] does not change. Then, if c ∈ [a, b], hence

(i) If f(t) is [(i)− gH]-differentiable, then f ′i.gH(t) is (FR)-integrable over [a, b] and∫ c

a

f ′i.gH(t)dt =

∫ b

a

f ′i.gH(t)dt	
∫ b

c

f ′i.gH(t)dt.

(ii) If f(t) is [(ii)− gH]-differentiable, then f ′ii.gH(t) is (FR)-integrable over [a, b] and∫ c

a

f ′ii.gH(t)dt =

∫ b

a

f ′ii.gH(t)dt	
∫ b

c

f ′ii.gH(t)dt.
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Proof:

Case (i): Consider f(t) is [(i)− gH]-differentiable and Fredholm’s integrating:

∫ b

a

f ′i.gH(t)dt	
∫ b

c

f ′i.gH(t)dt =
(
f(b)	 f(a)

)
	
(
f(b)	 f(c)

)
= f(b)	 f(a)	 f(b)⊕ f(c)
= f(c)	 f(a)

=

∫ c

a

f ′i.gH(t)dt.

Case (ii): Consider f(t) is [(ii) − gH]-differentiable by using Remark 2.2 (ii) and Proposition
2.1 we have∫ b

a

f ′ii.gH(t)dt	
∫ b

c

f ′ii.gH(t)dt =
(
(−1)f(a)	 (−1)f(b)

)
	
(
(−1)f(c)	 (−1)f(b)

)
= (−1)f(a)	 (−1)f(b)	 (−1)f(c)⊕ (−1)f(b)
= (−1)f(a)	 (−1)f(c)

=

∫ c

a

f ′ii.gH(t)dt,

which proves the lemma. �

Theorem 2.1.

Let f is continuous, bounded and gH−differentiable fuzzy function on [a, b], such that the type of
gH−differentiability does not change in [a, b]. Then, there is a constant number, c ∈ [a, b], and by
considering the type of gH−differentiability, we have

(i) If f(t) is [(i)− gH]-differentiable, then D
(
f(b), f(a)

)
≤ D

(
(b− a)� f ′i.gH(c), 0

)
,

(ii) If f(t) is [(ii)− gH]-differentiable, then D
(
f(b), f(a)

)
≤ D

(
(a− b)� f ′i.gH(c), 0

)
.

Proof:

Case (i): First, we prove the theorem for [(i)−gH]-differentiability. By using Remark 2.2 (i), we
obtain f(a) = f(c) 	

∫ c
a
f ′i.gH(t)dt, and f(b) = f(c) ⊕

∫ b
c
f ′i.gH(t)dt. Then, by applying Lemma

2.3 (i), the definition of Hausdorff distance (Molliq et al. (2009)) and Lemma 2.2 (i) we get

D
(
f(b), f(a)

)
= D

(
f(c)⊕

∫ b

c

f ′i.gH(t)dt, f(c)	
∫ c

a

f ′i.gH(t)dt
)

≤ D
(∫ b

c

f ′i.gH(t)dt,	
∫ c

a

f ′i.gH(t)dt
)
.
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According to the first part of Lemma 2.3 we obtain

D
(
	
∫ c

a

f ′i.gH(t)dt⊕
∫ b

a

f ′i.gH(t)dt,	
∫ c

a

f ′i.gH(t)dt
)

≤ D
(
	
∫ c

a

f ′i.gH(t)dt	
∫ c

a

f ′i.gH(t)dt
)
⊕D

(∫ b

a

f ′i.gH(t)dt, 0
)
= D

(∫ b

a

f ′i.gH(t)dt, 0
)
.

Therefore, according to Fuzzy Mean Value Theorem for Integrals (Armand et al. (2018)), we have
D
( ∫ b

a
f ′i.gH(t)dt, 0

)
= (b− a)D

(
f ′i.gH(c), 0

)
. So, the first part of proving is completed.

Case (ii): To prove the second part of theorem, consider function to be [(ii)−gH] -differentiable
and also based on Lemma 2.3 (ii), the definition of Hausdorff distance (Molliq et al. (2009)) and
Lemma 2.2 (ii), we get

D
(
f(b), f(a)

)
= D

(
f(c)	 (−1)

∫ b

a

f ′ii.gH(t)dt, f(c)⊕ (−1)
∫ c

a

f ′ii.gH(t)dt
)

≤ D
(
	 (−1)

∫ b

a

f ′ii.gH(t)dt, (−1)
∫ c

a

f ′ii.gH(t)dt
)

= D
(
(−1)

∫ c

a

f ′ii.gH(t)dt	 (−1)
∫ b

a

f ′ii.gH(t)dt, (−1)
∫ c

a

f ′ii.gH(t)dt
)

= D
(
(−1)

∫ c

a

f ′ii.gH(t)dt, (−1)
∫ c

a

f ′ii.gH(t)dt
)
⊕D

(
(−1)

∫ b

a

f ′ii.gH(t)dt, 0
)

= D
(
(−1)

∫ b

a

f ′ii.gH(t)dt, 0
)
= D

(∫ a

b

f
′

i−gH(t)dt, 0
)

≤
∫ a

b

D
(
f ′i.gH(t), 0

)
dt.

Therefore, according to Fuzzy Mean Value Theorem for Integrals (Armand et al. (2018)) we obtain∫ a
b
D
(
f ′i.gH(t), 0

)
dt = (a− b)D

(
f ′i.gH(c), 0

)
. The proof is complete. �

Lemma 2.4.

Suppose that t ∈ [0, 1]. Haar wavelet functions are defined as in Chen et al. (2010). Then

hi(t)hi(t) ≤
∫ 1

0

hi(t)hi(t)dt.

Proof:

Suppose that j = 0, k = 1, so

hi(t) =
1√
m


1, 0 ≤ t < 1

2
,

−1, 1
2
≤ t < 1,

0, elsewhere,
hi1(t)hi2(t) =

1

m


1, 0 ≤ t < 1

2
,

−1, 1
2
≤ t < 1,

0, elsewhere.
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So, we have

hi(t)hi(t) =


1
m
, hi are both in the first and second intervals,
− 1
m
, hi are one in the first interval and other in the second one,

0, elsewhere.

Since the orthogonality of the sequence {hi(t)} on [0, 1] implies that∫ 1

0

hn1
(t)hn2

(t)dt =

{
1
m
, n1 = n2,

0, n1 6= n2,

therefore, the proof is complete. �

Lemma 2.5.

If h(t) : [a, b]→ R, then (−1)h(t) = 	gHh(t).

Proof:

Since h(t) : [a, b]→ R, then h(t, r) = [h(t, r), h(t, r)] = [h(t), h(t)], so

0	gH h(t) = 0	gH [h(t), h(t)]

= [min{0− h(t), 0− h(t)},max{0− h(t), 0− h(t)}]
= (−1)[h(t), h(t)]
= (−1)h(t). �

Many properties of fuzzy gH-differentiability has been published very recently in Shahsavari et al.
(2020).

3. Solving Fuzzy fractional differential equations

In this section, we intend to approximate the fuzzy function y(t) using the Haar function. The
space of all continuous fuzzy-valued function on [a, b] denotes by CF [a, b]. Also, the space of all
Lebesque integrable fuzzy-valued functions over bounded interval [a, b] ⊂ R shows by LF [a, b].

3.1. Haar Wavelet and Function approximation

For t ∈ [0, 1], the Haar wavelet functions are defined (Chen et al. (2010); Ezzati et al. (2016)) as
follows:

h0(t) =
1√
m
, hi(t) =

1√
m


2j/2, k−1

2j ≤ t < k−(1/2)
2j ,

−2j/2, k−(1/2)
2j ≤ t < k

2j ,

0, elsewhere,
(1)

where i = 0, 1, 2, · · · ,m− 1; m = 2p+1, p = 0, 1, 2, · · · , j. j and k represent integer decomposi-
tion of the index i, i.e., i = 2j + k − 1.
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According to Ziari et al. (2012), Mohamed et al. (2019), and Ezzati et al. (2016), let y(t) ∈ L2[0, 1)
and Haar wavelet function h(t) be a real valued bounded function with support of h(t) ⊂ [0, 1].
The fuzzy wavelet function it can be expanded into Haar series by

y(t) =
∞∑
i=0

ai � hi(t). (2)

Let < ., . > denotes the inner product form, and ai =< y(t), hi(t) >=
∫ 1

0
y(t) � hi(t)dt are

wavelet coefficients. In practice, only the first m terms of Equation (2) are considered, where m is
a power of 2. So we have

y(t) ∼=
m−1∑
i=0

ai � hi(t). (3)

The matrix form of Equation (3) is

Y = AT �H,

where A =
[
a0, a1, · · · , am−1

]T
. The row vector Y, is the discrete form of the function y(t) and

H is the Haar wavelet matrix of order m = 2p+1, p = 0, 1, 2, · · · , j, i.e.,

H =


h0(t0) h0(t1) · · · h0(tm−1)
h1(t0) h1(t1) · · · h1(tm−1)

...
... . . . ...

hm−1(t0) hm−1(t1) · · · hm−1(tm−1)

 .

According to Equation (1), we may know easily that H is an orthogonal matrix. Then, we have

AT = Y �H−1.

In this paper, we use wavelet collocation method to determine the coefficients ai. These collocation
points are shown as follows:

tl = (l − 0.5)/m, l = 1, 2, · · · ,m.

3.2. Solving Fuzzy fractional differential equations using Haar Wavelet

Consider to the following fuzzy fractional differential equation ( FFDE ) of order α, 0 < α ≤ 1
with the initial condition: {

C
gHD

αy(t) = f(t, y(t)),

y(i)(t0) = δi ∈ RF ,
(4)

where y ∈ CF [a, b] ∩ LF [a, b] is a continuous fuzzy-valued function and t0 ∈ [a, b]. We are going
to solve Equation (4), so we consider approximate the highest derivative with Haar wavelet. Then,

C
gHD

αy(t) =
∞∑
i=0

ai � hi(t) = AT �Hm(t),

8
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in which A is coefficients vector and Hm(x) is Haar vector. According to the sign hi(t), also,
y(t, r) = [y−(t, r), y+(t, r)] and [A]r = [A−(r), A+(r)], it is clear we have:

CDαy−(t, r) =
∑

hi(t)≥0

(a−(r))ihi(t) +
∑

hi(t)≤0

(a+(r))ihi(t), (5)

CDαy+(t, r) =
∑

hi(t)≥0

(a+(r))ihi(t) +
∑

hi(t)≤0

(a−(r))ihi(t). (6)

Equations (5) and (6) in matrix form are as follows:

CDαy−(t, r) = (A−(r))
T
H+
m(t) + (A+(r))

T
H−m(t), (7)

CDαy+(t, r) = (A+(r))
T
H+
m(t) + (A−(r))

T
H−m(t). (8)

Now, we explain the proposed method to solve Equation (7) by using Caputo derivative properties.
By integrating to Equation (7), we achieve lower derivatives as follows:

CDα−1y−(t, r) = Jα−α+1
(
CDαy−(t, r)

)
= (A−(r))

T
FH+

m(t) + (A+(r))
T
FH−m(t).

But if α = q ∈ Z ≥ 0, so to calculate Dqy−(t, r), q = 0, 1, · · · , n− 1, we have

CDn−1y−(t, r) = Jα−n+1
(
CDαy−(t, r)

)
= (A−(r))

T
Fα−n+1H+

m(t) + (A+(r))
T
Fα−n+1H−

m(t) +
(
y−(t0, r)

)(n−1)
+

(
y+(t0, r)

)(n−1)

= (A−(r))
T
Fα−n+1H+

m(t) + (A+(r))
T
Fα−n+1H−

m(t) + δ−n−1e
T + δ+n−1e

T ,

CDn−2y−(t, r) = Jα−n+2
(
CDαy−(t, r)

)
= (A−(r))

T
Fα−n+2H+

m(t) + (A+(r))
T
Fα−n+2H−

m(t) + δ−n−1e
TΦ−1

m×mF
1H+

m(t)

+ δ−n−2 + δ+n−1e
TΦ−1

m×mF
1H−

m(t) + δ+n−2e
T ,

...

y−(t, r) = (A−(r))
T
FαH+

m(t) + (A+(r))
T
FαH−

m(t) + δ−n−1e
TΦ−1

m×m(F 1)n−1H+
m(t)

+ δ−n−2e
TΦ−1

m×m(F 1
m×m)n−2H+

m(t) + δ−1 e
TΦ−1

m×mF
1
m×mH

+
m(t) + δ−0 e

T + δ+n−1e
TΦ−1

m×m(F 1)n−1H−
m(t)

+ δ+n−2e
TΦ−1

m×m(F 1
m×m)n−2H−

m(t) + δ+1 e
TΦ−1

m×mF
1
m×mH

−
m(t) + δ+0 e

T .

Also, we can use the mentioned above steps for Equation (8). By substituting the above relations
in the original Equation (4), it will convert to a fully fuzzy system of equations.

4. Convergence Analysis

In this section, several theorems are presented for fuzzy function convergence analysis.

9
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Theorem 4.1.

Assume that y is a fuzzy-value function on L2([0, 1]), CgHD
αy(t) is a fuzzy continuous, ai ∈ RF

and hi ∈ R (hi are Haar bases). Then, the Haar wavelets expansion of y(t) converges uniformly to

D(a2i , 0) ≤
2−3j−2

m
M2.

Proof:

By using the definition (Ziari et al. (2012); Mohamed et al. (2019)), we have y(t) =
∞∑
i=0

ai�hi(t).

With regard to Definition Haar wavelet function (Chen et al. (2010)), we break the integral bound-
aries into the intervals of the Haar bases:

ai =

∫ 1

0

y(t)� hi(t)dt =
∫ k−(1/2)

2j

k−1

2j

y(t)� hi(t)dt⊕
∫ k

2j

k−(1/2)

2j

y(t)� hi(t)dt.

By applying Equation (1) and Lemma 2.5 in the above equation, we have

ai =
2

j

2

√
m

(∫ k−(1/2)

2j

k−1

2j

y(t)dt	gH
∫ k

2j

k−(1/2)

2j

y(t)dt
)
.

Since there exist t1, t2 such that k−1
2j ≤ t1 <

k−(1/2)
2j , k−(1/2)

2j ≤ t2 <
k
2j , then by using fuzzy mean

value theorem for integrals (Armand et al. (2018)), we have

ai =
2

j

2

√
m

{
(
k − (1/2)

2j
− k − 1

2j
)y(t1)	gH (

k

2j
− k − (1/2)

2j
)y(t2)

}
=

2
−j

2
−1

√
m

(
y(t1)⊕ (−1)y(t2)

)
.

Therefore, a2i =
2−j−2

m

(
y(t1)	gH y(t2)

)2
. By using the definition of Hausdorff distance (Molliq et

al. (2009)), we obtain

D(a2i , 0) =
2−j−2

m
D2
(
y(t1)	gH y(t2), 0

)
.

And also by using the fuzzy mean value theorem of derivative under generalized differentiability
(Theorem 2.1), we have:

D(a2i , 0) =
2−j−2

m
D2
(
y(t1)	gH y(t2), 0

)
≤ 2−j−2

m
D2
(
(t2 − t1)� C

gHD
α(c), 0

)
.

Since C
gHD

αy(t) is continuous on the interval [0, 1], hence by applying the definition of continuous

fuzzy function (Anastassion (2010)), we get: ∀t ∈ [0, 1], ∃M > 0, D
(
C
gHD

αy(t), 0
)
≤M. So

D(a2i , 0) ≤
2−j−2

m
D2
(
(t2 − t1)� C

gHD
α(c), 0

)
≤ 2−j−2

m
(t2 − t1)2M2 ≤ 2−j−2

m
2−2jM2 =

2−3j−2

m
M2.

The proof is complete. �
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Corollary 4.1.

Let y be fuzzy-value function on L2([0, 1]) and C
i−gHD

αy(t), Cii−gHD
αy(t) are fuzzy continuous,

ai ∈ RF and hi ∈ R (hi are Haar bases). If y(t) is expanded on Haar series y(t) =
∞∑
i=0

ai � hi(t),

and by considering the type of cf [gH]−differentiability, we have

(i) If y(t) is cf [(i)− gH]-differentiable, then D(a2i , 0) ≤ 2−3j−2

m
M2

1 ,

(ii) If y(t) is cf [(ii)− gH]-differentiable, then D(a2i , 0) ≤ 2j−2

m
M2

1 .

Proof:

Similar to Theorem 4.1, according to the first part of Theorem 2.1, let y(t) be cf [(i) − gH]-
differentiability. Then we get

D(a2i , 0) =
2−j−2

m
D2
(
y(t1)	 y(t2), 0

)
≤ 2−j−2

m
D2
(
(t2 − t1)� C

i−gHD
αy(c), 0

)
.

Since C
i−gHD

αy(t) is continuous on the interval [0, 1], hence by using the definition of continuous
fuzzy function (Anastassion (2010)), we have:

∀t ∈ [0, 1],∃M1 > 0, D
(
C
i−gHD

αy(t), 0
)
≤M1.

So

D(a2i , 0) ≤
2−j−2

m
D2
(
(t2 − t1)� C

i−gHD
αy(c), 0

)
≤ 2−j−2

m
(t2 − t1)2M2

1

≤ 2−j−2

m
2−2jM2

1

=
2−3j−2

m
M2

1 .

So, the first part is complete. Using the second part of Theorem 2.1 (ii) and suppose that y(t) is
cf [(ii)− gH]-differentiability. So we get

D(a2i , 0) =
2−j−2

m
D2
(
y(t1)	 y(t2)

)
≤ 2−j−2

m
D2
(
(t1 − t2)� C

i−gHD
αy(c), 0

)
.

According to the assumption, C
i−gHD

αy(t) be continuous on the interval [0, 1], so: ∀t ∈
[0, 1], ∃M2 > 0, D

(
C
i−gHD

αy(t), 0
)
≤M1. Then

D(a2i , 0) ≤
2−j−2

m
D2
(
(t1 − t2)� C

i−gHD
αy(c), 0

)
=

2−j−2

m
(t1 − t2)2M2

1

≤ 2−j−2

m
22jM2

1

=
2j−2

m
M2

1 .
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The proof is complete. �

Theorem 4.2.

Suppose that y is a fuzzy continuous function on the interval [0, 1]. If the fuzzy functions ym(t)
obtained by using Haar wavelet are the approximation of y(t), then ym(t) converges to y(t).

Proof:

According to the assumption, let ym(t) be the approximation of m-first sentence of y(t) obtained

by Haar wavelet. So if we prove the D
(
y(t), ym(t)

)
→ 0 tends to zero, then ym(t) converges to

y(t).

For this purpose, by using the definition of Hausdorff distance (Molliq et al. (2009)), we have

D
(
y(t), ym(t)

)
= D

( ∞∑
i=0

ai � hi(t),
m∑
i=0

ai � hi(t)
)

≤ D
(
a0 � h0, a0 � h0

)
⊕ · · · ⊕D

(
am � hm, am � hm

)
⊕D

( ∞∑
i=m+1

ai � hi(t), 0
)

= D
( ∞∑
i=m+1

ai � hi(t), 0
)

= D
( ∞∑
n=2m+1

an � hn(t), 0
)
.

So by applying Lemma 2.4, we get

D2
(
y(t), ym(t)

)
≤ D

( ∞∑
n=2m+1

an � hn(t), 0
)2

= D
( ∞∑
n1=2m+1

∞∑
n1=2m+1

an1
� an2

� hn1
hn2

, 0
)

≤ D
( ∞∑
n1=2m+1

∞∑
n1=2m+1

an1
� an2

�
∫ 1

0

hn1
hn2

dt, 0
)

=
1

m
D
( ∞∑
j=p+1

2j+1−1∑
n=2j

a2n, 0
)
.

It is enough to prove D
(∑∞

j=p+1

∑2j+1−1
n=2j a2n, 0

)
−→ 0. According to Theorem 4.1,

12
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D2
(
y(t), ym(t)

)
≤ 1

m
D
( ∞∑
j=p+1

2j+1−1∑
n=2j

a2n, 0
)

=
1

m

∞∑
j=p+1

2j+1−1∑
n=2j

D(a2n, 0)

≤ 1

m

∞∑
j=p+1

2j+1−1∑
n1=2j

2−3j−2

m
M2

=
M2

m2

∞∑
j=p+1

2−3j−2(2j+1 − 1− 2j + 1)

=
M2

3m2

1

m2

=
M2

3m4
.

So D
(
y(t), ym(t)

)
≤ M√

3m2
. We can see that D

(
y(t), ym(t)

)
−→ 0 when m −→ ∞. As a result

y(t) = ym(t). �

5. Numerical experiments

In this section, the proposed method is utilized to study three examples of the fuzzy fractional
differential equations. The computations associated with the examples are performed using Math-
ematica software.

Example 5.1.

Consider the following fuzzy Bagley-Torvik equation (Diethelm et al. (2002)),

{
gHD

2y(t)⊕ C
gHD

1.5y(t)⊕ y(t)	gH (t+ 1) = 0,

y(0, r) = [r, r + 1], y′gH(0, r) = [r, r − 2].

The exact value of this equation is y(t, r) = [r, r − 2](t+ 1).

By attention to method describe in detail, form = 8 we have the following approximation solutions
for y−(t, r) and y+(t, r), respectively.
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y−(t, r) =



0.2126t2 + r(1 + t− 0.2555t2), 0 ≤ t < 0.125;
−0.00105 + 0.0168t+ 0.1452t2 + r(1.0003 + 0.9950t− 0.2356t2), 0.125 ≤ t < 0.250;
−0.0036 + 0.0373t+ 0.1043t2 + r(0.9992 + 1.0038t− 0.2532t2), 0.25 ≤ t < 0.375;
−0.0082 + 0.0621t+ 0.0712t2 + r(1.0003 + 0.9975t− 0.2449t2), 0.375 ≤ t < 0.5;
−0.0156 + 0.0916t+ 0.0417t2 + r(0.9898 + 1.0398t− 0.2871t2), 0.5 ≤ t < 0.625;
−0.0263 + 0.1259t+ 0.0142t2 + r(0.9956 + 1.0212t− 0.2723t2), 0.625 ≤ t < 0.75;
−0.0411 + 0.1653t− 0.0120t2 + r(0.9888 + 1.0393t− 0.2843t2), 0.75 ≤ t < 0.875;
−0.0605 + 0.2097t− 0.0373t2 + r(1.0013 + 1.0106t− 0.2679t2), T rue.

y+(t, r) =



2 + 2t+ 0.3893t2 + r(−1− t− 0.2555t2), 0 ≤ t < 0.125;
1.9989 + 2.0168t+ 0.3220t2 + r(−0.9996− 1.0049t− 0.2356t2), 0.125 ≤ t < 0.250;
1.9963 + 2.0373t+ 0.2810t2 + r(−1.0007− 0.9961t− 0.2532t2), 0.25 ≤ t < 0.375;
1.9917 + 2.0621t+ 0.2480t2 + r(−0.9996− 1.0024t− 0.2449t2), 0.375 ≤ t < 0.5;
1.9843 + 2.0916t+ 0.2185t2 + r(−1.0101− 0.9601t− 0.2871t2), 0.5 ≤ t < 0.625;
1.9736 + 2.1259t+ 0.1910t2 + r(−1.0043− 0.9787t− 0.2723t2), 0.625 ≤ t < 0.75;
1.9588 + 2.1653t+ 0.1647t2 + r(−1.0111− 0.9606t− 0.2843t2), 0.75 ≤ t < 0.875;
1.9394 + 2.2097t+ 0.1394t2 + r(−0.9986− 0.9893t− 0.2679t2), T rue.

The exact and approximation solutions in Figure 1 and 2. Table 1 reports the computational results.
The results show that the approximate solutions are in good agreement with the exact solutions.

Figure 1. Graph of exact value (Left) and approximation value (Right) of Example 5.1 for 0 ≤ t ≤ 1 and 0 ≤ r ≤ 1
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Figure 2. Graph of exact value (Left) and approximation value (Right) of Example 5.1 for 0 ≤ t ≤ 1 and 0 ≤ r ≤ 1
and m = 32

y−(t, r) y+(t, r)
r t m = 8 m = 8

0.3 0.3 3.81639× 10−8 6.38378× 10−8

0.6 9.71445× 10−7 7.63278× 10−7

0.9 8.18789× 10−8 1.31839× 10−8

0.6 0.3 1.66533× 10−6 9.99201× 10−6

0.6 3.33067× 10−6 4.44089× 10−6

0.9 5.55112× 10−5 4.99693× 10−6

0.9 0.3 2.22045× 10−6 1.77636× 10−8

0.6 4.24624× 10−7 1.26745× 10−7

0.9 2.22045× 10−7 2.22045× 10−7

Table 1. Numerical results for Example 5.1

Example 5.2.

Consider the following fuzzy fractional differential equation:

{
gHD

2y(t)	gH 2gHDy(t)⊕ C
gHD

1

2y(t)	gH (6t	gH 6t2 ⊕ 16
5
√
π
t

5

2 + t3) = 0,

y(0, r) = 0, y′gH(0, r) = 0.

This equation has the exact solution y(t, r) = [0.5 + 1.5r, 6 − 4r]t3. By using the Haar wavelet
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method for m = 8, we have

y−(t, r) =



(0.0994 + 0.2983r)t2, 0 ≤ t < 0.125;
0.0029− 0.0469t+ 0.2874t2 + r(0.00881− 0.1409t+ 0.8622t2), 0.125 ≤ t < 0.250;
0.01468− 0.1409t+ 0.4753t2 + r(0.0441− 0.4229t+ 1.4261t2), 0.25 ≤ t < 0.375;
0.04110− 0.2818t+ 0.6632t2 + r(0.1233− 0.8456t+ 1.9898t2), 0.375 ≤ t < 0.5;
0.1613− 0.7042t+ 1.0387t2 + r(0.4840− 2.1127t+ 3.1162t2), 0.625 ≤ t < 0.75;
0.26681− 0.9854t+ 1.2262t2 + r(0.8004− 2.9564t+ 3.6786t2), 0.75 ≤ t < 0.875;
0.4101− 1.3131t+ 1.4134t2 + r(1.2305− 3.9395t+ 4.2404t2), 0.75 ≤ t < 0.875;
0.0880− 0.4696t+ 0.8510t2 + r(0.2641− 1.4090t+ 2.5532t2), T rue.

y+(t, r) =



(1.19354− 0.795695r)t2, 0 ≤ t < 0.125;
0.0352− 0.5639t+ 3.4491t2 + r(−0.0234 + 0.3759t− 2.2994t2), 0.125 ≤ t < 0.250;
0.1762− 1.6916t+ 5.7047t2 + r(−0.1174 + 1.1277t− 3.8031t2), 0.25 ≤ t < 0.375;
0.4932− 3.3827t+ 7.9595t2 + r(−0.3288 + 2.2551t− 5.3063t2), 0.375 ≤ t < 0.5;
1.9362− 8.4510t+ 12.4648t2 + r(−1.2908 + 5.6340t− 8.3098t2), 0.625 ≤ t < 0.75;
0.26681− 0.9854t+ 1.2262t2 + r(0.8004− 2.9564t+ 3.6786t2), 0.75 ≤ t < 0.875;
3.2017− 11.8256t+ 14.7145t2 + r(−2.1345 + 7.8837t− 9.8096t2), 0.75 ≤ t < 0.875;
4.9222− 15.7582t+ 16.9617t2 + r(−3.2814 + 10.5054t− 11.3078t2), 0.875 ≤ t < 1;
1.0566− 5.6362t+ 10.213t2 + r(−0.7044 + 3.7575t− 6.8086t2), T rue.

The exact and approximation solutions in Figures 3 and 4 for 0 ≤ r ≤ 1 and 0 ≤ t ≤ 1. The
computational results are reported in Table 2. The results show that the approximate solutions are
in good agreement with the exact solutions.

Figure 3. Graph of exact value (Left) and approximation value (Right) of Example 5.2 for 0 ≤ t ≤ 1 and 0 ≤ r ≤ 1
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Figure 4. Graph of exact value (Left) and approximation value (Right) of Example 5.1 for 0 ≤ t ≤ 1 and 0 ≤ r ≤ 1
and m = 32

y−(t, r) y+(t, r)
r t m = 32 m = 32

0.3 0.3 8.88178× 10−10 3.56218× 10−10

0.6 1.77636× 10−11 8.88178× 10−11

0.9 5.32907× 10−10 8.88175× 10−10

0.6 0.3 4.44089× 10−9 3.55271× 10−10

0.6 2.66454× 10−10 3.55271× 10−10

0.9 8.88178× 10−11 5.32907× 10−11

0.9 0.3 1.77636× 10−9 2.34636× 10−9

0.6 1.95399× 10−10 1.06581× 10−9

0.9 1.42109× 10−10 5.50671× 10−10

Table 2. Numerical results for Example 5.2

Example 5.3.

Consider the following fuzzy fractional differential equation:{
gHD

3

2y(t)⊕ y(t)	gH (t
5

2 + 5.8905√
π
t) = 0,

y(0, r) = 0, y′gH(0, r) = 0.

The exact fuzzy solution of the problem is y(t, r) = [2+3r, 11−6r]t
5

2 . This exact solution and the
approximation solution by the Haar wavelet method are shown in Figures 5 and 6. Table 3 shows
the approximate solutions obtained by the Haar wavelet method. It is evident from Table 3 that the
numerical solutions converge to the exact solution.
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Figure 5. Graph of exact (Left) and approximation (Right) solution of Example 5.3 for 0 ≤ t ≤ 1 and 0 ≤ r ≤ 1

Figure 6. Graph of exact (Left) and approximation (Right) value of y(t, r) of Example 5.3 for 0 ≤ t ≤ 1 and 0 ≤ r ≤ 1
and m = 8
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y−(t, r) y+(t, r)
r t m = 32 m = 32

0.3 0.3 1.85211× 10−10 1.03556× 10−10

0.6 1.54845× 10−10 1.08187× 10−10

0.9 1.24485× 10−10 1.12842× 10−10

0.6 0.3 2.43887× 10−10 5.17273× 10−11

0.6 1.89542× 10−10 7.97329× 10−11

0.9 1.35185× 10−10 1.07727× 10−10

0.9 0.3 1.11655× 10−10 8.68369× 10−10

0.6 6.46392× 10−11 6.24644× 10−10

0.9 2.40913× 10−10 3.80909× 10−10

Table 3. Numerical results for Example 5.3

6. Conclusion

We derive a numerical method for fuzzy fractional differential equations based on Haar wavelet
operational matrices of the fractional-order integration. Some examples were examined using the
Haar wavelet and the results show remarkable performance. So far no paper has used the Haar
wavelet method using generalized difference and fuzzy derivatives, and this is the first time we have
done so. In future research, we will investigate the solution of fuzzy nonlinear Volterra-Fredholm
integro-differential equations with arbitrary fuzzy and crisp kernels.
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