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Abstract

This paper proposes two models of a general nonlinear within-host Chikungunya virus (CHIKV)
dynamics. The production, incidence, proliferation and removal rates of all compartments are mod-
eled by general nonlinear functions that satisfy a set of reasonable conditions. The second model
takes into consideration two forms of infected host cells: (i) latently infected cells which do not
produce the CHIKV, (ii) actively infected cells which generate the CHIKV particles. We show that
all the solutions of the models are nonnegative and bounded. The global stability of the steady
states of the models is proven by applying Lyapunov method and LaSalle’s invariance principle.
We perform numerical simulations to complement the obtained theoretical results.

Keywords: Within-host model; Chikungunya virus; General nonlinear function; Lyapunov func-
tion; Global stability
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1. Introduction

Chikungunya virus (CHIKV) infection is an emerging and re-emerging mosquito-borne viral in-
fection, which has become a serious public health issue in different regions worldwide (Intayot et
al. (2019)). The CHIKV-imposed public health issue in these regions is increasing as a result of
severity, prevalence and geographical distribution of the virus (Intayot et al. (2019)). The virus is
endemic in subtropical and tropical countries in Africa and Asia. Since 1990, many countries from
South and Central Americas have reported CHIKV infections with estimated 11,675 million cases.
Recently, it was confirmed that people living in over 60 countries are now at the risk of CHIKV
infection (Passos et al. (2020)).

CHIKV is an arbovirus that belongs to the Alphavirus genus of the Togaviridae family (Passos
et al. (2020); Agusto (2017)). It is mainly transmitted by the bites of infected Aedes aegypti
and Aedes albopictus mosquitoes (Intayot et al. (2019); Passos et al. (2020); Agusto (2017);
Liu et al. (2020)). Both Aedes aegypti and Aedes albopictus mosquitoes are incriminated as the
principal vector causing the transmission of CHIKV in Asia and Americas (Agarwal et al. (2016)).
Usually, human-mosquito-human transmission cycle is maintained for CHIKV transmission. An
Aedes female mosquito acquires the virus while taking blood meal from an infected person. After
7–12 days of virus incubation, the infected mosquito is capable of passing the virus to a healthy
(susceptible) individuals through bite (Liu et al. (2020)). The virus attacks the monocytes and
causes Chikungunya fever (Elaiw et al. (2018a)). The intrinsic incubation period in humans is 1–
12 days after the infective bite and infected patients may appear viremia until 10 days (Liu et al.
(2020)).

CHIKV infection is characterized by inflammation and pain of the musculoskeletal tissues ac-
companied by swelling in the joints and cartilage damage (Passos et al. (2020)). Generally, the
symptoms are of short duration ranging from 2–12 days and infected individuals are expected to
fully recover with permanent immunity (Agusto (2017)). Chikungunya-related death is very rare,
although there are some cases where patients experience joint pains for many weeks following
the initial infection (Intayot et al. (2019); Agusto (2017); Liu et al. (2020)). Currently, there are
no CHIKV-specific vaccines or specific drugs to treat or prevent the viral infection. Supportive
treatment is mainly used to relieve the symptoms, which is limited to the antipyretic, analgesic,
corticoid and nonsteroidal anti-inflammatory drugs at present (Passos et al. (2020)). Hence, the
principal strategy for controlling CHIKV outbreaks is vector control (Intayot et al. (2019)).

Several mathematical models of different viral infections have been developed in the last decade,
particularly, Human immunodeficiency virus, Human T-lymphotropic virus, Hepatitis B virus,
Hepatitis C virus, Dengue virus, Zika virus and CHIKV (see references Nowak and Bangham
(1996); Bellomo and Tao (2020); Elaiw et al. (2018c); Elaiw and Ghaleb (2019); Perelson and
Nelson (1999); Roy et al. (2013); Liu and Wang (2010); Elaiw (2010); Elaiw et al. (2019a);
Neumann et al. (1998); Alade (2020); Elaiw et al. (2018d); Mann Manyombe et al. (2020); Hugo
and Simanjilo (2019); Wang et al. (2010); Alade et al. (2020); Olaniyi (2018); Okyere et al. (2020);
Elaiw et al. (2019b); Elaiw et al. (2018b); Wang and Li (2006); Wang et al. (2002); Cai et al. (2011);
Abidemi et al. (2019); Abidemi et al. (2020a); Abidemi et al. (2020b); Song et al. (2020);
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Wang and Liu (2017)), etc. These viral infection models enable us to understand the system
regulating viral load dynamics, to estimate the strength of the immune responses and to pro-
vide estimate for drug efficacy that can lead to virus clearance. In particular, CHIKV which is
mainly transmitted to humans by infected female mosquitoes (Aedes aegypti and Aedes albopic-
tus). Most of the mathematical models of CHIKV presented in the literature describe the trans-
mission dynamics of the virus in human and mosquito populations (Dumont and Chirleu (2010);
Dumont and Tchuenche (2012); Dumont et al. (2008); Moulay et al. (2011); Moulay et al. (2012);
Yakob and Clements (2013); Liu and Stechlinski (2015)). However, the mathematical modelling of
the dynamics of within host CHIKV is very few. In Wang and Liu (2017), for instance, the authors
presented a within host CHIKV dynamics model of four compartments: concentrations of unin-
fected cells, infected cells, CHIKV particles, and antibodies with respect to time. The incidence
rate is given as a bilinear incidence rate. Such incidence rate does not give an accurate description
of the viral infection (Huang et al. (2010)). Hence, there is the need for new within-host compart-
mental model which does not incorporate bilinear incidence rate.

Therefore, this paper proposes two new models to gain more insights into the transmission dy-
namics of within-host CHIKV infection. In the first model, we consider a general function as the
intrinsic growth rate of uninfected cells for both production and natural mortality (see, e.g., Perel-
son and Nelson (1999); Wang and Li (2006); Smith and De Leenheer (2003)). The incidence rate
is also given as a general nonlinear function that satisfies a set of reasonable conditions. The sec-
ond model takes into account latently infected cells. These models improve the models presented
in Wang and Liu (2017) and Elaiw et al. (2019c) and are given in a generalized form. In order
to show the biological feasibility of our proposed models, we investigate the nonnegativity and
boundedness of the solutions of the models. We derive the basic reproduction number R0, and
construct appropriate Lyapunov functionals to establish the global stability of the models.

The rest of this work is organized as follows. In Section 2, the formulation and theoretical analysis
of general within host CHIKV model are discussed. Development of general within host CHIKV
model with latency as well as qualitative analysis of the model are considered in Section 3. Section
4 presents the numerical simulations of the proposed models. Lastly, the conclusion is drawn in
Section 5.

2. General within host CHIKV model

We propose a general within host CHIKV dynamics model:

Ż = ψ(Z)− Φ(Z,C), (1)

U̇ = Φ(Z,C)− εϕ1(U), (2)

Ċ = bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A), (3)

Ȧ = λ+mϕ2(C)ϕ3(A)− δϕ3(A), (4)

where the compartments Z(t), U(t), C(t) and A(t) denote uninfected cells concentration, infected
cells concentration, CHIKV particles and antibodies at time t, respectively. The general functions
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εϕ1(U), rϕ2(C) and δϕ3(A) are the rates of death of infected cells, free CHIKV particles and
antibodies, respectively. These rates are the generalized form of the linear death rates presented
in the works by Wang and Liu (2017) and Elaiw et al. (2019c). The production and neutralization
rates of CHIKV, and proliferation rate of antibodies are given by general functions in the forms
bϕ1(U), ρϕ2(C)ϕ3(A) and mϕ2(C)ϕ3(A), respectively. The parameter λ is the production rate of
the antibodies. The functions ψ, Φ, ϕ1, ϕ2, and ϕ3 are continuously differentiable and satisfy the
following assumptions (see references Hattaf and Yousfi (2016a)–Wang et al. (2016)):

(A1) (i) Z0 > 0 such that ψ(Z0) = 0, ψ(Z) > 0 for Z ∈ [0, Z0),

(ii) ψ′(Z) < 0 for all Z > 0,

(iii) x, x̄ > 0 such that ψ(Z) ≤ x− x̄Z for all Z ≥ 0.

(A2) (i) Φ(Z,C) > 0,Φ(0, C) = Φ(Z, 0) = 0 for all Z > 0, C > 0,

(ii) ∂Φ(Z,C)
∂Z

> 0, ∂Φ(Z,C)
∂C

> 0, ∂Φ(Z,0)
∂C

> 0 for all Z > 0, C > 0,

(iii) d
dZ

(
∂Φ(Z,0)
∂C

)
> 0 for all Z > 0.

(A3) (i) ϕj(n) > 0 for all n > 0, ϕj(0) = 0, j = 1, 2, 3,

(ii) ϕ′j(n) > 0 for all n > 0, j = 1, 3, ϕ′2(n) > 0 for all n ≥ 0,

(iii) there is αj > 0, j = 1, 2, 3, such that ϕj(n) ≥ αjn for all n ≥ 0.

(A4) For all Z,C > 0, the function Φ(Z,C)
ϕ2(C)

is decreasing with respect to C.

Remark 2.1.

Assumptions (A1) and (A2) imply

(ψ(Z)− ψ(Z0))

(
∂Φ(Z, 0)

∂C
− ∂Φ(Z0, 0)

∂C

)
≤ 0. (5)

From (A2), (A3), (A4) and applying L’Hopital’s rule, we get

Φ(Z,C)

ϕ2(C)
≤ lim

C→0+

Φ(Z,C)

ϕ2(C)
=

1

ϕ′2(0)

∂Φ(Z, 0)

∂C
. (6)

From (A2) and (A4), we obtain(
Φ(Z,C)

ϕ2(C)
− Φ(Z,C1)

ϕ2(C1)

)
(Φ(Z,C)− Φ(Z,C1)) ≤ 0,

which yields (
Φ(Z,C)

Φ(Z,C1)
− ϕ2(C)

ϕ2(C1)

)(
1− Φ(Z,C1)

Φ(Z,C)

)
≤ 0.
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2.1. Basic results

In this subsection, we investigate the nonnegativity, boundedness and steady states of the system
(1)-(4). We define the compact set:

∆̂ = {(Z,U,C,A) ∈ R4
≥0 : 0 ≤ Z,U ≤ N̆1, 0 ≤ C ≤ N̆2, 0 ≤ A ≤ N̆3}.

Lemma 2.1.

For system (1)-(4), there exist N̆1, N̆2, N̆3 > 0, such that ∆̂ is positively invariant.

Proof:

Since

Ż
∣∣∣
Z=0

= ψ(0) > 0, U̇
∣∣∣
U=0

= Φ(Z,C) ≥ 0 for all Z,C ≥ 0,

Ċ
∣∣∣
C=0

= bϕ1(U) ≥ 0 for all U ≥ 0, Ȧ
∣∣∣
A=0

= λ > 0.

Hence, R4
≥0 is positively invariant with respect to system (1)-(4) .

Now, we define

K1(t) = Z(t) + U(t) +
ε

2b
C(t) +

ερ

2bm
A(t), (7)

then,

K̇1(t) = ψ(Z)− ε

2
ϕ1(U)− εr

2b
ϕ2(C) +

ερλ

2bm
− ερδ

2bm
ϕ3(A)

≤ x− x̄Z +
ερλ

2bm
− ε

2
α1U −

εr

2b
α2C −

ερδ

2bm
α3A

≤ x+
ερλ

2bm
− σ̃1

(
Z + U +

ε

2b
C +

ερ

2bm
A
)

= x+
ερλ

2bm
− σ̃1K1(t),

where σ̃1 = min{x̄, ε
2
α1, rα2, δα3}. Hence, K1(t) ≤ N̆1, if K1(0) ≤ N̆1, where N̆1 = x

σ̃1
+ ερλ

2bmσ̃1
.

It follows that 0 ≤ Z(t), U(t) ≤ N̆1, 0 ≤ C(t) ≤ N̆2 and 0 ≤ A(t) ≤ N̆3 for all t ≥ 0, if
Z(0)+U(0)+ ε

2b
C(0)+ ερ

2bm
A(0) ≤ N̆1, where N̆2 = 2bN̆1

ε
and N̆3 = 2brN̆1

ερ
. Therefore, Z(t), U(t),

C(t), and A(t) are all bounded. �

To investigate the steady states of the model, we solve the following system:

0 = ψ(Z)− Φ(Z,C), (8)
0 = Φ(Z,C)− εϕ1(U), (9)
0 = bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A), (10)
0 = λ+mϕ2(C)ϕ3(A)− δϕ3(A). (11)

5
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Substituting the solutions of Equations (8), (9) and (11) into Equation (10) we obtain
bΦ(Z,C)

ε
−
(
r +

ρλ

δ −mϕ2(C)

)
ϕ2(C) = 0. (12)

In Equation (12),C = 0 is one of the solutions, which can be deduced from (A1)-(A3) thatZ = Z0,
U = 0 and A = A0 = ϕ−1

3

(
λ
δ

)
. This leads to a CHIKV-free steady state E0 = (Z0, 0, 0, A0).

Next, we assume that there exists C1 ∈
(
0, ϕ−1

2 ( δ
m

)
)

which satisfies Equation (12). Equation (8)
becomes

0 = ψ(Z)− Φ(Z,C1).

We define a function φ as:

φ(Z) = ψ(Z)− Φ(Z,C1) = 0.

Then, we have φ(0) = ψ(0) > 0 and φ(Z0) = −Φ(Z0, C1) < 0. According to (A1)-(A2), φ is
strictly decreasing function of Z. Thus, a unique Z1 ∈ (0, Z0) exists, such that φ(Z1) = 0. From
Equations (9) and (11), we get

U1 = ϕ−1
1

(
Φ(Z1, C1)

ε

)
> 0, A1 = ϕ−1

3

(
λ

δ −mϕ2(C1)

)
> 0. (13)

This leads to the endemic steady state E0
1 = (Z1, U1, C1, A1). Then, by using the methods in Diek-

mann et al. (1990) and van den Driessche and Watmough (2002), the basic reproduction number
R0 of system (1)-(4) can be defined as

R0 =
b

ε (r + ρϕ3(A0))ϕ′2(0)

∂Φ(Z0, 0)

∂C
.

2.2. Global stability

In this subsection, the global stability of the two steady states of system (1)-(4) are established
by constructing appropriate Lyapunov functionals following the method presented in Ghosh et al.
(2020) and Akanni et al. (2020). We use the function H(v) = v − 1 − lnv, and the notation
(Z,U,C,A) = (Z(t), U(t), C(t), A(t)).

Theorem 2.1.

Suppose that R0 ≤ 1 and assumptions (A1)-(A4) hold true, then E0 is globally asymptotically
stable (GAS).

Proof:

Define the function

G0(Z,U,C,A) = Z − Z0 −
∫ Z

Z0

lim
C→0+

Φ(Z0, C)

Φ(ϑ,C)
dϑ+ U +

ε

b
C

+
ερ

bm

(
A− A0 −

∫ A

A0

ϕ3(A0)

ϕ3(ϑ)
dϑ

)
.

6
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Note that G0(Z,U,C,A) > 0 for all Z,U,C,A > 0 and G0(Z0, 0, 0, A0) = 0. Calculating
dG0

dt
along the system (1)-(4), we get

dG0

dt
=

(
1− lim

C→0+

Φ(Z0, C)

Φ(Z,C)

)
(ψ(Z)− Φ(Z,C)) + Φ(Z,C)− εϕ1(U)

+
ε

b
(bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A))

+
ερ

bm

(
1− ϕ3(A0)

ϕ3(A)

)
(λ+mϕ2(C)ϕ3(A)− δϕ3(A))

= ψ(Z)

(
1− lim

C→0+

Φ(Z0, C)

Φ(Z,C)

)
+ Φ(Z,C) lim

C→0+

Φ(Z0, C)

Φ(Z,C)
− ε

b
rϕ2(C)

− ερ

b
ϕ2(C)ϕ3(A0) +

ερ

bm

(
1− ϕ3(A0)

ϕ3(A)

)
(λ− δϕ3(A))

= ψ(Z)

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
+ Φ(Z,C)

∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C
− ε

b
rϕ2(C)

− ερ

b
ϕ2(C)ϕ3(A0) +

ερ

bm

(
1− ϕ3(A0)

ϕ3(A)

)
(δϕ3(A0)− δϕ3(A)) .

Since ψ(Z0) = 0, then we have

dG0

dt
= (ψ(Z)− ψ(Z0))

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
− ερδ

bm

(ϕ3(A)− ϕ3(A0))2

ϕ3(A)

+
ε(r + ρϕ3(A0))

b

(
b

ε(r + ρϕ3(A0))

Φ(Z,C)

ϕ2(C)

∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C
− 1

)
ϕ2(C),

and from inequality (6) we get

dG0

dt
≤ (ψ(Z)− ψ(Z0))

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
− ερδ

bm

(ϕ3(A)− ϕ3(A0))2

ϕ3(A)

+
ε(r + ρϕ3(A0))

b

(
b

ε(r + ρϕ3(A0))ϕ′2(0)

∂Φ(Z0, 0)

∂C
− 1

)
ϕ2(C)

= (ψ(Z)− ψ(Z0))

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
− ερδ

bm

(ϕ3(A)− ϕ3(A0))2

ϕ3(A)

+
ε(r + ρϕ3(A0))

b
(R0 − 1)ϕ2(C).

Thus, if R0 ≤ 1, then
dG0

dt
≤ 0 for all Z,C,A > 0. Also,

dG0

dt
= 0, when Z = Z0, A = A0,

C = 0. Hence, by LaSalle’s invariance principle (Khalil (1996)), E0 is GAS. �

Theorem 2.2.

If assumptions (A1)-(A4) hold true and E0
1 exists, then E0

1 is GAS.
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Proof:

Define the function

G1(Z,U,C,A) = Z − Z1 −
∫ Z

Z1

Φ(Z1, C1)

Φ(ϑ,C1)
dϑ

+ U − U1 −
∫ U

U1

ϕ1(U1)

ϕ1(ϑ)
dϑ

+
ε

b

(
C − C1 −

∫ C

C1

ϕ2(C1)

ϕ2(ϑ)
dϑ

)
+
ερ

bm

(
A− A1 −

∫ A

A1

ϕ3(A1)

ϕ3(ϑ)
dϑ

)
.

We have G1(Z,U,C,A) > 0 for all Z,U,C,A > 0 and G1(Z1, U1, C1, A1) = 0. Calculating
dG1

dt
along the system (1)-(4), we get

dG1

dt
=

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
(ψ(Z)− Φ(Z,C))

+

(
1− ϕ1(U1)

ϕ1(U)

)
(Φ(Z,C)− εϕ1(U))

+
ε

b

(
1− ϕ2(C1)

ϕ2(C)

)
(bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A))

+
ερ

bm

(
1− ϕ3(A0)

ϕ3(A)

)
(λ+mϕ2(C)ϕ3(A)− δϕ3(A)) .

Applying

ψ(Z1) = εϕ1(U1), λ = δϕ3(A1)−mϕ2(C1)ϕ3(A1),

we obtain

dG1

dt
= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ εϕ1(U1)

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ Φ(Z,C)

Φ(Z1, C1)

Φ(Z,C1)
− Φ(Z,C)

ϕ1(U1)

ϕ1(U)
+ εϕ1(U1)− εϕ1(U)

ϕ2(C1)

ϕ2(C)

− ε

b
rϕ2(C) +

ε

b
rϕ2(C1) +

ερ

b
ϕ2(C1)ϕ3(A)− ερ

b
ϕ2(C1)ϕ3(A1)

+
ερ

b
ϕ2(C1)ϕ3(A1)

ϕ3(A1)

ϕ3(A)
− ερ

b
ϕ2(C)ϕ3(A1)

+
ερ

bm

(
1− ϕ3(A1)

ϕ3(A)

)
(δϕ3(A1)− δϕ3(A)) .

Using the conditions for E0
1 :

Φ(Z1, C1) = εϕ1(U1) =
ε

b
rϕ2(C1) +

ερ

b
ϕ2(C1)ϕ3(A1),
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we get

dG1

dt
= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ 3εϕ1(U1)− εϕ1(U1)

Φ(Z1, C1)

Φ(Z,C1)

+ εϕ1(U1)
Φ(Z,C)

Φ(Z,C1)
− εϕ1(U1)

Φ(Z,C)ϕ1(U1)

Φ(Z1, C1)ϕ1(U)
− εϕ1(U1)

ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)

− εϕ1(U1)
ϕ2(C)

ϕ2(C1)
− 2ερ

b
ϕ2(C1)ϕ3(A1) +

ερ

b
ϕ2(C1)ϕ3(A)

+
ερ

b
ϕ2(C1)ϕ3(A1)

(
ϕ3(A1)

ϕ3(A)

)
− ερδ

bm

(
1− ϕ3(A1)

ϕ3(A)

)
(ϕ3(A)− ϕ3(A1)) . (14)

Equation (14) can be simplified as:

dG1

dt
= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ εϕ1(U1)

(
Φ(Z,C)

Φ(Z,C1)
− ϕ2(C)

ϕ2(C1)
− 1 +

Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

)
+ εϕ1(U1)

[
4− Φ(Z1, C1)

Φ(Z,C1)
− Φ(Z,C)ϕ1(U1)

Φ(Z1, C1)ϕ1(U)
− ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
− Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

]
− ερ

b
ϕ2(C1)ϕ3(A1)

(
2− ϕ3(A)

ϕ3(A1)
− ϕ3(A1)

ϕ3(A)

)
− ερδ

bm

(ϕ3(A)− ϕ3(A1))2

ϕ3(A)

= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ εϕ1(U1)

(
Φ(Z,C)

Φ(Z,C1)
− ϕ2(C)

ϕ2(C1)

)(
1− Φ(Z,C1)

Φ(Z,C)

)
+ εϕ1(U1)

[
4− Φ(Z1, C1)

Φ(Z,C1)
− Φ(Z,C)ϕ1(U1)

Φ(Z1, C1)ϕ1(U)
− ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
− Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

]
− ερλ

bmϕ3(A1)

(ϕ3(A)− ϕ3(A1))2

ϕ3(A)
. (15)

The first two terms of (15) are less than or equal to zero according to assumptions (A1)-(A4) and
Remark 2.1. Also, based on the relation between geometrical and arithmetical means, we have

4 ≤ Φ(Z1, C1)

Φ(Z,C1)
+

Φ(Z,C)ϕ1(U1)

Φ(Z1, C1)ϕ1(U)
+
ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
+

Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)
.

Then
dG1

dt
≤ 0 and

dG1

dt
= 0 if Z = Z1, U = U1, C = C1 and A = A1. By the LaSalle’s

invariance principle, E0
1 is GAS. �
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3. General Within Host CHIKV Model with Latency

We propose a general within host CHIKV model with latently infected cells (Y ) and actively
infected cells (U) as:

Ż = ψ(Z)− Φ(Z,C), (16)

Ẏ = (1− g)Φ(Z,C)− (ω + κ)ξ(Y ), (17)

U̇ = gΦ(Z,C) + κξ(Y )− εϕ1(U), (18)

Ċ = bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A), (19)

Ȧ = λ+mϕ2(C)ϕ3(A)− δϕ3(A), (20)

where 0 < g < 1. The latently infected cells (Y ) are activated at rate κξ(Y ) and die at rate
ωξ(Y ), where ω and κ are positive constants. Functions ψ,Φ, ϕ1, ϕ2, and ϕ3 are assumed to satisfy
assumptions (A1)-(A4). The function ξ(Y ) also satisfies the condition:

Assumption A5.

(i) ξ(Y ) > 0 for Y > 0, ξ(0) = 0, (ii) ξ′(Y ) > 0 for Y > 0, (iii) there is α4 > 0 such that
ξ(Y ) ≥ α4Y for Y ≥ 0.

3.1. Basic results

We define the compact set:

∆̃ = {(Z, Y, U, C,A) ∈ R5
≥0 : 0 ≤ Z, Y, U ≤ N̄1, 0 ≤ C ≤ N̄2, 0 ≤ A ≤ N̄3}.

Lemma 3.1.

For system (16)-(20), there exist N̄1, N̄2, N̄3 > 0, such that ∆̃ is positively invariant.

Proof:

Since

Ż
∣∣∣
Z=0

= ψ(0) > 0,

Ẏ
∣∣∣
Y=0

= (1− g)Φ(Z,C) ≥ 0 for all Z,C ≥ 0,

U̇
∣∣∣
U=0

= gΦ(Z,C) + Aξ(Y ) ≥ 0 for all Z,C, Y ≥ 0,

Ċ
∣∣∣
C=0

= bϕ1(U) ≥ 0 for all U ≥ 0,

Ȧ
∣∣∣
A=0

= λ > 0.

Hence, R5
≥0 is positively invariant with respect to system (16)-(20).
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Next, let

K2(t) = Z(t) + Y (t) + U(t) +
ε

2b
C(t) +

ερ

2bm
A(t), (21)

then,

K̇2(t) = ψ(Z)− ωξ(Y )− ε

2
ϕ1(U)− ε

2b
rϕ2(C) +

ερλ

2bm
− ερδ

2bm
ϕ3(A)

≤ x− x̄Z +
ερλ

2bm
− ωα4Y −

ε

2
α1U −

ε

2b
rα2C −

ερδ

2bm
α3A

≤ x+
ερλ

2bm
− σ̃2

(
Z + Y + U +

ε

2b
C +

ερ

2bm
A
)

= x+
ερλ

2bm
− σ̃2K2(t),

where σ̃2 = min{x̄, ωα4,
ε
2
α1, rα2, δα3}. Hence, K2(t) ≤ N̄1, if K2(0) ≤ N̄1, where N̄1 =

x
σ̃2

+ ερλ
2bmσ̃2

. It follows that 0 ≤ Z(t), Y (t), U(t) ≤ N̄1, 0 ≤ C(t) ≤ N̄2 and 0 ≤ A(t) ≤ N̄3 for
all t ≥ 0, if Z(0) + Y (0) + U(0) + ε

2b
C(0) + ερ

2bm
A(0) ≤ N̄1, where N̄2 = 2bN̄1

ε
and N̄3 = 2rbN̄1

ερ
.

Therefore, Z(t), Y (t), U(t), C(t) and A(t) are all bounded. �

To investigate the steady states of the model (16)-(20), we solve the following system:

0 = ψ(Z)− Φ(Z,C), (22)
0 = (1− g)Φ(Z,C)− (ω + κ)ξ(Y ), (23)
0 = gΦ(Z,C) + κξ(Y )− εϕ1(U), (24)
0 = bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A), (25)
0 = λ+mϕ2(C)ϕ3(A)− δϕ3(A). (26)

From Equations (23) and (24), we obtain

ξ(Y ) =
(1− g)Φ(Z,C)

(ω + κ)
, ϕ1(U) =

(ωg + κ)Φ(Z,C)

ε(ω + κ)
. (27)

Substituting Equations (26) and (27) into (25) we get

b(ωg + κ)Φ(Z,C)

ε(ω + κ)
−
(
r +

ρλ

δ −mϕ2(C)

)
ϕ2(C) = 0. (28)

Applying (A1)-(A3) into Equation (28), we have C = 0 as one of the solutions. This leads to a
CHIKV-free steady state E∗ = (Z0, 0, 0, 0, A0), where Z = Z0, Y = 0, U = 0 and A = A0 =
ϕ−1

3

(
λ
δ

)
. Next, we assume that there exists C1 ∈

(
0, ϕ−1

2 ( δ
m

)
)

which satisfies Equation (28).
Equation (22) becomes

0 = ψ(Z)− Φ(Z,C1).

We define a function Π as:

Π(Z) = ψ(Z)− Φ(Z,C1) = 0.
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Then, we have Π(0) = ψ(0) > 0 and Π(Z0) = −Φ(Z0, C1) < 0. According to (A1)-(A2), Π is
strictly decreasing function of Z. Thus, a unique Z1 ∈ (0, Z0) exists, such that Π(Z1) = 0. From
Equations (23), (24) and (26), we obtain

Y1 = ξ−1

(
(1− g)Φ(Z1, C1)

(ω + κ)

)
> 0,

U1 = ϕ−1
1

(
(ωg + κ)Φ(Z1, C1)

ε(ω + κ)

)
> 0,

A1 = ϕ−1
3

(
λ

δ −mϕ2(C1)

)
> 0. (29)

This leads to the endemic steady state E∗1 = (Z1, Y1, U1, C1, A1). The basic reproduction number
RY

0 of system (16)-(20) can be expressed as

RY
0 =

b(ωg + κ)

ε (ω + κ) (r + ρϕ3 (A0))ϕ′2(0)

∂Φ (Z0, 0)

∂C
.

3.2. Global stability

Theorem 3.1.

Suppose thatRY
0 ≤ 1 and assumptions (A1)-(A5) hold true. Then E∗ is GAS.

Proof:

Let consider the function

GY
0 (Z, Y, U, C,A) = Z − Z0 −

∫ Z

Z0

lim
C→0+

Φ(Z0, C)

Φ(ϑ,C)
dϑ

+
κ

ωg + κ
Y +

ω + κ

ωg + κ
U +

ε(ω + κ)

b(ωg + κ)
C

+
ερ(ω + κ)

bm(ωg + κ)

(
A− A0 −

∫ A

A0

ϕ3(A0)

ϕ3(ϑ)
dϑ

)
.

Calculating
dGY

0

dt
along the system (16)-(20), we get

dGY
0

dt
=

(
1− lim

C→0+

Φ(Z0, C)

Φ(Z,C)

)
(ψ(Z)− Φ(Z,C)) +

κ

ωg + κ
((1− g)Φ(Z,C)− (ω + κ)ξ(Y ))

+
ω + κ

ωg + κ
(gΦ(Z,C) + κξ(Y )− εϕ1(U))

+
ε(ω + κ)

b(ωg + κ)
(bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A))

+
ερ(ω + κ)

bm(ωg + κ)

(
1− ϕ3(A0)

ϕ3(A)

)
(λ+mϕ2(C)ϕ3(A)− δϕ3(A))
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dGY
0

dt
=

(
1− lim

C→0+

Φ(Z0, C)

Φ(Z,C)

)
ψ(Z)

+ Φ(Z,C)

(
lim
C→0+

Φ(Z0, C)

Φ(Z,C)

)
− ε(ω + κ)

b(ωg + κ)
rϕ2(C)

− ερ(ω + κ)

b(ωg + κ)
ϕ2(C)ϕ3(A0)

+
ερ(ω + κ)

bm(ωg + κ)

(
1− ϕ3(A0)

ϕ3(A)

)
(λ− δϕ3(A))

dGY
0

dt
= (ψ(Z)− ψ(Z0))

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
+ Φ(Z,C)

∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

− ε(ω + κ)

b(ωg + κ)
(r + ρϕ3(A0))ϕ2(C)

+
ερ(ω + κ)

bm(ωg + κ)

(
1− ϕ3(A0)

ϕ3(A)

)
(δϕ3(A0)− δϕ3(A))

≤ (ψ(Z)− ψ(Z0))

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
− ερ(ω + κ)δ

bm(ωg + κ)

(ϕ3(A)− ϕ3(A0))2

ϕ3(A)

+

(
lim
C→0+

Φ(Z,C)

ϕ2(C)

∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C
− ε(ω + κ)

b(ωg + κ)
(r + ρϕ3(A0))

)
ϕ2(C)

= (ψ(Z)− ψ(Z0))

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
− ερ(ω + κ)δ

bm(ωg + κ)

(ϕ3(A)− ϕ3(A0))2

ϕ3(A)

+
ε(ω + κ)(r + ρϕ3(A0))

b(ωg + κ)

(
b(ωg + κ)

ε(ω + κ)(r + ρϕ3(A0))ϕ′2(0)

∂Φ(Z0, 0)

∂C
− 1

)
ϕ2(C)

= (ψ(Z)− ψ(Z0))

(
1− ∂Φ(Z0, 0)/∂C

∂Φ(Z, 0)/∂C

)
− ερ(ω + κ)δ

bm(ωg + κ)

(ϕ3(A)− ϕ3(A0))2

ϕ3(A)

+
ε(ω + κ)(r + ρϕ3(A0))

b(ωg + κ)

(
RY

0 − 1
)
ϕ2(C). (30)

From Remark 2.1 we have, ifRY
0 ≤ 1, then

dGY
0

dt
≤ 0 for all Z,C,A > 0. Furthermore,

dGY
0

dt
= 0,

when Z = Z0, A = A0, C = 0. Applying LaSalle’s invariance principle, we get that E∗ is GAS.�

Theorem 3.2.

If assumptions (A1)-(A5) hold true and E∗1 exists, then E∗1 is GAS.
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Proof:

Define the function

GY
1 (Z, Y, U, C,A) = Z − Z1 −

∫ Z

Z1

Φ(Z1, C1)

Φ(ϑ,C1)
dϑ+

κ

ωg + κ

(
Y − Y1 −

∫ Y

Y1

ξ(Y1)

ξ(ϑ)
dϑ

)
+

ω + κ

ωg + κ

(
U − U1 −

∫ U

U1

ϕ1(U1)

ϕ1(ϑ)
dϑ

)
+

ε(ω + κ)

b(ωg + κ)

(
C − C1 −

∫ C

C1

ϕ2(C1)

ϕ2(ϑ)
dϑ

)
+

ερ(ω + κ)

bm(ωg + κ)

(
A− A1 −

∫ A

A1

ϕ3(A1)

ϕ3(ϑ)
dϑ

)
.

Calculating
dGY

1

dt
along the system (16)-(20), we get

dGY
1

dt
=

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
(ψ(Z)− Φ(Z,C))

+
κ

ωg + κ

(
1− ξ(Y1)

ξ(Y )

)
((1− g)Φ(Z,C)− (ω + κ)ξ(Y ))

+
ω + κ

ωg + κ

(
1− ϕ1(U1)

ϕ1(U)

)
(gΦ(Z,C) + κξ(Y )− εϕ1(U))

+
ε(ω + κ)

b(ωg + κ)

(
1− ϕ2(C1)

ϕ2(C)

)
(bϕ1(U)− rϕ2(C)− ρϕ2(C)ϕ3(A))

+
ερ(ω + κ)

bm(ωg + κ)

(
1− ϕ3(A1)

ϕ3(A)

)
(λ+mϕ2(C)ϕ3(A)− δϕ3(A)) .

Applying

ψ(Z1) = Φ(Z1, C1), λ = δϕ3(A1)−mϕ2(C1)ϕ3(A1),

we obtain

dGY
1

dt
= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ Φ(Z1, C1)

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ Φ(Z,C)

Φ(Z1, C1)

Φ(Z,C1)

− κ(1− g)

ωg + κ
Φ(Z,C)

ξ(Y1)

ξ(Y )
+
κ (ω + κ)

ωg + κ
ξ(Y1)− (ω + κ) g

ωg + κ
Φ(Z,C)

ϕ1(U1)

ϕ1(U)

− κ (ω + κ)

ωg + κ

ξ(Y )ϕ1(U1)

ϕ1(U)
+
ε (ω + κ)

ωg + κ
ϕ1(U1)− ε (ω + κ)

ωg + κ

ϕ2(C1)ϕ1(U)

ϕ2(C)

− ε(ω + κ)

b(ωg + κ)
rϕ2(C) +

ε(ω + κ)

b(ωg + κ)
rϕ2(C1) +

ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A)

− ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A1) +

ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A1)

(
ϕ3(A1)

ϕ3(A)

)
− ερ(ω + κ)

b(ωg + κ)
ϕ2(C)ϕ3(A1) +

ερ(ω + κ)

bm(ωg + κ)

(
1− ϕ3(A1)

ϕ3(A)

)
(δϕ3(A1)− δϕ3(A)) .

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 1, Art. 8

https://digitalcommons.pvamu.edu/aam/vol16/iss1/8



AAM: Intern. J., Vol. 16, Issue 1 (June 2021) 153

Using the conditions:

(1− g)Φ(Z1, C1) = (ω + κ)ξ(Y1), gΦ(Z1, C1) + κξ(Y1) = εϕ1(U1),

bϕ1(U1) = rϕ2(C1) + ρϕ2(C1)ϕ3(A1),

we get

ε (ω + κ)

ωg + κ
ϕ1(U1) = Φ(Z1, C1) =

κ(1− g)

ωg + κ
Φ(Z1, C1) +

(ω + κ) g

ωg + κ
Φ(Z1, C1),

ε(ω + κ)

b(ωg + κ)
rϕ2(C1) = Φ(Z1, C1)− ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A1),

and

dGY
1

dt
= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ Φ(Z1, C1)

(
Φ(Z,C)

Φ(Z,C1)
− ϕ2(C)

ϕ2(C1)

)
+
κ(1− g)

ωg + κ
Φ(Z1, C1)

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+

(ω + κ) g

ωg + κ
Φ(Z1, C1)

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
− κ(1− g)

ωg + κ
Φ(Z1, C1)

Φ(Z,C)ξ(Y1)

Φ(Z1, C1)ξ(Y )
+
κ(1− g)

ωg + κ
Φ(Z1, C1)

− (ω + κ) g

ωg + κ
Φ(Z1, C1)

Φ(Z,C)ϕ1(U1)

Φ(Z1, C1)ϕ1(U)

− κ(1− g)

ωg + κ
Φ(Z1, C1)

ϕ1(U1)ξ(Y )

ϕ1(U)ξ(Y1)

+
κ(1− g)

ωg + κ
Φ(Z1, C1) +

(ω + κ) g

ωg + κ
Φ(Z1, C1)

− κ(1− g)

ωg + κ
Φ(Z1, C1)

ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)

− (ω + κ) g

ωg + κ
Φ(Z1, C1)

ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
+
κ(1− g)

ωg + κ
Φ(Z1, C1)

+
(ω + κ) g

ωg + κ
Φ(Z1, C1)

− 2ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A1) +

ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A)

+
ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A1)

(
ϕ3(A1)

ϕ3(A)

)
− ερ(ω + κ)δ

bm(ωg + κ)

(ϕ3(A)− ϕ3(A1))2

ϕ3(A)
. (31)
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Equation (31) can be simplified as:

dGY
1

dt
= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ Φ(Z1, C1)

(
Φ(Z,C)

Φ(Z,C1)
− ϕ2(C)

ϕ2(C1)
− 1 +

Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

)
+
κ(1− g)

ωg + κ
Φ(Z1, C1)

[
5− Φ(Z1, C1)

Φ(Z,C1)
− Φ(Z,C)ξ(Y1)

Φ(Z1, C1)ξ(Y )
− ϕ1(U1)ξ(Y )

ϕ1(U)ξ(Y1)

−ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
− Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

]
+

(ω + κ) g

ωg + κ
Φ(Z1, C1)

[
4− Φ(Z1, C1)

Φ(Z,C1)
− Φ(Z,C)ϕ1(U1)

Φ(Z1, C1)ϕ1(U)

−ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
− Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

]
− ερ(ω + κ)

b(ωg + κ)
ϕ2(C1)ϕ3(A1)

(
2− ϕ3(A)

ϕ3(A1)
− ϕ3(A1)

ϕ3(A)

)
− ερ(ω + κ)δ

bm(ωg + κ)

(ϕ3(A)− ϕ3(A1))2

ϕ3(A)
,

dGY
1

dt
= (ψ(Z)− ψ(Z1))

(
1− Φ(Z1, C1)

Φ(Z,C1)

)
+ Φ(Z1, C1)

(
Φ(Z,C)

Φ(Z,C1)
− ϕ2(C)

ϕ2(C1)

)(
1− Φ(Z,C1)

Φ(Z,C)

)
+
κ(1− g)

ωg + κ
Φ(Z1, C1)

[
5− Φ(Z1, C1)

Φ(Z,C1)
− Φ(Z,C)ξ(Y1)

Φ(Z1, C1)ξ(Y )
− ϕ1(U1)ξ(Y )

ϕ1(U)ξ(Y1)

−ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
− Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

]
+

(ω + κ) g

ωg + κ
Φ(Z1, C1)

[
4− Φ(Z1, C1)

Φ(Z,C1)
− Φ(Z,C)ϕ1(U1)

Φ(Z1, C1)ϕ1(U)

−ϕ2(C1)ϕ1(U)

ϕ2(C)ϕ1(U1)
− Φ(Z,C1)ϕ2(C)

Φ(Z,C)ϕ2(C1)

]
− ερ(ω + κ)λ

bm(ωg + κ)ϕ3(A1)

(ϕ3(A)− ϕ3(A1))2

ϕ3(A)
. (32)

Clearly,
dGY

1

dt
≤ 0 and

dGY
1

dt
= 0 if Z = Z1, Y = Y1, U = U1, C = C1 and A = A1. By the

LaSalle’s invariance principle, E∗1 is GAS. �

4. Numerical Simulations

In this section, numerical simulations for the systems (1)-(4) and (16)-(20) are carried out to vali-
date our global stability results. We have used MATLAB for all the computations.
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Example 4.1.

We consider

Ż = γ − qZ + πZ

(
1− Z

Zmax

)
− βZC

1 + a1Z + a2C
, (33)

U̇ =
βZC

1 + a1Z + a2C
− εU, (34)

Ċ = bU − rC − ρCA, (35)

Ȧ = λ+mCA− δA, (36)

where β, γ, π, q, a1, a2, Zmax > 0. In the concentration of uninfected cells, the generation rate
constant is denoted as γ, maximum proliferation rate as πZ, natural death rate as qZ and Zmax

as the maximum level of uninfected cells concentration in the body. The intrinsic growth rate of
uninfected cells is defined as

ψ(Z) = γ − qZ + πZ

(
1− Z

Zmax

)
,

and we assume that π < q (Smith and De Leenheer (2003)). Then, we have ψ(0) = γ > 0 and
ψ(Z0) = 0, where

Z0 =
Zmax

2π

(
π − q +

√
(π − q)2 +

4γπ

Zmax

)
.

Moreover, it follows that

ψ′(Z) = −q + π − 2πZ

Zmax

< 0.

Clearly, ψ(Z) > 0 for all Z ∈ [0, Z0) . Thus, (A1) holds true.

Next, the incidence rate of infection is defined as

Φ(Z,C) =
βZC

1 + a1Z + a2C
.

Clearly, Φ(Z,C) > 0,Φ(0, C) = Φ(Z, 0) = 0 for all Z,C > 0. Then, for Z > 0 and C > 0, we
have

∂Φ(Z,C)

∂Z
=

βC(1 + a2C)

(1 + a1Z + a2C)2 > 0,

∂Φ(Z,C)

∂C
=

βZ(1 + a1Z)

(1 + a1Z + a2C)2 > 0,

∂Φ(Z, 0)

∂C
=

βZ

(1 + a1Z)
> 0,

d

dZ

(
∂Φ(Z, 0)

∂C

)
=

β

(1 + a1Z)2
> 0.
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Thus, (A2) is satisfied. Then, we have ϕi(n) = αin > 0, i = 1, 2, 3 for all n > 0, ϕi(0) = 0, and
ϕ′i(n) = αi > 0. Thus, (A3) holds true. Also, for all Z,C > 0,

Φ(Z,C)

ϕ2(C)
=

βZ

(1 + a1Z + a2C)
,

∂

∂C

(
Φ(Z,C)

ϕ2(C)

)
= − βZa2

(1 + a1Z + a2C)2 < 0.

Thus, (A4) is also satisfied. With these, system (33)-(36) agrees with the global stability results in
Theorems 2.1-2.2. The basic reproduction numberR0 for system (33)-(36) is defined as

R0 =
b

ε(r + ρA0)

∂Φ(Z0, 0)

∂C
=

b

ε(r + ρA0)

βZ0

(1 + a1Z0)
.

We consider three different initial values to show the numerical results for system (33)-(36). The
initial values are

IV 1: Z0 = 2.0, U0 = 0.4, C0 = 0.4 and A0 = 1.0,

IV 2: Z0 = 1.7, U0 = 0.6, C0 = 0.6 and A0 = 1.6,

IV 3: Z0 = 1.4, U0 = 0.8, C0 = 0.8 and A0 = 2.4.

The following values of parameters are used: γ = 1.826, r = 0.4418, δ = 1.251, a1 = 1.0,
a2 = 3.0, m = 1.2129, ε = 0.4441, λ = 1.402, ρ = 0.5964, b = 2.02, q = 0.7979, Zmax = 2.7462,
π = 0.1, β =varied.
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Figure 1. The evolution of the steady states of system (33)–(36)
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Set (I): Here, β = 0.005 and we calculate R0 = 0.0143 < 1. In Figure 1, the solutions
of the system with the initial values IV 1 − IV 3 return to the CHIKV-free steady state E0 =
(2.3325, 0, 0, 1.1207). This shows the consistency of the numerical results with the result of Theo-
rem 2.1, that E0 is GAS. In this case, the CHIKV will be removed.

Set (II): We take β = 1.5, andR0 = 4.3015 > 1. Figure 1 shows the compatibility of our numeri-
cal results with the result of Theorem 2.2. We can easily see that the solutions of the system with the
initial values IV 1 − IV 3 tend to the endemic steady state E0

1 = (1.8667, 0.8925, 3.5450, 0.7053).
Hence, E0

1 exists and it is GAS.

Example 4.2.

We consider

Ż = γ − qZ + πZ

(
1− Z

Zmax

)
− βZC

1 + a1Z + a2C
, (37)

Ẏ = (1− g)
βZC

1 + a1Z + a2C
− (ω + κ)Y, (38)

U̇ = g
βZC

1 + a1Z + a2C
+ κY − εU, (39)

Ċ = bU − rC − ρCA, (40)

Ȧ = λ+mCA− δA. (41)

The parameters and variables are the same as given in Example 4.1. Similar to Example 4.1 above,
one can show that assumptions (A1)-(A4) satisfy the model (37)-(41). In this example, we chose
ξ(Y ) = Y. Thus, (A5) is satisfied, which shows that the global stability results in Theorems 3.1-3.2
are applicable. The basic reproduction numberRY

0 for model (37)-(41) is given by

RY
0 =

b(ωg + κ)

ε(ω + κ)(r + ρA0)

∂Φ(Z0, 0)

∂C
=

bβ(ωg + κ)Z0

ε(ω + κ)(r + ρA0) (1 + a1Z0)
.

Next, let us consider the following initial values to show the numerical results for system (37)-(41):

IV 4: Z0 = 2.0, Y0 = 0.2, U0 = 0.4, C0 = 0.4 and A0 = 1.0,

IV 5: Z0 = 1.7, Y0 = 0.4, U0 = 0.6, C0 = 0.6 and A0 = 1.6,

IV 6: Z0 = 1.4, Y0 = 0.6, U0 = 0.8, C0 = 0.8 and A0 = 2.4.

We use the following values of parameters: g = 0.5, κ = 0.1, ω = 0.5, β = varied. The other
parameters are the same as given in Example 4.1.

Set (I): Here, β = 0.3, and we calculate RY
0 = 0.5018 < 1. Figure 2 clearly shows that, the

solutions of the system with the initial values IV 4 − IV 6 finally approach the CHIKV-free steady
state E∗ = (2.3325, 0, 0, 0, 1.1207). This validates Theorem 3.1 that E∗ is GAS.

Set (II): We take β = 3.5. This gives RY
0 = 5.8548 > 1. We compute the steady state

E∗1 = (1.3940, 0.6520, 1.0277, 3.9641, 0.7398). When RY
0 > 1, the solutions of the system with
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the initial values IV 4−IV 6 tend to E∗1 . In this set, E∗1 exists and it is GAS. This proves the validity
of Theorem 3.2.
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Figure 2. The evolution of the steady states of system (37)–(41)

5. Conclusion

In this work, we have presented two models of a generalized within-host CHIKV dynamics. The
first model considered a class of infected cells while the second model considered two classes of
infected cells that are actively and latently infected cells. We have investigated the well-posedness
of the models by studying the nonnegativity and boundedness of the solutions. Under a set of
reasonable conditions on the general nonlinear functions, we have constructed suitable Lyapunov
functionals to prove the global stability of the steady states of the models which fully determined
by the basic reproduction number R0. In addition, our proposed models have extended and gen-
eralized some existing models in the literature. These proposed models can also be extended by
incorporating two routes of infection (i.e., CHIKV-to-cell infection and cell-to-cell transmission)

20

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 1, Art. 8

https://digitalcommons.pvamu.edu/aam/vol16/iss1/8



AAM: Intern. J., Vol. 16, Issue 1 (June 2021) 159

which we shall consider in our future work.
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