Applications and Applied Mathematics: An International Journal (AAM)

Qualitative Analysis of a Modified Leslie-Gower Predator-prey Model with Weak Allee Effect II

Manoj K. Singh
B. S. Bhadauria
Babasaheb Bhimrao Ambedkar University

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Biology Commons, Ordinary Differential Equations and Applied Dynamics Commons, and the Partial Differential Equations Commons

Recommended Citation

Singh, Manoj K. and Bhadauria, B. S. (2021). Qualitative Analysis of a Modified Leslie-Gower Predator-prey Model with Weak Allee Effect II, Applications and Applied Mathematics: An International Journal (AAM), Vol. 16, Iss. 1, Article 9.
Available at: https://digitalcommons.pvamu.edu/aam/vol16/iss1/9

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

Qualitative Analysis of a Modified Leslie-Gower Predator-prey Model with Weak Allee Effect II

${ }^{1 *}$ Manoj Kumar Singh and ${ }^{2}$ B.S. Bhadauria
${ }^{1}$ Department of Mathematics and Statistics $\quad{ }^{2}$ Department of Mathematics
Banasthali Vidyapith
Newai
Rajasthan, India
s.manojbbau@gmail.com
Babasaheb Bhimrao Ambedkar University
Lucknow, India
mathsbsb@yahoo.com

*Corresponding Author
Received: February 4, 2019; Accepted: May 3, 2019

Abstract

The article aims to study a modified Leslie-Gower predator-prey model with Allee effect II, affecting the functional response with the assumption that the extent to which the environment provides protection to both predator and prey is the same. The model has been studied analytically as well as numerically, including stability and bifurcation analysis. Compared with the predator-prey model without Allee effect, it is found that the weak Allee effect II can bring rich and complicated dynamics, such as the model undergoes to a series of bifurcations (Homoclinic, Hopf, Saddle-node and Bogdanov-Takens). The existence of Hopf bifurcation has been shown for models with (without) Allee effect and the local existence and stability of the limit cycle emerging through Hopf bifurcation has also been studied. The phase portrait diagrams are sketched to validate analytical and numerical findings.

Keywords: Leslie-Gower predator-prey model; Allee effect; stability; bifurcation; phase diagram

MSC 2010 No.: 92B05, 35B35, 34C23, 37G10

1. Introduction

Predator-prey interactions are the fundamental structure in population dynamics which is ubiquitous in the nature, viz. marine species, wild life species, atmosphere etc. These interactions are one of the main phenomenon in the regulation of the Earth's ecosystem. Consequently, a number of mathematical models have been proposed to study the qualitative behavior of these interactions after the pioneer work; Lotka-Volterra predator-prey model, proposed by Lotka (1925) and Volterra (1926) independently. Recently, Leslie-Gower predator-prey model (Leslie (1948); Leslie (1958); Leslie and Gower (1960)) has attracted much attentions. May (1973) improved the realism of Leslie-Gower predator-prey model, called Holling-Tanner predator-prey model and has been studied extensively by many researchers (Hsu and Hwang (1998); Hsu and Hwang (1999); Gasull et al. (1997); Sáez and González-Olivares (1999); Braza (2003)). Although Holling-Tanner predator-prey model has been applied to study many real world problems (Caughley (1976); Wollkind and Logan (1978); Wollkind et al. (1988)), but one of the main demerits of this model is that, at low densities of prey population, predator population can not switch to alternative prey since its growth will be limited by the fact that its most favorite food, the prey, is absent or is in short supply (Huang et al. (2014)). This model has been modified by Aziz-Alaoui and Daher Okiye (2003) and this modified model is known as modified Leslie-Gower predator-prey model. In modified Leslie-Gower predator-prey model the predator is a generalist, because at low prey population size, predator would then seek other food alternatives. A number of generalist predators exist in the nature, for example, the great skua Stercorarius skua in Shetland UK, little penguins at South Australia, the Peruvian booby, etc. (Feng and Kang (2015)).

Allee effect, an ecological phenomena, was first observed by an American ecologist Warder Clyde Allee (1931). Allee effect is any mechanism leading to a positive relationship between a component of individual fitness and the number or density of conspecifics (Stephens and Sutherland (1999); Stephens et al. (1999)). This effect has long been neglected, but now it has been observed that Allee effect may be one of the reasons for many complicated behaviours and may be a destabilizing force in the predator-prey systems (Zhou et al. (2005)). Allee effect may occur due to a verity of mechanisms such as difficulties in finding mates at the low population density, genetic inbreeding, demographic stochasticity or a reduction in cooperative interactions (Wang et al. (1999); Courchamp et al. (1999); Zhou et al. (2005)). On the basis of mechanisms Allee effect can be characterized in two different types, namely Allee effect I and Allee effect II. Mechanisms that may increase the intrinsic death rate or decrease the intrinsic birth rate of the prey population, such as, social thermoregulation, reduction of inbreeding and genetic drift is known as Allee effect I. Mechanisms that increase the predator predation function, such as, anti-predator defence, for example, anti-predator vigilance and aggression (Dennis (1989); Zhou et al. (2005); Côté and Gross (1993)) is known as Allee effect II.

Pal and Mandal (2014) studied the qualitative behaviour of a modified Leslie-Gower delayed predator-prey model with Beddington-DeAngelis type functional response in which the prey growth is governed by Allee effect. Cai et al. (2015) studied the dynamics of a Leslie-Gower predator-prey model with additive Allee effect on prey and showed that Allee effect may be one
of the reasons which increases the risk of ecological extinction. Feng and Kang (2015) studied the dynamical behaviours of a modified Leslie-Gower predator-prey model in the presence of Allee effects in both predator and prey species. Singh et al. (2018) studied a modified LeslieGower predator-prey model with double Allee effects affecting the prey growth function. Zhou et al. (2005) proposed Allee effect, affecting the functional response on two classical predator-prey models: 1) Lotka-Volterra model and 2) Leslie model. In this paper, they are concerned only the stability of the unique interior equilibrium point. By means of analytical and numerical simulations, they have shown that the Allee effect (Allee effect II) may be a destabilizing force in the predator-prey system.

There are very few literature available on predator-prey model with Allee effect II. The motive of this paper is to investigate the dynamical behavior of the modified Leslie-Gower predator-prey model with weak Allee effect II under the assumption that the extent to which the environment provides protection to both predator and prey is the same. To see the impact of Allee effect on modified Leslie-Gower predator-prey model, the proposed model has been compared with the modified Leslie-gower predator prey model with no Allee effect. The rest of the paper is organized as follows. In Section 2, the mathematical model is formulated. In Section 3, the conditions to the existence of possible equilibria of the model with and without Allee effect and their stability are established. In Section 4, bifurcations for the model with and without Allee effect are discussed. In Section 5, numerical simulations and phase portrait diagrams are given to validate our analytical findings. Finally, a brief discussion is given in Section 6.

2. Model Equations

We consider the following bidimensional predator-prey system, proposed by Aziz-Alaoui and Daher-Okiye (2003),

$$
\left\{\begin{array}{l}
\frac{d N}{d T}=r N\left(1-\frac{N}{K}\right)-\frac{e N P}{a_{1}+N} \tag{1}\\
\frac{d P}{d T}=s P\left(1-\frac{b P}{a_{2}+N}\right)
\end{array}\right.
$$

with the initial conditions $N(0)>0, P(0)>0$, where $N \equiv N(T)$ and $P \equiv P(T)$ are prey and predator density at time T, respectively. The parameters r, K, e, s and b are positive and represent intrinsic growth rate of prey, carrying capacity of prey in the absence of predator, maximal predator per capita consumption rate, intrinsic growth rate of predator, measure of the food quality that the prey provides for conversion into predator birth respectively, and a_{1} and a_{2} measures the extent to which the environment provides protection to prey and predator respectively. Many aspects of the model (1), including permanence, boundedness and global stability of solutions, have already been studied (Du et al. (2009); Zhu and Wang (2011)).

In order to reduce the complexities of computations, in this article it is assumed that the extent to which the environment provides protection to both predator and prey is same, that is, $a_{1}=a_{2}=a$.

Model (1) becomes

$$
\left\{\begin{array}{l}
\frac{d N}{d T}=r N\left(1-\frac{N}{K}\right)-\frac{e N P}{a+N} \tag{2}\\
\frac{d P}{d T}=s P\left(1-\frac{b P}{a+N}\right)
\end{array}\right.
$$

with the initial conditions $N(0)>0, P(0)>0$. Ji et al. (2009) and Ji et al. (2011) studied the long time behavior for model (2) with stochastic perturbation. Gupta and Chandra (2013) studied the effect of nonlinear prey harvesting on model (2). Singh et al. (2018) studied the model (2) in the presence of double Allee effect affecting the prey growth.

Consider the functional response is governed by Allee effect II, the model (2) becomes

$$
\left\{\begin{array}{l}
\frac{d N}{d T}=r N\left(1-\frac{N}{K}\right)-\frac{e N P}{a+N}\left(1+\frac{A}{N}\right) \tag{3}\\
\frac{d P}{d T}=s P\left(1-\frac{b P}{a+N}\right)
\end{array}\right.
$$

with the initial conditions $N(0)>0, P(0)>0$, where $A>0$ is the constant for Allee effect II. The bigger the A is, the stronger Allee effect II of the prey. When $A=0$, the functional response of model (3) is the same as in model (2). When $A=N$, the functional response of model (3) is the twice as in model (2). Therefore, if Allee effect II moves from weak to strong, the functional response becomes n times where $n \in(1,2)$.

Let: $N=K x, P=\frac{K y}{e}, T=\frac{1}{r} t$, model (3), becomes

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x(1-x)-\frac{(\alpha x+\beta) y}{m+x} \tag{4}\\
\frac{d y}{d t}=\rho y\left(1-\frac{\delta y}{m+x}\right)
\end{array}\right.
$$

with the initial conditions: $x(0)>0, y(0)>0$, where $\alpha=\frac{1}{r}, \beta=\frac{A}{r K}, m=\frac{a}{K}, \rho=\frac{s}{r}$, and $\delta=\frac{b}{e}$. For the biological meaning of the model variables, we only consider system (4) in the first quadrant, that is, we study the system in the region $\Omega=\{(x, y): x \geq 0, y \geq 0\}$.

3. Equilibrium Points and Their Qualitative Analysis

The equilibrium points of the system (4) are the non negative solutions of the system

$$
\begin{equation*}
\frac{d x}{d t}=\frac{d y}{d t}=0 \tag{5}
\end{equation*}
$$

where $\frac{d x}{d t}=0$ and $\frac{d y}{d t}=0$ are prey zero growth isocline and predator zero growth isocline, respectively.

3.1. Model with no Allee effect

Putting Allee effect constant $\beta=0$, system (4) has the following equilibrium points,
(a) $e_{0}=(0,0)$,
(b) $e_{1}=(1,0)$,
(c) $e_{2}=\left(0, \frac{m}{\delta}\right)$,
(d) $e_{3}=\left(\frac{\delta-\alpha}{\delta}, \frac{\delta(1+m)-\alpha}{\delta^{2}}\right)$, provided $\delta>\alpha$.

So, the number and location of equilibrium points of system (4) can be by the following Lemma.

Lemma 3.1.

(a) If $\delta \leq \alpha$, the system (4) has three equilibrium points e_{0}, e_{1} and e_{2}.
(b) If $\delta>\alpha$, the system (4) has four equilibrium points e_{0}, e_{1}, e_{2} and e_{3}.

Now, we discuss the stability of each equilibria obtained.

Theorem 3.1.

a) The equilibrium points e_{0} is always unstable.
b) The equilibrium point e_{1} is always saddle.
c) The equilibrium point e_{2} is asymptotically stable whenever $\delta<\alpha$ and unstable, whenever $\delta>\alpha$.
d) The equilibrium point e_{3}, if it exists, it is asymptotically stable, whenever $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)<\rho$ and unstable, whenever $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)>\rho$.

Proof:

a) The Jacobian matrix of the system (4) at the equilibrium point e_{0} is

$$
J_{e_{0}}=\left[\begin{array}{ll}
1 & 0 \\
0 & \rho
\end{array}\right]
$$

which confirms that the equilibrium point e_{0} is unstable.
b) The Jacobian matrix of the system (4) at the equilibrium point e_{1} is

$$
J_{e_{1}}=\left[\begin{array}{cc}
-1 & -\frac{\alpha}{1+m} \\
0 & \rho
\end{array}\right]
$$

which confirms that the equilibrium point e_{1} is a saddle point.
c) The Jacobian matrix of the system (4) at the equilibrium point e_{2} is

$$
J_{e_{2}}=\left[\begin{array}{cc}
\frac{\delta-\alpha}{\delta} & 0 \\
\frac{\rho}{\delta} & -\rho
\end{array}\right]
$$

which confirms that the equilibrium point e_{2} is a saddle point whenever $\delta>\alpha$ and asymptotically stable whenever $\delta<\alpha$.
d) The Jacobian matrix of the system (4) at an interior equilibrium point e_{3} is

$$
J_{e_{3}}=\left[\begin{array}{cc}
\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta(1+m)}{\delta(m+1)-\alpha}\right) & \frac{\alpha(\alpha-\delta)}{\delta(m+1)-\alpha} \\
\frac{\rho}{\delta} & -\rho
\end{array}\right]
$$

The determinant of Jacobian matrix $J_{e_{3}}$ is $\operatorname{det}\left(J_{e_{3}}\right)=\frac{\rho(\delta-\alpha)}{\delta}>0$, as $\delta>\alpha$ and trace is $\operatorname{tr}\left(J_{e_{3}}\right)=\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)-\rho$. If $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)>\rho$, point e_{3} is unstable and if $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)<\rho$, point e_{3} is asymptotically stable.

In Theorem 3.1, it is proved that the equilibrium point e_{3} and e_{2} are locally asymptotically stable, whenever $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)<\rho$ and $\delta<\alpha$, respectively. Now, we find the parametric conditions for which these points are globally asymptotically stable.

Theorem 3.2.

If e_{3} exists and is locally asymptotically stable, then it will be globally asymptotically stable in the region $R_{+}^{2}=\{(x, y): x>0, y>0, \alpha<\rho \delta\}$.

Proof:

Define a function $H(x, y)=\frac{1}{x y}$. Clearly, $H(x, y)>0$ in the interior of positive quadrant of $x y$ plane.

Let $f(x, y)=x(1-x)-\frac{\alpha x y}{m+x}$ and $g(x, y)=\rho y\left(1-\frac{\delta y}{m+x}\right)$, then

$$
\Delta(x, y)=\frac{\partial}{\partial x}(H f)+\frac{\partial}{\partial y}(H g)=-\frac{1}{y}-\frac{(\rho \delta-\alpha)}{(m+x)^{2}}-\frac{\rho m \delta+2 \beta}{x(m+x)^{2}}-\frac{\beta m}{x^{2}(m+x)^{2}}<0
$$

provided $\quad \alpha<\rho \delta, x>0, y>0$. Clearly, $\Delta(x, y)$ does not change sign and is not identically zero in the positive quadrant of $x y$ plane. Therefore, by Bendixson-Dulac criterion there exists no limit
cycle in the positive quadrant of $x y$ plane. Moreover, the origin is always a repeller, axial equilibria e_{1} is always a saddle and axial equilibria e_{2} is saddle whenever $\delta>\alpha$. The stable manifolds of the saddle equilibria e_{1} and e_{2} are x axis and y axis, respectively. So, if e_{3} is locally asymptotically stable then it will be globally asymptotically stable in the interior of positive quadrant of $x y$ plane (Hale (1969)).

Theorem 3.3.

If e_{2} is locally asymptotically stable, it will be globally asymptotically stable.

3.2. Model with Allee effect

System (4) has following equilibrium points.
(a) $E_{0}=(0,0)$,
(b) $E_{1}=(1,0)$,
(c) If $\delta \leq \alpha$, the system (4) has no interior equilibrium point. If $\delta>\alpha$, the system (4) has two interior equilibrium points $E_{2}=\left(x_{2}, y_{2}\right)$ and $E_{3}=\left(x_{3}, y_{3}\right)$, whenever $(\delta-\alpha)^{2}>4 \delta \beta$; a double positive interior equilibrium point $E_{4}=\left(x_{4}, y_{4}\right)$, whenever $(\delta-\alpha)^{2}=4 \delta \beta$; no interior equilibrium point, whenever $(\delta-\alpha)^{2}<4 \delta \beta$, where $x_{2}=\frac{\delta-\alpha+\sqrt{(\delta-\alpha)^{2}-4 \delta \beta}}{2 \delta}$, $x_{3}=\frac{\delta-\alpha-\sqrt{(\delta-\alpha)^{2}-4 \delta \beta}}{2 \delta}, x_{4}=\frac{\delta-\alpha}{2 \delta}$ and $y_{i}=\frac{m+x_{i}}{\delta}, i=2,3,4$.

So, the number and location of equilibrium points of system (4) can be summed up as the following Lemma.

Lemma 3.2.

(a) If $\delta \leq \alpha$, the system (4) has two equilibrium points E_{0} and E_{1}.
(b) If $\delta>\alpha$, the system (4) has
(i) four equilibrium points E_{0}, E_{1}, E_{2} and E_{3} whenever $(\delta-\alpha)^{2}>4 \delta \beta$.
(ii) three equilibrium points E_{0}, E_{1} and E_{4} whenever $(\delta-\alpha)^{2}=4 \delta \beta$.
(iii) two equilibrium points E_{0} and E_{1} whenever $(\delta-\alpha)^{2}<4 \delta \beta$.

Now, we discuss the local asymptotic stability of the boundary and interior equilibria of system (4) obtained above.

Theorem 3.4.
a) The equilibrium points E_{0} is always unstable.
b) The equilibrium point E_{1} is always saddle.
c) The equilibrium point E_{2}, if it exists, is an asymptotically stable point if $1-2 x_{2}-\frac{\alpha m-\beta}{\delta\left(m+x_{2}\right)}<$
ρ and unstable point if $1-2 x_{2}-\frac{\alpha m-\beta}{\delta\left(m+x_{2}\right)}>\rho$. The equilibrium points E_{3} and E_{4}, if they exist, are a saddle point and a degenerate singularity, respectively.

Proof:

a) The Jacobian matrix of the system (4) at the equilibrium point E_{0} is

$$
J_{E_{0}}=\left[\begin{array}{cc}
1 & -\frac{\beta}{m} \\
0 & \rho
\end{array}\right]
$$

which confirms that the equilibrium point E_{0} is unstable.
b) The Jacobian matrix of the system (4) at the equilibrium point E_{1} is

$$
J_{E_{1}}=\left[\begin{array}{cc}
-1 & -\frac{\alpha+\beta}{1+m} \\
0 & \rho
\end{array}\right]
$$

which confirms that the equilibrium point E_{1} is a saddle point.
c) The Jacobian matrix of the system (4) at an interior equilibrium point $E(x, y)$ (say) is

$$
J_{E}=\left[\begin{array}{lr}
1-2 x-\frac{\alpha m-\beta}{\delta(m+x)} & -\frac{\alpha x+\beta}{m+x} \\
\frac{\rho}{\delta} & -\rho
\end{array}\right]
$$

$\operatorname{det}\left(J_{E}\right)=\rho\left(-1+\frac{\alpha}{\delta}+2 x\right)$ and $\operatorname{tr}\left(J_{E}\right)=1-2 x-\frac{\alpha m-\beta}{\delta(m+x)}-\rho$. It is observed that $\operatorname{det}\left(J_{E_{2}}\right)>$ 0 , so the equilibrium point E_{2} is stable asymptotically, whenever $1-2 x_{2}-\frac{\alpha m-\beta}{\delta\left(m+x_{2}\right)}-\rho<0$ and unstable, whenever $1-2 x_{2}-\frac{\alpha m-\beta}{\delta\left(m+x_{2}\right)}-\rho>0$. Also $\operatorname{det}\left(J_{E_{3}}\right)<0$ which confirms that the equilibrium point E_{3} is a saddle. Moreover, $\operatorname{det}\left(J_{E_{4}}\right)=0$, so the equilibrium point E_{4} is a degenerate singularity.

In Theorem 3.4, it is shown that the interior equilibrium point E_{4} is a degenerate singularity and the system (4) may have complicated properties in the neighborhood of this point. Now, we discuss the dynamics of the system (4) in the neighborhood of the equilibrium point E_{4}.

Theorem 3.5.

The interior equilibrium point E_{4}, if it exists, is
a) a saddle node whenever $a_{10}+b_{01} \neq 0$ holds.
b) a cusp of codimension 2 whenever $a_{10}+b_{01}=0, \beta_{20} \neq 0$ and $2 \alpha_{20}+\beta_{11} \neq 0$ hold.

Proof:

First, we use the transformation $\hat{x}=x-x_{4}, \quad \hat{y}=y-y_{4}$ to shift the equilibrium point E_{4} of the system (4) to the origin and then expand the right-hand side of system as a Taylor series. The system (4) can be rewritten as

$$
\left\{\begin{array}{l}
\frac{d \hat{x}}{d t}=a_{10} \hat{x}+a_{01} \hat{y}+a_{20} \hat{x}^{2}+a_{11} \hat{x} \hat{y}+o\left|(\hat{x}, \hat{y})^{3}\right|, \tag{6}\\
\frac{d \hat{y}}{d t}=b_{10} \hat{x}+b_{01} \hat{y}+b_{20} \hat{x}^{2}+b_{11} \hat{x} \hat{y}+b_{02} y^{2}+o\left|(\hat{x}, \hat{y})^{3}\right|,
\end{array}\right.
$$

where $a_{10}=1-2 x_{4}-\frac{\alpha m-\beta}{\delta\left(m+x_{4}\right)}, \quad a_{01}=-\frac{\alpha x_{4}+\beta}{m+x_{4}}, \quad a_{20}=-1+\frac{(\alpha m-\beta) y_{4}}{\left(m+x_{4}\right)^{3}}, \quad a_{11}=$ $-\frac{\alpha m-\beta}{\left(m+x_{4}\right)^{2}}, \quad b_{10}=\frac{\rho}{\delta}, \quad b_{01}=-\rho, \quad b_{20}=-\frac{\rho}{\delta\left(m+x_{4}\right)}, \quad b_{11}=\frac{2 \rho}{m+x_{4}}, \quad b_{02}=-\frac{\rho \delta}{m+x_{4}}$.

If $a_{10}+b_{01} \neq 0$, that is, $\operatorname{tr}\left(J_{E_{4}}\right) \neq 0$, than one eigenvalue of the Jacobian matrix $J_{E_{4}}$ is zero and other is nonzero. Hence, the equilibrium point E_{4} is a saddle node.

Now, we consider the case $a_{10}+b_{01}=0$. The condition $a_{10}+b_{01}=0$ confirms that both eigenvalues of the Jacobian matrix $J_{E_{4}}$ are zero. Let $u_{1}=\hat{x}, u_{2}=a_{10} \hat{x}+a_{01} \hat{y}$, then system (6) reduces to

$$
\left\{\begin{array}{l}
\frac{d u_{1}}{d t}=u_{2}+\alpha_{20} u_{1}^{2}+\alpha_{11} u_{1} u_{2}+o\left|\left(u_{1}, u_{2}\right)^{3}\right| \tag{7}\\
\frac{d u_{2}}{d t}=\beta_{20} u_{1}^{2}+\beta_{11} u_{1} u_{2}+\beta_{02} u_{2}^{2}+o\left|\left(u_{1}, u_{2}\right)^{3}\right|
\end{array}\right.
$$

where $\alpha_{20}=\frac{a_{20} a_{01}-a_{10} a_{11}}{a_{01}}, \quad \alpha_{11}=\frac{a_{11}}{a_{01}}, \quad \beta_{20}=a_{10} a_{20}+a_{01} b_{20}-a_{10} b_{11}+\frac{b_{02} a_{10}^{2}}{a_{01}}-$ $\frac{a_{10}^{2} a_{11}}{a_{01}}, \quad \beta_{11}=b_{11}+\frac{a_{10} a_{11}}{a_{01}}-\frac{2 b_{02} a_{10}}{a_{01}}, \quad \beta_{02}=\frac{b_{02}}{a_{01}}$.

On using the transformation $v_{1}=u_{1}, v_{2}=u_{2}-\beta_{02} u_{1} u_{2}$, the system (7) reduces to

$$
\left\{\begin{array}{l}
\frac{d v_{1}}{d t}=v_{2}+\alpha_{20} v_{1}^{2}+\left(\alpha_{11}+\beta_{02}\right) v_{1} v_{2}+o\left|\left(v_{1}, v_{2}\right)^{3}\right| \tag{8}\\
\frac{d v_{2}}{d t}=\beta_{20} v_{1}^{2}+\beta_{11} v_{1} v_{2}+o\left|\left(v_{1}, v_{2}\right)^{3}\right|
\end{array}\right.
$$

Finally, using the transformation $z_{1}=v_{1}-\frac{1}{2}\left(\alpha_{11}+\beta_{02}\right) v_{1}^{2}, \quad z_{2}=v_{2}+\alpha_{20} v_{1}^{2}+o\left|\left(v_{1}, v_{2}\right)^{3}\right|$, the system (8) reduces to

$$
\left\{\begin{array}{l}
\frac{d z_{1}}{d t}=z_{2} \tag{9}\\
\frac{d z_{2}}{d t}=\beta_{20} z_{1}^{2}+\left(2 \alpha_{20}+\beta_{11}\right) z_{1} z_{2}+o\left|\left(z_{1}, z_{2}\right)^{3}\right|
\end{array}\right.
$$

If $\beta_{20} \neq 0$ and $2 \alpha_{20}+\beta_{11} \neq 0$ (non-degeneracy condition), the origin in $z_{1} z_{2}$ plane is a cusp of codimension 2, that is, E_{4} in $x y$-plane is a cusp of codimension 2.

4. Bifurcation Analysis

In this section, we investigate the bifurcations that occur in the system (4). Here, conditions for saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens bifurcation are derived (Xu and Liao (2013); Xu and Liao (2014); Xu et al. (2011b); Xu et al. (2011a); Xu et al. (2010); Xu et al. (2013); Xu and Shao (2012); Xiao and Ruan (1999); Singh et al. (2018); Perko (2001)).

4.1. Model with no Allee effect

4.1.1. Hopf bifurcation

In Theorem 3.1, it is shown that the unique interior equilibrium point of model (4) with no Allee effect is an asymptotically stable point, whenever $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)<\rho$ and unstable point, whenever $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)>\rho$. If $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)=\rho$, the trace of the Jacobian matrix $J_{e_{3}}$ is zero and determinant is positive, so, the eigenvalues of the Jacobian matrix $J_{e_{3}}$ are purely imaginary which confirms that equilibrium point e_{3} is either a weak focus or a center.

Theorem 4.1.

The system (4) enters to a Hopf bifurcation with respect to bifurcation parameter ρ at interior equilibrium point e_{3}, if it exist, whenever $\rho=\rho^{[h f]}$. Moreover, an unstable (stable) limit cycle arises around the point e_{3} if $\sigma>0(\sigma<0)$.

Proof:

Consider ρ be the Hopf bifurcation parameter. Then the threshold magnitude $\rho=\rho^{[h f]}=$ $\frac{\delta-\alpha}{\delta}\left(\frac{2 \alpha-\delta-\delta m}{\delta+\delta m-\alpha}\right)$ exists, such that $\operatorname{det}\left(J_{e_{3}}\right)>0$ and $\operatorname{tr}\left(J_{e_{3}}\right)=0$. Moreover, at $\rho=\rho^{[h f]}$, we have

$$
\begin{equation*}
\frac{d\left(\operatorname{tr}\left(J_{e_{3}}\right)\right)}{d \rho}=-1 \neq 0 \tag{10}
\end{equation*}
$$

Thus, the system (4) with no Allee effect holds transversality condition of Hopf bifurcation, which ensures that the system (4) with no Allee effect enters to Hopf bifurcation at the equilibrium point e_{3}.

Now, we calculate the first Lyapunov number σ at interior equilibrium point e_{3} by means of procedure as given in Perko (2001). Consider the transformation $x=u-\frac{\delta-\alpha}{\delta}, y=v-\frac{\delta(1+m)-\alpha}{\delta^{2}}$.

The system (4), in the vicinity of origin, can be written as
$\frac{d u}{d t}=a_{10} u+a_{01} v+a_{20} u^{2}+a_{11} u v+a_{02} v^{2}+a_{30} u^{3}+a_{21} u^{2} v+a_{12} u v^{2}+a_{03} v^{3}+P(u, v)$,
$\frac{d v}{d t}=b_{10} u+b_{01} v+b_{20} u^{2}+b_{11} u v+b_{02} v^{2}+b_{30} u^{3}+b_{21} u^{2} v+b_{12} u v^{2}+b_{03} v^{3}+Q(u, v)$,
where $a_{10}=\frac{\delta-\alpha}{\delta}\left(\frac{\alpha}{\delta(m+1)-\alpha}-1\right), \quad a_{01}=\frac{\alpha(\alpha-\delta)}{\delta(m+1)-\alpha}, \quad a_{20}=-1+$
$\frac{\alpha \delta m}{(\delta(m+1)-\alpha)^{2}}, \quad a_{11}=-\frac{\alpha \delta^{2} m}{(\delta(m+1)-\alpha)^{2}}, \quad a_{02}=0, \quad a_{30}=-\frac{\alpha \delta^{2} m}{(\delta(m+1)-\alpha)^{3}}, \quad a_{21}=$
$\frac{\alpha \delta^{3} m}{(\delta(m+1)-\alpha)^{3}}, \quad a_{12}=0, \quad a_{03}=0, \quad b_{10}=\frac{\rho}{\delta}, \quad b_{01}=-\rho, \quad b_{20}=-\frac{\rho}{\delta(m+1)-\alpha}, \quad b_{11}=$ $\frac{2 \rho \delta}{\delta(m+1)-\alpha}, \quad b_{02}=-\frac{\rho \delta^{2}}{\delta(m+1)-\alpha}, \quad b_{30} \quad=\frac{\rho \delta}{(\delta(m+1)-\alpha)^{2}}, \quad b_{21} \quad=$ $-\frac{2 \rho \delta^{2}}{(\delta(m+1)-\alpha)^{2}}, \quad b_{12}=\frac{\rho \delta^{3}}{(\delta(m+1)-\alpha)^{2}}, \quad b_{03}=0, \quad P(u, v)=\sum_{i+j=4}^{\infty} a_{i j} u^{i} v^{j}$ and $Q(u, v)=\sum_{i+j=4}^{\infty} b_{i j} u^{i} v^{j}$.

Hence, the first Lyapunov number σ for the planer system is

$$
\begin{aligned}
\sigma=- & \frac{3 \pi}{2 a_{01} \Delta^{3 / 2}}\left\{\left[a_{10} b_{10}\left(a_{11}^{2}+a_{11} b_{02}+a_{02} b_{11}\right)+a_{10} a_{01}\left(b_{11}^{2}+a_{20} b_{11}+a_{11} b_{02}\right)\right.\right. \\
& +b_{10}^{2}\left(a_{11} a_{02}+2 a_{02} b_{02}\right)-2 a_{10} b_{10}\left(b_{02}^{2}-a_{20} a_{02}\right)-2 a_{10} a_{01}\left(a_{20}^{2}-b_{20} b_{02}\right) \\
& \left.-a_{01}^{2}\left(2 a_{20} b_{20}+b_{11} b_{20}\right)+\left(a_{01} b_{10}-2 a_{10}^{2}\right)\left(b_{11} b_{02}-a_{11} a_{20}\right)\right] \\
& \left.-\left(a_{10}^{2}+a_{01} b_{10}\right)\left[3\left(b_{10} b_{03}-a_{01} a_{30}\right)+2 a_{10}\left(a_{21}+b_{12}\right)+\left(b_{10} a_{12}-a_{01} b_{21}\right)\right]\right\},
\end{aligned}
$$

where $\Delta=\rho \frac{\delta-\alpha}{\delta}$. If $\sigma>0$, system (4) enters to the subcritical Hopf bifurcation and if $\sigma<0$ system (4) enters supercritical Hopf bifurcation.

4.2. Model with Allee effect

4.2.1. Hopf bifurcation

The similar discussion yield the following theorem.

Theorem 4.2.

The system (4) enters to a Hopf bifurcation with respect to bifurcation parameter ρ at interior
equilibrium point E_{2}, if it exist, whenever $\rho=\rho^{[h f]}$, where $\rho^{[h f]}=1-2 x_{2}-\frac{\alpha m-\beta}{\delta\left(m+x_{2}\right)}$. Moreover, an unstable (stable) limit cycle arises around the point E_{2} if $\sigma>0(\sigma<0)$.

4.2.2. Saddle-node bifurcation

In Section 3, it is shown that if $\delta>\alpha$, the system (4) has two positive interior equilibrium points E_{2} and E_{3} whenever $(\delta-\alpha)^{2}>4 \delta \beta$, and these two interior equilibrium points coincide with each other and a unique interior equilibrium point E^{*} is obtained whenever $(\delta-\alpha)^{2}=4 \delta \beta$. Also, the system (4) has no positive interior equilibrium points whenever $(\delta-\alpha)^{2}<4 \delta \beta$. Thus, the number of interior equilibrium points of the system (4) change from two to zero. The annihilation of positive interior equilibrium points of the system (4) are may be due to the existence of saddlenode bifurcation. In Theorem 3.5, it is proved that the unique interior equilibrium point E_{4} is a saddle-node whenever $a_{10}+b_{01} \neq 0$. Now, we show that the system (4) enters to a saddlenode bifurcation at the equilibrium point E_{4}, whenever $a_{10}+b_{01} \neq 0$. To ensure that system (4) undergoes to a saddle-node bifurcation, we consider Allee effect parameter, β, as the bifurcation parameter and apply Sotomayor's theorem (Perko (2001)).

Theorem 4.3.

The system (4) enters to a saddle-node bifurcation with respect to the bifurcation parameter β at point E_{4}, if it exists, whenever $a_{10}+b_{01} \neq 0$ and $\beta=\beta^{[S N]}=\frac{(\delta-\alpha)^{2}}{4 \delta}$.

Proof:

We have $\operatorname{det}\left(J_{E_{4}}\right)=0$ and $a_{10}+b_{01} \neq 0$. Therefore, one eigenvalue of the Jacobian matrix $J_{E_{4}}$ is zero. The other eigenvalue has negative (positive) real part if $\operatorname{tr}\left(J_{E_{4}}\right)<0\left(\operatorname{tr}\left(J_{E_{4}}\right)>0\right)$. Suppose V and W be the eigenvectors corresponding to zero eigenvalue of the matrix $J_{E_{4}}$ and $J_{E_{4}}^{T}$, respectively. Then

$$
V=\left[\begin{array}{l}
\delta \\
1
\end{array}\right], \quad W=\left[\begin{array}{c}
-\frac{\rho\left(m+x_{4}\right)}{\alpha x_{4}+\beta} \\
1
\end{array}\right]
$$

Also, we have,

$$
F_{\beta}\left(E_{4}, \beta^{[S N]}\right)=\left[\begin{array}{c}
-\frac{1}{\delta} \\
0
\end{array}\right], \quad D^{2} F\left(E_{4}, \beta^{[S N]}\right)=\left[\begin{array}{c}
-2 \delta^{2} \\
0
\end{array}\right] .
$$

Therefore,

$$
W^{T} F_{\beta}\left(E_{4}, \beta^{[S N]}\right)=\frac{\rho}{\delta}\left(\frac{x_{4}+m}{\alpha x_{4}+\beta}\right) \neq 0,
$$

and

$$
W^{T}\left[D^{2} F\left(E_{4}, \beta^{[S N]}\right)(V, V)\right]=\frac{2 \rho \delta^{2}\left(x_{4}+m\right)}{\alpha x_{4}+\beta} \neq 0 .
$$

Thus, the transversality condition for saddle-node bifurcation are satisfied. Therefore, the system undergoes to a saddle-node bifurcation of co-dimension 1 at E_{4}.

4.2.3. Bogdanov-Takens bifurcation

Until now we have discussed the bifurcations for the model (4) of codimension 1 only, now we shall discuss the Bogdanov-Takens bifurcation of codimension 2. In Theorem 3.5, it is shown that the equilibrium point E_{4} is a cusp of co-dimension 2 , whenever $a_{10}+b_{01}=0, \beta_{20} \neq 0$ and $2 \alpha_{20}+\beta_{11} \neq 0$ hold. We choose parameters β and ρ as the bifurcation parameters. The Bogdanov-Taken point (in brief, BT-point) (β_{0}, ρ_{0}) in the parameter space is the intersection point of the saddle-node bifurcation curve and the Hopf-bifurcation curve. By means of the technique discussed in Xiao and Ruan (1999) and Lai et al. (2010), we shall derive a normal form of the BT bifurcation for system (4) and obtain the analytical expressions for three bifurcation curves saddle-node, Hopf and homoclinic in a small neighborhood of BT point.

Theorem 4.4.

The system (4) undergoes a Bogdanov-Takens bifurcation with respect to the bifurcation parameters β and ρ around the equilibrium point E_{4}, whenever $1-2 x_{4}-\frac{\alpha m-\beta}{\delta\left(m+x_{4}\right)}=\rho, \beta_{20} \neq 0$ and $2 \alpha_{20}+\beta_{11} \neq 0$. Moreover, three bifurcation curves in $\lambda_{1} \lambda_{2}$ plane exist through the B-T point and they are given by,

Saddle-node curve: $S N=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{1}\left(\lambda_{1}, \lambda_{2}\right)=0\right\}$,
Hopf bifurcation curve:
$H=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=\frac{\gamma_{11}}{\sqrt{ \pm \gamma_{20}}} \sqrt{-\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)}, \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)<0\right\}$,
Homoclinic bifurcation curve:
$H L=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=\frac{5 \gamma_{11}}{7 \sqrt{ \pm \gamma_{20}}} \sqrt{-\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)}, \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)<0\right\}$.

Proof:

Suppose the bifurcation parameters β and ρ vary in a small domain of BT-point and ($\beta_{0}+\lambda_{1}, \rho_{0}+$ λ_{2}) is a point in the neighborhood of the BT-point, where λ_{1}, λ_{2} are small. Thus, the system (4)
reduces to

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x(1-x)-\frac{\left(\alpha x+\beta+\lambda_{1}\right) y}{m+x} \tag{11}\\
\frac{d y}{d t}=\left(\rho+\lambda_{2}\right) y\left(1-\frac{\delta y}{m+x}\right)
\end{array}\right.
$$

The system (11) is C^{∞} smooth with respect to the variables x, y in a small neighbourhood of $\left(\beta_{0}, \rho_{0}\right)$.

Define $z_{1}=x-x_{4}, \quad z_{2}=y-y_{4}$. Then the system (11) reduces to

$$
\left\{\begin{array}{l}
\frac{d z_{1}}{d t}=\bar{a}_{00}+\bar{a}_{10} z_{1}+\bar{a}_{01} z_{2}+\bar{a}_{20} z_{1}^{2}+\bar{a}_{11} z_{1} z_{2}+\bar{a}_{02} z_{2}^{2}+R_{1}\left(z_{1}, z_{2}\right) \tag{12}\\
\frac{d z_{2}}{d t}=\bar{b}_{00}+\bar{b}_{10} z_{1}+\bar{b}_{01} z_{2}+\bar{b}_{20} z_{1}^{2}+\bar{b}_{11} z_{1} z_{2}+\bar{b}_{02} z_{2}^{2}+R_{2}\left(z_{1}, z_{2}\right)
\end{array}\right.
$$

where $\bar{a}_{00}=-\frac{\lambda_{1}}{\delta}, \quad \bar{a}_{10}=1-2 x_{4}-\frac{\alpha m-\beta_{0}-\lambda_{1}}{\delta\left(m+x_{4}\right)}, \quad \bar{a}_{01}=-\frac{\alpha x_{4}+\beta_{0}+\lambda_{1}}{m+x_{4}}, \quad \bar{a}_{20}=$ $-1+\frac{\alpha m-\beta_{0}-\lambda_{1}}{\delta\left(m+x_{4}\right)^{2}}, \quad \bar{a}_{11}=-\frac{\alpha m-\beta_{0}-\lambda_{1}}{\left(m+x_{4}\right)^{2}}, \quad \bar{a}_{02}=0, \quad \bar{b}_{00}=0, \quad \bar{b}_{10}=\frac{\rho_{0}+\lambda_{2}}{\delta}, \quad \bar{b}_{01}=$ $-\left(\rho_{0}+\lambda_{2}\right), \quad \bar{b}_{20}=-\frac{\rho_{0}+\lambda_{2}}{\delta\left(m+x_{4}\right)}, \quad \bar{b}_{11}=\frac{2\left(\rho_{0}+\lambda_{2}\right)}{m+x_{4}}, \quad \bar{b}_{02}=-\frac{\left(\rho_{0}+\lambda_{2}\right) \delta}{m+x_{4}}$ and R_{1}, R_{2} are the power series in $\left(z_{1}, z_{2}\right)$ with powers $z_{1}^{i} z_{2}^{j}$ satisfying $i+j \geq 3$.

Now, on introducing the affine transformation $y_{1}=z_{1}, y_{2}=\bar{a}_{10} z_{1}+\bar{a}_{01} z_{2}$ in the system (12), we get

$$
\left\{\begin{array}{l}
\frac{d y_{1}}{d t}=\xi_{00}(\lambda)+y_{2}+\xi_{20}(\lambda) y_{1}^{2}+\xi_{11}(\lambda) y_{1} y_{2}+\bar{R}_{1}\left(y_{1}, y_{2}\right) \tag{13}\\
\frac{d y_{2}}{d t}=\eta_{00}(\lambda)+\eta_{10}(\lambda) y_{1}+\eta_{01}(\lambda) y_{2}+\eta_{20}(\lambda) y_{1}^{2}+\eta_{11}(\lambda) y_{1} y_{2}+\eta_{02}(\lambda) y_{2}^{2}+\bar{R}_{2}\left(y_{1}, y_{2}\right)
\end{array}\right.
$$

where $\xi_{00}(\lambda)=\bar{a}_{00}(\lambda), \quad \xi_{20}(\lambda)=\frac{\left(\bar{a}_{01} \bar{a}_{20}-\bar{a}_{11} \bar{a}_{10}\right)}{\bar{a}_{01}}, \quad \xi_{11}(\lambda)=\frac{\bar{a}_{11}}{\bar{a}_{01}}, \quad \eta_{00}(\lambda)=$ $\bar{a}_{10} \bar{a}_{00}, \quad \eta_{10}(\lambda)=\bar{a}_{01} \bar{b}_{10}-\bar{a}_{10} \bar{b}_{01}, \quad \eta_{01}(\lambda)=\bar{a}_{10}+\bar{b}_{01}, \quad \eta_{20}(\lambda)=$ $\frac{\bar{a}_{01} \bar{a}_{10} \bar{a}_{20}+\bar{a}_{01}^{2} \bar{b}_{20}-\bar{a}_{10}^{2} \bar{a}_{11}-\bar{a}_{10} \bar{a}_{01} \bar{b}_{11}+\bar{b}_{02} \bar{a}_{10}^{2}}{\bar{a}_{01}}, \quad \eta_{11}=\frac{\bar{a}_{10} \bar{a}_{11}+\bar{a}_{01} \bar{b}_{11}-2 \bar{a}_{10} \bar{b}_{02}}{\bar{a}_{01}}, \quad \eta_{02}(\lambda)=$ $\frac{\bar{b}_{02}}{\bar{a}_{01}}$ and \bar{R}_{1}, \bar{R}_{2} are the power series in $\left(y_{1}, y_{2}\right)$ with powers $y_{1}^{i} y_{2}^{j}$ satisfying $i+j \geq 3$.

Next, consider C^{∞} change of coordinates in the small neighborhood of $(0,0): u_{1}=y_{1}-\frac{1}{2}\left(\xi_{11}+\right.$
$\left.\eta_{02}\right) y_{1}^{2}, \quad u_{2}=y_{2}+\xi_{20} y_{1}^{2}-\eta_{02} y_{1} y_{2}$. Then the system (13) reduces to

$$
\left\{\begin{array}{l}
\frac{d u_{1}}{d t}=\zeta_{00}+\zeta_{10} u_{1}+u_{2}+\zeta_{20} u_{1}^{2}+\hat{R}_{1}\left(u_{1}, u_{2}\right) \tag{14}\\
\frac{d u_{2}}{d t}=\theta_{00}+\theta_{10} u_{1}+\theta_{01} u_{2}+\theta_{20} u_{1}^{2}+\theta_{11} u_{1} u_{2}+\hat{R}_{2}\left(u_{1}, u_{2}\right)
\end{array}\right.
$$

where $\zeta_{00}=\xi_{00}, \quad \zeta_{10}=-\xi_{00}\left(\xi_{11}+\eta_{02}\right), \quad \zeta_{20}=-\frac{1}{2} \xi_{00}\left(\xi_{11}+\eta_{02}\right)^{2}, \quad \theta_{00}=\eta_{00}, \quad \theta_{10}=$ $\eta_{10}+2 \xi_{20} \xi_{00}-\eta_{02} \eta_{00}, \quad \theta_{01}=\eta_{01}-\eta_{02} \xi_{00}, \quad \theta_{20}=\frac{1}{2}\left(\xi_{11}+\eta_{02}\right)\left(\eta_{10}+2 \xi_{20} \xi_{00}-\eta_{02} \eta_{00}\right)-$ $\xi_{20}\left(\eta_{01}-\eta_{02} \xi_{00}\right)+\eta_{20}-\eta_{02} \eta_{01}, \quad \theta_{11}=\eta_{11}+2 \xi_{20}-\xi_{10} \eta_{02}-\xi_{00} \eta_{02}^{2}+\eta_{02}\left(\eta_{01}-\eta_{02} \xi_{00}\right)$, and \hat{R}_{1}, \hat{R}_{2} are the power series in $\left(u_{1}, u_{2}\right)$ with powers $u_{1}^{i} u_{2}^{j}$ satisfying $i+j \geq 3$.

Again consider C^{∞} change of coordinates in the small neighborhood of $(0,0): v_{1}=u_{1}, \quad v_{2}=$ $\zeta_{00}+\zeta_{10} u_{1}+u_{2}+\zeta_{20} u_{1}^{2}$ which transformed the system (14) into

$$
\left\{\begin{array}{l}
\frac{d v_{1}}{d t}=v_{2}+s_{1}\left(v_{1}, v_{2}\right) \tag{15}\\
\frac{d v_{2}}{d t}=\gamma_{00}+\gamma_{10} v_{1}+\gamma_{01} v_{2}+\gamma_{20} v_{1}^{2}+\gamma_{11} v_{1} v_{2}+s_{2}\left(v_{1}, v_{2}\right)
\end{array}\right.
$$

where $\gamma_{00}=\theta_{00}-\theta_{01} \zeta_{00}, \quad \gamma_{10}=\theta_{10}-\theta_{01} \zeta_{10}-\zeta_{00} \theta_{11}, \quad \gamma_{01}=\zeta_{10}+\theta_{01}, \quad \gamma_{20}=\theta_{20}-\theta_{01} \zeta_{20}-$ $\zeta_{10} \theta_{11}, \quad \gamma_{11}=\theta_{11}+2 \zeta_{20}$ and $s_{1}\left(v_{1}, v_{2}\right), s_{2}\left(v_{1}, v_{2}\right)$ are the power series in $\left(v_{1}, v_{2}\right)$ with powers $v_{1}^{i} v_{2}^{j}$ satisfying $i+j \geq 3$.

Next, we consider C^{∞} change of coordinates in the small neighbourhood of $(0,0): w_{1}=v_{1}, w_{2}=$ $v_{2}+s_{1}\left(v_{1}, v_{2}\right)$ which transformed the system (15) into

$$
\left\{\begin{array}{l}
\frac{d w_{1}}{d t}=w_{2} \tag{16}\\
\frac{d w_{2}}{d t}=\gamma_{00}+\gamma_{10} w_{1}+\gamma_{01} w_{2}+\gamma_{20} w_{1}^{2}+\gamma_{11} w_{1} w_{2}+F_{1}\left(w_{1}\right)+w_{2} F_{2}\left(w_{1}\right)+w_{2}^{2} F_{3}\left(w_{1}, w_{2}\right)
\end{array}\right.
$$

where F_{1}, F_{2} and F_{3} are the power series in w_{1} and $\left(w_{1}, w_{2}\right)$ with powers $w_{1}^{k_{1}}, w_{1}^{k_{2}}$ and $w_{1}^{i} w_{2}^{j}$ satisfying $k_{1} \geq 3, k_{2} \geq 2$ and $i+j \geq 1$, respectively.

It is cumbersome to obtain the sign of $\gamma_{20}(0)$ analytically. Therefore, we consider the following two cases.

Case I: $\quad \gamma_{20}(0)<0 . \quad$ To make the sign $\gamma_{20}(0)$ positive we consider the transformation
$Z_{1}=-w_{1}, \quad Z_{2}=w_{2}, \quad \tau=-t$. The system (16) reduces to

$$
\left\{\begin{array}{l}
\frac{d Z_{1}}{d \tau}=Z_{2} \tag{17}\\
\frac{d Z_{2}}{d \tau}=-\gamma_{00}+\gamma_{10} Z_{1}-\gamma_{20} Z_{1}^{2}+R_{1}\left(Z_{1}\right)-\gamma_{01} Z_{2}+\gamma_{11} Z_{1} Z_{2}+Z_{2} R_{2}\left(Z_{1}\right)+Z_{2}^{2} R_{3}\left(Z_{1}, Z_{2}\right)
\end{array}\right.
$$

where R_{1}, R_{2} and R_{3} are the power series in Z_{1} and $\left(Z_{1}, Z_{2}\right)$ with powers $Z_{1}^{k_{1}}, Z_{1}^{k_{2}}$ and $Z_{1}^{i} Z_{2}^{j}$ satisfying $k_{1} \geq 3, k_{2} \geq 2$ and $i+j \geq 1$, respectively.

Applying the Malgrange preparation theorem, we have

$$
\begin{equation*}
-\gamma_{00}+\gamma_{10} Z_{1}-\gamma_{20} Z_{1}^{2}+R_{1}\left(w_{1}\right)=\left(Z_{1}^{2}-\frac{\gamma_{10}}{\gamma_{20}} Z_{1}+\frac{\gamma_{00}}{\gamma_{20}}\right) B_{1}\left(w_{1}, \lambda\right) \tag{18}
\end{equation*}
$$

where $B_{1}(0, \lambda)=-\gamma_{20}$ and B_{1} is a power series of Z_{1} whose coefficients depend on parameters $\left(\lambda_{1}, \lambda_{2}\right)$.

Let $X_{1}=Z_{1}, X_{2}=\frac{Z_{2}}{\sqrt{-\gamma_{20}}}$, and $d \Gamma=\sqrt{-\gamma_{20}} d \tau$. Then, the system (17) reduces to

$$
\left\{\begin{array}{l}
\frac{d X_{1}}{d \Gamma}=X_{2} \tag{19}\\
\frac{d X_{2}}{d \Gamma}=\frac{\gamma_{00}}{\gamma_{20}}-\frac{\gamma_{10}}{\gamma_{20}} X_{1}-\frac{\gamma_{01}}{\sqrt{-\gamma_{20}}} X_{2}+X_{1}^{2}+\frac{\gamma_{11}}{\sqrt{-\gamma_{20}}} X_{1} X_{2}+\bar{S}\left(X_{1}, X_{2}, \lambda\right)
\end{array}\right.
$$

where $\bar{S}\left(X_{1}, X_{2}, 0\right)$ is a power series in $\left(X_{1}, X_{2}\right)$ with powers $X_{1}^{i} X_{2}^{j}$ satisfying $i+j \geq 3$ with $j \geq 2$.

Applying the parameter dependent affine transformation $Y_{1}=X_{1}-\frac{\gamma_{10}}{2 \gamma_{20}}, Y_{2}=X_{2}$ in the system (19) and using Taylor series expansion, we get

$$
\left\{\begin{array}{l}
\frac{d Y_{1}}{d \Gamma}=Y_{2} \tag{20}\\
\frac{d Y_{2}}{d \Gamma}=\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)+\mu_{2}\left(\lambda_{1}, \lambda_{2}\right) Y_{2}+Y_{1}^{2}+\frac{\gamma_{11}}{\sqrt{-\gamma_{20}}} Y_{1} Y_{2}+\overline{\bar{S}}\left(Y_{1}, Y_{2}, \mu\right)
\end{array}\right.
$$

where $\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)=\frac{\gamma_{00}}{\gamma_{20}}-\frac{\gamma_{10}^{2}}{4 \gamma_{20}^{2}}, \quad \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=-\frac{\gamma_{01}}{\sqrt{-\gamma_{20}}}+\frac{\gamma_{11} \gamma_{10}}{2\left(-\gamma_{20}\right)^{\frac{3}{2}}}$ and $\overline{\bar{S}}\left(Y_{1}, Y_{2}, 0\right)$ is a power series in $\left(Y_{1}, Y_{2}\right)$ with powers $Y_{1}^{i} Y_{2}^{j}$ satisfying $i+j \geq 3$ with $j \geq 2$.

Case $I I: \quad \gamma_{20}(0)>0 . \quad$ By Malgrange preparation theorem and by the transformation $X_{1}=$
$Z_{1}, X_{2}=\frac{Z_{2}}{\sqrt{\gamma_{20}}} d \Gamma=\sqrt{\gamma_{20}} d \tau$, system (16) reduces to

$$
\left\{\begin{array}{l}
\frac{d X_{1}}{d \Gamma}=X_{2} \tag{21}\\
\frac{d X_{2}}{d \Gamma}=\frac{\gamma_{00}}{\gamma_{20}}+\frac{\gamma_{10}}{\gamma_{20}} X_{1}+\frac{\gamma_{01}}{\sqrt{\gamma_{20}}} X_{2}+X_{1}^{2}+\frac{\gamma_{11}}{\sqrt{\gamma_{20}}} X_{1} X_{2}+\bar{S}\left(X_{1}, X_{2}, \lambda\right)
\end{array}\right.
$$

where $\bar{S}\left(X_{1}, X_{2}, 0\right)$ is a power series in $\left(X_{1}, X_{2}\right)$ with powers $X_{1}^{i} X_{2}^{j}$ satisfying $i+j \geq 3$ with $j \geq 2$.

Now, applying the parameter dependent affine transformation $Y_{1}=X_{1}+\frac{\gamma_{10}}{2 \gamma_{20}}, Y_{2}=X_{2}$ in the system (21) and using Taylor series expansion, we get

$$
\left\{\begin{array}{l}
\frac{d Y_{1}}{d \Gamma}=Y_{2} \tag{22}\\
\frac{d Y_{2}}{d \Gamma}=\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)+\mu_{2}\left(\lambda_{1}, \lambda_{2}\right) Y_{2}+Y_{1}^{2}+\frac{\gamma_{11}}{\sqrt{\gamma_{20}}} Y_{1} Y_{2}+\overline{\bar{S}}\left(Y_{1}, Y_{2}, \mu\right)
\end{array}\right.
$$

where $\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)=\frac{\gamma_{00}}{\gamma_{20}}-\frac{\gamma_{10}^{2}}{4 \gamma_{20}^{2}}, \quad \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=\frac{\gamma_{01}}{\sqrt{\gamma_{20}}}-\frac{\gamma_{11} \gamma_{10}}{2\left(\gamma_{20}\right)^{\frac{3}{2}}}$ and $\overline{\bar{S}}\left(Y_{1}, Y_{2}, 0\right)$ is a power series in $\left(Y_{1}, Y_{2}\right)$ with powers $Y_{1}^{i} Y_{2}^{j}$ satisfying $i+j \geq 3$ with $j \geq 2$.

If the determinant of the matrix

$$
\left[\begin{array}{ll}
\frac{\partial \mu_{1}}{\partial \lambda_{1}} & \frac{\partial \mu_{1}}{\partial \lambda_{2}} \\
\frac{\partial \mu_{2}}{\partial \lambda_{1}} & \frac{\partial \mu_{2}}{\partial \lambda_{2}}
\end{array}\right] \neq 0,
$$

then the parameters $\mu_{1}\left(\lambda_{1}, \lambda_{2}\right), \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)$ are independent. Hence, the systems (20) and (22) are topologically equivalent to the normal form of the Bogdanov-Takens bifurcation as given below,

$$
\left\{\begin{array}{l}
\frac{d Z_{1}}{d t}=Z_{2} \tag{23}\\
\frac{d Z_{2}}{d t}=\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)+\mu_{2}\left(\lambda_{1}, \lambda_{2}\right) Z_{2}+Z_{1}^{2} \pm Z_{1} Z_{2}
\end{array}\right.
$$

Thus, system (4) undergoes to Bogdanov-Takens bifurcation. There exist bifurcation curves which divides the bifurcation plane into four regions (Perko (2001)). The local representations of the bifurcation curves in the $\lambda_{1} \lambda_{2}$ plane are

Saddle-node curve: $S N=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{1}\left(\lambda_{1}, \lambda_{2}\right)=0\right\}$,

Hopf bifurcation curve:
$H=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=\frac{\gamma_{11}}{\sqrt{ \pm \gamma_{20}}} \sqrt{-\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)}, \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)<0\right\}$,
Homoclinic bifurcation curve:
$H L=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=\frac{5 \gamma_{11}}{7 \sqrt{ \pm \gamma_{20}}} \sqrt{-\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)}, \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)<0\right\}$.

5. Numerical Simulation

In this section, numerical simulations are carried out to support the analytical results obtained above. The MATHEMATICA 7.0 software has been used to plot phase portrait diagrams.

1) $\alpha=0.4, \quad m=0.2, \quad \delta=0.5, \quad \beta=0.0$. The system (4) without Allee effect always has one trivial equilibrium point $e_{0}=(0,0)$ and two axial equilibrium points $e_{1}=(1,0)$ and $e_{2}=(0,0.4)$. The number of interior equilibrium points (either none or unique) depend upon the parametric conditions. The point e_{0} is always unstable, e_{1} is always saddle. (a) If $\rho=0.16$, the unique interior equilibrium point is unstable (see Figure 1a). (b) If $\rho=0.2$, the system undergoes to supercritical Hopf bifurcation and a stable limit cycle arises around this point (see figure 1 b) because the first Liapunov number is negative ($\sigma=-14.0625 \pi$). (c) If $\rho=0.22$, the point is asymptotically stable (see Figure 1c). (d) If $\rho=0.22, \delta=0.35$ the system has no interior equilibrium point and the prey free equilibrium point e_{2} is asymptotically stable (see Figure 1d).
2) $\alpha=0.3, \quad m=0.01, \quad \delta=0.4$. Then, the threshold value of the parameter β is $\beta^{[S N]}=$ 0.00625 . The system (4) always has one trivial equilibrium point $E_{0}=(0,0)$ and one axial equilibrium point $E_{1}=(1,0)$. The number of interior equilibrium points change from two to zero. The system (4) has two distinct positive interior equilibrium points if $\beta<\beta^{[S N]}$, one positive interior equilibrium point if $\beta=\beta^{[S N]}$ and no positive interior equilibrium point, if $\beta>\beta^{[S N]}$. The saddle-node bifurcation diagram has been depicted in (see Figure 2a). The phase portrait diagram for $\beta=\beta^{[S N]}=0.00625$ is depicted in Figures 2 b and 2 c in which the equilibrium point E_{4} is repelling saddle-node point whenever $\rho=0.6$ and attracting saddlenode point, whenever $\rho=0.98$, respectively.
3) $\alpha=0.3, m=0.01, \delta=0.4 \beta=0.006$. The system (4) has two interior equilibrium points; $E_{2}=(0.15,0.4), E_{3}=(0.1,0.275)$. The equilibrium point E_{3} is always a saddle point and the equilibrium point E_{2} is unstable whenever $\rho=0.5$ (see Figure 3a). If $\rho=\rho^{[h f]}=0.746875$, the system (4) undergoes to a subcritical Hopf bifurcation at the point E_{2}, the first Lyapunov number $\sigma=429.743 \pi>0$, an unstable limit cycle arises through the Hopf bifurcation around the point E_{2} (see Figure 3b). If $\rho=0.763715$, an unstable homoclinic loop is created around E_{2} and the point E_{2} is stable if the solution starts in the loop (see Figure 3c). If $\rho=0.77$ the equilibrium point E_{2} is asymptotically stable (see Figure 3d).
4) $\alpha=0.3, \quad m=0.01, \delta=0.4 \beta=0.00625, \quad \rho=0.810185$. The system (4) has a unique interior equilibrium point $E_{4}=(0.125,0.3375)$. Then, $\operatorname{det}\left(J_{E_{4}}\right)=0$ and $\operatorname{tr}\left(J_{E_{4}}\right)=0$, so, both eigenvalues of the Jacobian matrix $J_{E_{4}}$ are zero but the matrix $J_{E_{4}}$ is not a zero matrix. For these parameters values, system (4) reduces to

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x(1-x)-\frac{\left(3 x+0.00625+\lambda_{1}\right) y}{0.01+x}, \tag{24}\\
\frac{d y}{d t}=\left(0.810185+\lambda_{2}\right) y\left(1-\frac{0.4 y}{0.01+x}\right)
\end{array}\right.
$$

Define $z_{1}=x-0.125, z_{2}=y-0.3375$. Then, the system (24) reduces to

$$
\left\{\begin{array}{l}
\frac{d z_{1}}{d t}=\bar{a}_{00}+\bar{a}_{10} z_{1}+\bar{a}_{01} z_{2}+\bar{a}_{20} z_{1}^{2}+\bar{a}_{11} z_{1} z_{2}+\bar{a}_{02} z_{2}^{2}+R_{1}\left(z_{1}, z_{2}\right) \tag{25}\\
\frac{d z_{2}}{d t}=\bar{b}_{00}+\bar{b}_{10} z_{1}+\bar{b}_{01} z_{2}+\bar{b}_{20} z_{1}^{2}+\bar{b}_{11} z_{1} z_{2}+\bar{b}_{02} z_{2}^{2}+R_{2}\left(z_{1}, z_{2}\right)
\end{array}\right.
$$

where $\bar{a}_{00}=-2.5 \lambda_{1}, \quad \bar{a}_{10}=0.810185+18.5185 \lambda_{1}, \quad \bar{a}_{01}=-0.324074-7.40741 \lambda_{1}, \quad \bar{a}_{20}=$ $-1.44582-137.174 \lambda_{1}, \quad \bar{a}_{11}=0.178326+54.8697 \lambda_{1}, \quad \bar{a}_{02}=0, \quad \bar{b}_{00}=0, \quad \bar{b}_{10}=$ $2.02546+2.5 \lambda_{2}, \quad \bar{b}_{01}=-0.810185-\lambda_{2}, \quad \bar{b}_{20}=-15.0034-18.5185 \lambda_{2}, \quad \bar{b}_{11}=$ $12.0027+14.8148 \lambda_{2}, \quad \bar{b}_{02}=-2.40055-2.96296 \lambda_{2}$ and R_{1}, R_{2} are the power series in $\left(x_{1}, x_{2}\right)$ with powers $x_{1}^{i} x_{2}^{j}$ satisfying $i+j \geq 3$.

Let $y_{1}=x_{1}, y_{2}=\bar{a}_{10} x_{1}+\bar{a}_{01} x_{2}$. Then, the system (25) reduces to

$$
\left\{\begin{array}{l}
\frac{d y_{1}}{d t}=\xi_{00}(\lambda)+y_{2}+\xi_{20}(\lambda) y_{1}^{2}+\xi_{11}(\lambda) y_{1} y_{2}+\bar{R}_{1}\left(y_{1}, y_{2}\right) \tag{26}\\
\frac{d y_{2}}{d t}=\eta_{00}(\lambda)+\eta_{10}(\lambda) y_{1}+\eta_{01}(\lambda) y_{2}+\eta_{20}(\lambda) y_{1}^{2}+\eta_{11}(\lambda) y_{1} y_{2}+\eta_{02}(\lambda) y_{2}^{2}+\bar{R}_{2}\left(y_{1}, y_{2}\right)
\end{array}\right.
$$

where $\xi_{00}(\lambda)=-2.5 \lambda_{1}, \quad \xi_{20}(\lambda)=-\frac{0.118767+14.7174 \lambda_{1}+274.348 \lambda_{1}^{2}}{0.04375+\lambda_{1}}, \quad \xi_{11}(\lambda)=$ $\frac{0.0685185+7.40741 \lambda_{1}}{0.04375+\lambda_{1}}, \quad \eta_{00}(\lambda)=-2.02546 \lambda_{1}-46.2963 \lambda_{1}^{2}, \quad \eta_{10}(\lambda)=0, \quad \eta_{01}(\lambda)=$ $18.5185 \lambda_{1}-\lambda_{2}, \quad \eta_{20}(\lambda)=-\frac{0.0962234+14.1232 \lambda_{1}+494.818 \lambda_{1}^{2}+5080.53 \lambda_{1}^{3}}{0.04375+\lambda_{1}}, \quad \eta_{11}=$ $\frac{0.0555127+7.27023 \lambda_{1}+137.174 \lambda_{1}^{2}}{0.04375+\lambda_{1}}, \quad \eta_{02}(\lambda)=\frac{0.324074+0.4 \lambda_{2}}{0.04375+\lambda_{1}}$ and \bar{R}_{1}, \bar{R}_{2} are the power series in $\left(y_{1}, y_{2}\right)$ with powers $y_{1}^{i} y_{2}^{j}$ satisfying $i+j \geq 3$.

Now, by means of following transformations,

$$
\begin{gathered}
u_{1}=y_{1}-\frac{1}{2}\left(\xi_{11}+\eta_{02}\right) z_{1}^{2}, \quad u_{2}=y_{2}+\xi_{20} y_{1}^{2}-\eta_{02} y_{1} y_{2} \\
v_{1}=u_{1}, \quad v_{2}=\zeta_{00}+\zeta_{10} u_{1}+u_{2}+\zeta_{20} u_{1}^{2} \\
w_{1}=v_{1}, w_{2}=v_{2}+s_{1}\left(v_{1}, v_{2}\right)
\end{gathered}
$$

the system (26) reduces to

$$
\left\{\begin{array}{l}
\frac{d w_{1}}{d t}=w_{2} \tag{27}\\
\frac{d w_{2}}{d t}=Q_{1}\left(w_{1}, w_{2}\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
Q_{1}\left(w_{1}, w_{2}\right)= & \gamma_{00}+\gamma_{10} w_{1}+\gamma_{01} w_{2}+\gamma_{20} w_{1}^{2}+\gamma_{11} w_{1} w_{2} \\
& +F_{1}\left(w_{1}\right)+w_{2} F_{2}\left(w_{1}\right)+w_{2}^{2} F_{3}\left(w_{1}, w_{2}\right)
\end{aligned}
$$

with $\gamma_{00}=\frac{1}{0.04375+\lambda_{1}}\left(-0.088614 \lambda_{1}-0.109375 \lambda_{1} \lambda_{2}\right), \quad \gamma_{10}=\frac{1}{\left(0.04375+\lambda_{1}\right)^{2}}$
$\left(0.0347892 \lambda_{1}+1.3128 \lambda_{1}^{2}+0.0783854 \lambda_{1} \lambda_{2}+2.43056 \lambda_{1}^{2} \lambda_{2}+0.04375 \lambda_{1} \lambda_{2}^{2}+\lambda_{1}^{2} \lambda_{2}^{2}\right), \quad \gamma_{01}=$ $\frac{1}{0.04375+\lambda_{1}}\left(2.60185 \lambda_{1} \quad+\quad 37.037 \lambda_{1}^{2} \quad-\quad 0.04375 \lambda_{2}+\right.$ $\left.\lambda_{1} \lambda_{2}\right), \quad \gamma_{20}=\frac{1}{\left(0.04375+\lambda_{1}\right)^{3}}\left(-0.000184178-0.0199668 \lambda_{1}+0.444567 \lambda_{1}^{2}+72.9727 \lambda_{1}^{3}+\right.$ $1721.65 \lambda_{1}^{4}+11431.2 \lambda_{1}^{5}+0.00039297 \lambda_{2}+0.0151019 \lambda_{1} \lambda_{2}-0.0835691 \lambda_{1}^{2} \lambda_{2}+31.8409 \lambda_{1}^{3} \lambda_{2}+$ $617.284 \lambda_{1}^{4} \lambda_{2}+0.000765625 \lambda_{2}^{2}+0.059265 \lambda_{1} \lambda_{2}^{2}-0.316667 \lambda_{1}^{2} \lambda_{2}^{2}-7.40741 \lambda_{1}^{3} \lambda_{2}^{2}+0.00875 \lambda_{1} \lambda_{2}^{3}-$ $\left.0.4 \lambda_{1}^{2} \lambda_{2}^{3}\right), \quad \gamma_{11}=\frac{1}{\left(0.04375+\lambda_{1}\right)^{2}}\left(-0.00796345-0.503841 \lambda_{1}-25.6283 \lambda_{1}^{2}-274.348 \lambda_{1}^{3}+\right.$ $1.43333 \lambda_{1} \lambda_{2}+14.8148 \lambda_{1}^{2} \lambda_{2}+0.8 \lambda_{1} \lambda_{2}^{2}$) and F_{1}, F_{2} and F_{3} are the power series in w_{1} and (w_{1}, w_{2}) with powers $w_{1}^{k_{1}}, w_{1}^{k_{2}}$ and $w_{1}^{i} w_{2}^{j}$ satisfying $k_{1} \geq 3, k_{2} \geq 2$ and $i+j \geq 1$, respectively.

Thus, $\gamma_{20}(0)=-0.810185$. Consider the transformation $Z_{1}=-w_{1}, \quad Z_{2}=w_{2}, \quad \tau=-t$. Then, the system (27) reduces to

$$
\left\{\begin{array}{l}
\frac{d Z_{1}}{d \tau}=Z_{2} \tag{28}\\
\frac{d Z_{2}}{d \tau}=Q_{2}\left(Z_{1}, Z_{2}\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
Q_{2}\left(Z_{1}, Z_{2}\right)= & -\gamma_{00}+\gamma_{10} Z_{1}-\gamma_{20} Z_{1}^{2}+R_{1}\left(Z_{1}\right)-\gamma_{01} Z_{2} \\
& +\gamma_{11} Z_{1} Z_{2}+Z_{2} R_{2}\left(Z_{1}\right)+Z_{2}^{2} R_{3}\left(Z_{1}, Z_{2}\right)
\end{aligned}
$$

in which R_{1}, R_{2} and R_{3} are the power series in Z_{1} and $\left(Z_{1}, Z_{2}\right)$ with powers $Z_{1}^{k_{1}}, Z_{1}^{k_{2}}$ and $Z_{1}^{i} Z_{2}^{j}$ satisfying $k_{1} \geq 3, k_{2} \geq 2$ and $i+j \geq 1$, respectively.

Using Malgrange preparation theorem, transformation $X_{1}=Z_{1}, X_{2}=\frac{Z_{2}}{\sqrt{-\gamma_{20}}}$ and $d \Gamma=$ $\sqrt{-\gamma_{20}} d \tau$, the system (28) reduces to

$$
\left\{\begin{array}{l}
\frac{d X_{1}}{d \Gamma}=X_{2} \tag{29}\\
\frac{d X_{2}}{d \Gamma}=\frac{\gamma_{00}}{\gamma_{20}}-\frac{\gamma_{10}}{\gamma_{20}} X_{1}-\frac{\gamma_{01}}{\sqrt{-\gamma_{20}}} X_{2}+X_{1}^{2}+\frac{\gamma_{11}}{\sqrt{-\gamma_{20}}} X_{1} X_{2}+\bar{S}\left(X_{1}, X_{2}, \lambda\right)
\end{array}\right.
$$

where $\bar{S}\left(X_{1}, X_{2}, 0\right)$ is a power series in $\left(X_{1}, X_{2}\right)$ with powers $X_{1}^{i} X_{2}^{j}$ satisfying $i+j \geq 3$ with $j \geq 2$.

Finally, applying the transformation $Y_{1}=X_{1}-\frac{\gamma_{10}}{2 \gamma_{20}}, Y_{2}=X_{2}$ in the system (29) and using Taylor series expansion, we get

$$
\left\{\begin{array}{l}
\frac{d Y_{1}}{d \Gamma}=Y_{2} \tag{30}\\
\frac{d Y_{2}}{d \Gamma}=\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)+\mu_{2}\left(\lambda_{1}, \lambda_{2}\right) Y_{2}+Y_{1}^{2}-2.71726 Y_{1} Y_{2}+\overline{\bar{S}}\left(Y_{1}, Y_{2}, \mu\right)
\end{array}\right.
$$

where
$\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)=\frac{\gamma_{00}}{\gamma_{20}}-\frac{\gamma_{10}^{2}}{4 \gamma_{20}^{2}}, \quad \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=-\frac{\gamma_{01}}{\sqrt{-\gamma_{20}}}+\frac{\gamma_{11} \gamma_{10}}{2\left(-\gamma_{20}\right)^{\frac{3}{2}}}$ and $\overline{\bar{S}}\left(X_{1}, X_{2}, 0\right)$ is a power series in $\left(Y_{1}, Y_{2}\right)$ with powers $Y_{1}^{i} Y_{2}^{j}$ satisfying $i+j \geq 3$ with $j \geq 2$.
The determinant of the matrix $\left[\begin{array}{ll}\frac{\partial \mu_{1}}{\partial \lambda_{1}} & \frac{\partial \mu_{1}}{\partial \lambda_{2}} \\ \frac{\partial \mu_{2}}{\partial \lambda_{1}} & \frac{\partial \mu_{2}}{\partial \lambda_{2}}\end{array}\right]=2.77746 \neq 0$.
Thus, the parameters μ_{1} and μ_{2} are independent. Hence, system (30) is topologically equivalent to the normal form of the Bogdanov-Takens bifurcation and there exist bifurcation curves which divides the bifurcation plane into four regions (Perko (2001)). The local representations of these bifurcation curves in the $\lambda_{1} \lambda_{2}$ plane are

Saddle-node curve: $S N=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{1}\left(\lambda_{1}, \lambda_{2}\right)=0\right\}$,
Hopf bifurcation curve:
$H=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=\sqrt{-\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)}, \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)<0\right\}$,
Homoclinic bifurcation curve:
$H L=\left\{\left(\lambda_{1}, \lambda_{2}\right): \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)=-2.71726 \sqrt{-\mu_{1}\left(\lambda_{1}, \lambda_{2}\right)}, \mu_{2}\left(\lambda_{1}, \lambda_{2}\right)<0\right\}$.

We have sketched these three bifurcation curves in a small neighborhood of the origin in the $\lambda_{1} \lambda_{2}$ plane by their first approximations (see Figure 4a). These bifurcation curves divide the parameter plane into four parts; $I, I I, I I I$ and $I V$. For various parameter values within regions, different phase portraits of the model are observed:
a) When the parameters $\lambda_{1}=0, \lambda_{2}=0$, the unique positive equilibrium of the model (4) is a cusp of codimension 2 (see Figure 4b).
b) When the parameter values are in the region I, model (4) has no interior equilibrium point and every solution trajectories leaves the first quadrant through predator axis (see Figure 4c).
c) When the parameter values are in the region $I I$, model (4) has two interior equilibrium points in which one is a saddle point and other is unstable (see Figure 4d).
d) When the parameter values are in the region $I I I$, model (4) has two interior equilibrium points in which one is a saddle point and other is enclosed by an unstable limit cycle (see Figure 4e).
$e)$ When the parameter values are in the region $I V$, model (4) has two interior equilibrium points in which one is a saddle point and other is asymptotically stable (see Figure 4f).

6. Conclusion

In this article, a bidimensional modified Leslie-Gower predator-prey model in which the protection provided by the environment for both the prey and predator species is the same has been analyzed in the presence of Allee effect of type II. The model (4) with no Allee effect has an unstable trivial equilibrium point, a unique saddle predator free equilibrium point and a unique prey free equilibrium which is either globally asymptotically stable or a saddle point. The model has a unique interior equilibrium point which is globally asymptotically stable for a certain parametric conditions. Moreover, the model undergoes to supercritical Hopf bifurcation and a stable limit cycles emerging through Hopf bifurcation.

Model (4) with Allee effect type II always has an unstable trivial equilibrium point and a unique saddle predator free equilibrium point. Ecologically, the extinction of both the species together or predator only is impossible. The prey free axial equilibrium point in this case is disappeared and all solution trajectories once touching the predator-axis will leave the first quadrant. Ecologically, we can say that predator species tends to change its food habits as predator approaches for alternative foods available. It is also found that model (4) can have zero, one or two positive interior equilibrium points through saddle-node bifurcation as the bifurcation parameter β crosses a certain critical value. Ecologically, a maximum threshold of β exists such that below which both the populations co-exist and above which the prey species goes extinction. Further, it is observed that if two interior equilibrium points exist, one of them being always a saddle point and other is stable, unstable or the system undergoes to a Hopf bifurcation around this point for different choice of set of the parameters. The emergence of homoclinic loops has been shown through numerical simulation when the limit cycle arising through Hopf bifurcation collides with a saddle point. Further, the existence of Bogdanov-Takens bifurcation for the model has also been shown by means of reducing the model to normal form. In this situation a small perturbation may cause extinction,
coexistence and oscillation. The overall analysis shows that Allee effect II has a great impact on modified Leslie-Gower predator-prey model and can increase the risk of ecological extinction.

REFERENCES

Allee, W, (1931). Animal Aggregations: A Study in General Sociology, University of Chicago Press, USA.
Aziz-Alaoui, M.A. and Daher-Okiye, M. (2003). Boundedness and global stability for a predatorprey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., Vol. 16, No. 07, pp. 1069-1075.
Braza, P.A. (2003). The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing, SIAM J. Appl. Math., Vol. 63, pp. 889-904.
Cai, Y., Zhao, C., Wang, W. and Wang, J. (2015). Dynamics of a Leslie-Gower predator-prey model with additive Allee effect, Applied Mathematical Modelling, Vol. 39, No. 7, pp. 2092-2106.
Caughley, G. (1976). Plant-herbivoresystems, in: R.M. May (Ed.), Theoretical Ecology: Principles and Applications, W.B.Saunders Co., Philadelphia, pp. 94-113.
Côté, I.M. and Gross, M.R. (1993). Reduced disease in offspring: A benefit of coloniality in sunfish, Behav. Ecol. Sociobiol. e, Vol. 33, pp. 269-274.
Courchamp, F., Clutton-Brock, T. and Grenfell, B. (1999). Inverse density dependence and the Allee effect, Trends in Ecology and Evolution, Vol. 14, pp. 405-410.
Dennis, B. (1989). Allee effects: Population growth, critical density, and the chance of extinction, Natural Resource Modeling, Vol. 3, pp. 481-538.
Du, Y., Peng, R. and Wang, M. (2009). Effect of a protection zone in the diffusive Leslie predatorprey model, J. Differential Equations, Vol. 246, No. 10, pp. 3932-3956.
Feng, P. and Kang, Y. (2015). Dynamics of a modified Leslie-Gower model with double Allee effects, Nonlinear Dyn, Vol. 80, No. 1-2, pp. 1051-1062.
Gasull, A., Kooij, R.E. and Torregrosa, J. (1997). Limit cycles in the Holling-Tanner model, Publ. Mat., Vol. 41, pp. 149-167.
Gupta, R. P. and Chandra, P. (2013). Bifurcation analysis of modifed Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., Vol. 398, pp. 278295.

Hale, J.K. (1969). Ordinary Differential Equations, Johan Wiley and Sons, New York.
Hsu, S.B. and Hwang, T.W. (1998). Uniqueness of limit cycles for a predator-prey system of Holling and Lesile type, Vol. 6, pp. 91-117.
Hsu, S.B. and Hwang, T.W. (1999). Bifurcation analysis for a predator-prey system of Holling and Leslie type, Taiwanese J. Math., Vol. 3, pp. 35-53.
Huang, J., Ruan, S. and Song, J. (2014). Bifurcations in a predator-prey system of Leslie type with generalized Holling typeIII functional response, J. Differential Equations, Vol. 257, pp. 1721-1752.
Ji, C., Jiang, D. and Shi, N. (2009). Analysis of a predator-prey model with modified Leslie-Gower
and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., Vol. 359, pp. 482-498.
Ji, C., Jiang, D. and Shi, N. (2011). A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., Vol. 377, No. 1, pp. 435-440.
Lai, X., Liu, S. and Lin, R. (2010). Rich dynamical behaviours for predator-prey model with weak Allee effect, Appl. Anal, Vol. 89, No. 8, pp. 1271-1292.
Leslie, P. H. (1948). Some further notes on the use of matrices in population mathematics, Biometrika, Vol. 35, pp. 213-245.
Leslie, P. H. (1958). A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, Vol. 45, pp. 16-31.
Leslie, P.H. and Gower, J.C. (1960). The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, Vol. 47, pp. 219-234.
Lotka, A. (1925). Elements of Physical Biology, Williams and Williams, Baltimore.
May, R.M. (1973). Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ.
Pal, P. J. and Mandal, P. K. (2014). Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect, Mathematics and Computers in Simulation, Vol. 97, pp. 123-146.
Perko, P. (2001). Differential Equations and Dynamical Systems, Springer, New York.
Sáez, E. and González-Olivares, E. (1999). Dynamics of a predator-prey model, Journal Name, Vol. 59, pp. 1867-1878.
Singh, M. K., Bhadauria, B.S. and Singh, B. K. (2018). Bifurcation analysis of modified LeslieGower predator-prey model with double Allee effect, Ain Sham J. Engg., Vol. 9, No. 4, pp. 1263-1277.
Stephens, P.A. and Sutherland, W.J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology and Evolution, Vol. 14, pp. 401-405.
Stephens, P.A., Sutherland, W.J. and Freckleton, R.P. (1999). What is the Allee effect?, Oikos, Vol. 87, pp. 185-190.
Volterra, V. (1926). Fluctuations in the abundance of species considered mathematically, Nature, Vol. CXVIII, pp. 558-560.
Wang, G., Liang, X.G. and Wang, F.Z. (1999). The competitive dynamics of populations subject to an Allee effect, Ecol. Model, Vol. 124, pp. 183-192.
Wollkind, D.J., Collings, J.B. and Logan J.A. (1988). Metastability in a temperature-dependent model system for predatorâĂŞprey mite outbreak interactions on fruit trees, J. Math. Biol., Vol. 379-409, pp. 379-409.
Wollkind, D.J. and Logan, J.A. (1978). Temperature-dependent predatorâĂŞprey mite ecosystem on apple tree foliage, J. Math. Biol., Vol. 6, pp. 265-283.
Xiao, D. and Ruan, S. (1999). BogdanovâĂŞTakens bifurcations in predatorâĂŞprey systems with constant rate harvesting, Fields Inst. Commun., Vol. 21, pp. 493-506.
Xu, C. and Liao, M. (2013). Bifurcation behaviors in a delayed three-species food-chain model with Holling type-II functional response, Applicable Analysis, Vol. 92, No. 12, pp. 24682486.
Xu, C. and Liao, M. (2014). Bifurcation analysis of an autonomous epidemic predator-prey model with delay, Annali di Matematica Pura ed Applicata, Vol. 193, No. 1, pp. 23-28.
Xu, C., Liao, M. and He, X. (2011a). Bifurcation analysis in a delayed Lokta-Volterra predatorprey model with two delays, Nonlinear Dynamics, Vol. 66, No. 1-2, pp. 169-183.
Xu, C., Liao, M. and He, X. (2011b). Stability and Hopf bifurcation analysis for a Lokta-Volterra predator-prey model with two delays, Int. J. Appl. Math. Comp. Sci., Vol. 21, No. 1, pp. 97107.

Xu, C., Tang, X. and Liao, M. (2010). Stability and bifurcation analysis of a delayed predator-prey model of prey dispersal in two-patch environments, Applied Mathematics and Computation, Vol. 216, No. 10, pp. 2920-2936.
Xu, C., Tang, X. and Liao, M. (2013). Bifurcation analysis of a delayed predator-prey model of prey migration and predator switching, Bulletin of the Korean Mathematical Soc., Vol. 50, pp. 353-373.
Xu, C. and Shao, Y. (2012). Bifurcations in a predator-prey model with discrete and distributed time delay, Nonlinear Dynamics, Vol. 67, No. 3, pp. 2207- 2223.
Zhou, S.R., Liu, Y.F. and Wang, G. (2005). The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., Vol. 67, No. 1, pp. 23-31.
Zhu, Y. and Wang, K. (2011). Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes, J. Math. Anal. Appl., Vol. 384, pp. 400-408.

Appendix

Figure 1. $\alpha=0.4, m=0.2, \delta=0.5, \beta=0.0$. System (4) has a unique interior equilibrium points $e_{3}=(0.2,0.8)$, one trivial equilibrium point $e_{0}=(0,0)$ and two axial equilibrium point $e_{1}=(1,0)$ and $e_{2}=(0.0 .4)$. (a) $\rho=0.16$ point e_{3} is unstable (b) $\rho=0.2$. System (4) undergoes to a supcritical hopf bifurcation at the point e_{3} and an stable limit cycle arises around this point (c) $\rho=0.22$ point e_{3} is asymptotically stable (d) $\delta=0.35, \rho=0.22$. System (4) has no interior equilibrium point and prey free equilibrium point e_{2} is asymptotically stable.

Figure 2. $\alpha=0.3, \quad m=0.01, \quad \delta=0.4, \beta=0.00625$. System (4) has unique interior equilibrium points $E_{4}=$ ($0.125,0.3375$) (a) saddle-node bifurcation diagram (b) $\rho=0.6$ unique interior equilibrium points E_{4} of system (4) is a repelling saddle-node point (c) $\beta=0.98$ unique interior equilibrium points E_{4} of system (4) is an attracting saddle-node point.

Figure 3. $\alpha=0.3, \quad m=0.01, \quad \delta=0.4, \quad \beta=0.006$. System 4 has two interior equilibrium points $E_{2}=$ $(0.15,0.4), E_{3}=(0.1,0.275)$, one unstable trivial equilibrium point $E_{0}=(0,0)$ and one saddle axial equilibrium point $E_{1}=(1,0)$. The green curve is prey isocline and the purple line is the predator isocline. (a) $\rho=0.5$ point E_{2} is unstable and point E_{3} is saddle (b) $\rho=0.746875$ System (4) undergoes to a subcritical hopf bifurcation at the point E_{2} and an unstable limit cycle arises around this point, point E_{3} is saddle (c) $\rho=0.763715$ System (4) undergoes to a homoclinic bifurcation at the point E_{2} and an unstable loop (red loop) arises around this point, point E_{3} is saddle (d) $\beta=0.77$ point E_{2} is asymptotically stable and point E_{3} is saddle.

Figure 4. $\alpha=0.3, \quad m=0.01, \quad \delta=0.4, \beta=0.00625, \quad \rho=0.810185$. (a) bifurcation diagram of system (4) blue line is the saddle-node bifrcation curve, green curve is the Hopf bifurcation curve and red curve is the homoclinic bifurcation curve (b) $\lambda_{1}=0, \quad \lambda_{2}=0$. The unique interior equilibrium point E_{4} is a cusp of of codimension 2. (c) $\lambda_{2}=-0.1, \quad \lambda_{1}=0.0005$ lies in region I. No interior equilibrium point exist. (d) $\lambda_{2}=-0.1, \quad \lambda_{1}=-0.0002$ lies in in region $I I$. The system (4) has two interior equilibrium points $E_{2}=(0.147361,0.393402)$ and $E_{3}=(0.102639,0.281598)$. Point E_{2} is unstable and Point E_{3} is saddle (e) $\lambda_{2}=-0.1, \quad \lambda_{1}=-0.0007$ lies in region $I I I$. The system (4) has two interior equilibrium points $E_{2}=(0.166833,0.442083)$ and $E_{3}=(0.083167,0.232917)$. Point E_{2} is surrounded by an unstable limit cycle and Point E_{3} is saddle. (f) $\lambda_{2}=-0.1, \quad \lambda_{1}=-0.002$ lies in region $I V$. The system (4) has two interior equilibrium points $E_{2}=(0.195711,0.514277)$ and $E_{3}=(0.0542893,0.160723)$. Point E_{2} is asymptotically stable and Point E_{3} is saddle.

