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Abstract

The main objective of this paper is to estimate the conditional cumulative distribution using the
nonparametric kernel method for a surrogated scalar response variable given a functional random
one. We introduce the new kernel type estimator for the conditional cumulative distribution func-
tion (cond-cdf ) of this kind of data. Afterward, we estimate the quantile by inverting this estimated
cond-cdf and state the asymptotic properties. The uniform almost complete convergence (with rate)
of the kernel estimate of this model and the quantile estimator is established. Finally, a simulation
study completed to show how our methodology can be adopted.

Keywords: Functional Data Analysis (FDA); Conditional distribution function; Nonparametric
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1. Introduction

Conditional distribution function (CFD) estimation is an essential field in nonparametric statisti-
cal analysis; this technique helps us understand the relationship between a response variable and
covariates set.

One of the branches of modern statistics is Functional Data Analysis (FDA). This has become
possible thanks to the computing techniques’ progress, both in terms of memory and storage ca-
pacities, which allows us to consider increasingly voluminous data, regarded as an observation of
curve or surface. The reader can consult the books of Ramsay and Silverman (1997), Ramsay and
Silverman (2002), Bosq (2000) and Ferraty and Vieu (2006), which offer a good introduction both
for the theoretical or applied aspect with various applications, including economics, sociology,
and biology. It should be noted that extensions of probability theory to random variables taking
values in normed spaces (e.g., Banach and Hilbert spaces), including extensions of some classical
theorems, are handy tools in the literature.

Note first that the study of the conditional distribution function of real data was obtained in the early
1960s by Roussas (1968) who studied the kernel estimator’s asymptotic properties conditional
distribution function where it showed convergence in probability. In the case of functional data,
many researchers have been interested in the study of this function. For example, we cite, Ferraty
et al. (2006) who estimate the conditional distribution characteristics in nonparametric functional
models. In the same framework, Ferraty et al. (2005) use the conditional distribution function to
obtain a nonparametric estimator of the conditional quantile when the data is weakly dependent.

It should be noted that most of the results involved in the nonparametric literature (and not only on
the conditional distribution) only deal with completely observed samples. While in many practical
works, including, for example, sample survey, reliability, or pharmaceutical tracing where data is
often observed incompletely, and parts of the responses are missing randomly (MAR).

The most popular method to involve missing data is the imputation method that fills or retrieves the
missing data in the response variable Y . In this context, we can cite various works that used this
technique. We can cite Yates (1933) for the linear regression model. The kernel estimation of the
mean functions is considered in Cheng (1994), the nearest neighbor imputation for the data survey
is addressed in Chen and Shao (2000), the robust regression model with missing data is considered
in Pérez-González et al. (2009), the asymptotic properties of the regression operator estimator
when the regressor is functional and completely observed, and that missing data at random in the
scalar response variable are investigated in Ferraty et al. (2013), in the case of dependent data, the
reader may refer to Ling et al. (2015). In this work, we investigate the unavailability of response
data because sometimes it is default or very expensive to measure some response observations;
the main idea is to recover (or fill) this missing data by a surrogate validation data set. In this
context, we cite Duncan and Hill (1985), Wittes et al. (1989), Carroll and Wand (1991) and Pepe
(1992). The principle of this method is to incorporate both surrogate data and the corresponding
observations of the covariate X .
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This paper aims to study the conditional models (conditional distribution function and the condi-
tional quantile) for missing response by the kernel method. We explore in this work the aspect of
missing data in the response variable. First, we consider the estimator of the conditional distribu-
tion for complete data, then by using the validation data set (see, Ibrahim et al. (2020) and Wang
(2006)), we build our new estimator with surrogate data and we obtain some asymptotic results for
the conditional distribution and the quantiles. In the end, we realized a simulation study to improve
the efficacity of our estimator.

The rest of the paper is organized as follows. We present our model in Section 2. The required
notations and assumptions are introduced in Section 3. The main results of strong uniform con-
sistency (with rate) and the quantile estimation as a direct consequence of our asymptotic result
obtained from CFD estimation are formulated in Section 4. For the numerical results, a simulation
study that shows the performance of the proposed estimator is presented in Section 5.

2. Model and Estimator of the Conditional Distribution Function

2.1. Estimation of the cond-cdf with complete data

Let (Xi, Yi)i=1,...,N be a random variables independent and identically distributed as (X, Y ), where
X ∈ F , Y take values in R and (F , d) is a semi metric space with a metric d(., .). The conditional
cumulative distribution function of Y given X = x, denoted by F x(.) is defined

F x(.) = P(Y ≤ y|X = x), ∀y ∈ R,

and by the regression model, we have

E
[
H

(
y − Yi
hH

) ∣∣∣Xi = x

]
hH→0−−−→ F x(y),

where H(.) is a cumulative distribution function and hH is a sequence of positive real numbers
tending to 0 when n go to infinity.

The estimator of conditional distribution function by the kernel method defined by

F̂ x
C(y) =

∑N
i=1H

(
y−Yi
hH

)
K
(
d(x,Xi)
hK

)
∑N

i=1K
(
d(x,Xi)
hK

) , ∀y ∈ R, ∀x ∈ F , (1)

where K(.) is a kernel function and hK is a bandwidth sequence tend toward 0.

2.2. Estimation of the cond-cdf with surrogate data

We have the sample set of the size N and the validation set of size n, where the observations are
independent and identically distributed. Here, Y is not accessible (available), so we replaced it by
a surrogate variable Ỹ .
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Let V the index set of the sampled validation set and V̄ = {1, ..., N} \ V . Note that, for the
surrogate data we have

E
[
H

(
y − Yj
hH

) ∣∣∣Xj, Ỹj

]
hH→0−−−→ F x(y),

and

E
[
E
[
H

(
y − Yj
hH

) ∣∣∣Xj, Ỹj

] ∣∣∣Xj = x

]
= E

[
H

(
y − Yj
hH

) ∣∣∣Xj = x

]
, (2)

then, the distribution function can be estimated by

F̂ x(y) =

∑
i∈V H

(
y−Yi
hH

)
K
(
d(x,Xi)
hK

)
+
∑

j∈V̄ u(Xj, Ỹj)K
(
d(x,Xj)
hK

)
∑N

i=1 K
(
d(x,Xi)
hK

) ,

where

u(Xj, Ỹj) = E
[
H

(
y − Yj
hH

) ∣∣∣Xj, Ỹj

]
,

and the function u(., .) is unknown.

So, we estimate this function by validation data set:

û(Xj, Ỹj) =

∑
i∈V H

(
y−Yi
hH

)
W
(
d(Xj ,Xi)

an
, Ỹj−Ỹi

an

)
∑

i∈V W
(
d(Xj ,Xi)

an
, Ỹj−Ỹi

an

) ,

and W (., .) is the two-dimensional kernel function in F × R and an is a sequence of real number
which tend to zero when n tend to infinity.

3. Assumptions

Let SF be some subset ofF such that SF ⊂
⋃dn
k=1B (xk, rn), where xk ∈ F , and (dn) is a sequence

of integers which satisfies the assumption (A5).

Let us introduce B(x, hK) a ball of the center x and radius hK defined as B(x, hK) = {x1 ∈ F :
d(x1, x) ≤ hK}. Furthermore, we have x a fixed point in F , and SR a fixed compact subset of R.

Our assumptions are gathered below for easy references.

(A1) ∀hK > 0, P(X ∈ B(x, hK)) =: φ(hK) > 0.
(A2) The operators F x(.) and u(., .) are Lipschitzian, such that, ∀(y1, y2) ∈ S2

R, ∀(x1, x2) ∈
S2
F and C,A1, A2 > 0,

(a) |F x1(y1)− F x2(y2)| ≤ C
(
d(x1, x2)A1 + |y1 − y2|A2

)
.

(b) |u(x1, y1)− u(x2, y2)| ≤ C
(
d(x1, x2)A1 + |y1 − y2|A2

)
.
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(A3) The distribution function H(.) satisfy{
∀ (y1, y2) ∈ R2, |H (y1)−H (y2)| ≤ C |y1 − y2| ,∫
|t|A2 H ′ (t) dt <∞.

(A4) The bandwidths hK and an satisfy

lim
N→∞

hK = lim
n→∞

an = 0 and lim
N→∞

Nφ(hK) = +∞,

and

lim
N→∞

logN

Nφ(hK)
= 0 and lim

n→∞

log n

nφ(an)
= 0.

(A5) For some β > 0,

lim
N→∞

hH = 0 with lim
N→∞

NβhH =∞,

and for rn = O

(
logN

N

)
the sequence dn satisfy

log2N

Nφ (an)
≤ dn ≤

Nφ (an)

logN
and

∞∑
n=1

nβ exp {(1− η) log dn} <∞where β > 0 and η > 1.

(3)
(A6) The kernel K(.) is a continuous function from R into R+ such that

∫
K = 1, and there exist

some positive constants C and C ′ such that

C1(0,1) ≤ K ≤ C ′1(0,1), (4)

where 1A denotes the indicator function on the set A.

We assume the two-dimensional kernel W (x, y) = W1(x)W2(y) is a continuous function with
a compact support satisfies (4), however, there exist positive finite real constants C3 and C4,
such that

C3φ(an) ≤ E

[
W

(
d(Xj, Xi)

an
,
Ỹj − Ỹi
an

)]
≤ C4φ(an).

Remark 3.1.

The concentration assumption (A1) depend to the distribution of X and has an important role,
which is linked with the semi-metric d(., .). Note that the correct choice for d(., .) is through the
corresponding function φ(.) a key to the curse of dimensionality. The assumption (A2) is linked
with the nonparametric structure of the model and it’s used it for determine the bias term. The
assumptions (A3)− (A6) are a technical condition similar to the hypothesis in Ferraty et al. (2006)
for obtain our results.
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4. Results

4.1. Uniform almost complete consistency

The uniform almost complete (Oa.co.) convergence of F̂ x(.) is given by the following Theorem and
Lemmas.

Theorem 4.1.

Under assumptions (A1)− (A6), we obtain

sup
x∈SF

sup
y∈SR

|F̂ x(y)−F x(y)| = O(hA1

K +hA2

H +aA1

n )+Oa.co.

(√
log dn
nφ(an)

)
+Oa.co.

(√
logN

Nφ(hK)

)
.

Proof:

Let F̂ x
N(y) and F̂ x

D(y), defined by

F̂ x
N(y) =

1

N

∑
i∈V

H
(
y−Yi
hH

)
K
(
d(x,Xi)
hK

)
E
[
K
(
d(x,Xi)
hK

)] +
1

N

∑
j∈V̄

û(Xj, Ỹj)K
(
d(x,Xj)
hK

)
E
[
K
(
d(x,Xj)
hK

)] ,

and

F̂ x
D =

1

N

N∑
i=1

K
(
d(x,Xi)
hK

)
E
[
K
(
d(x,Xi)
hK

)] .
The proof is based on the following decomposition and the Lemmas 4.2, 4.3 and 4.4 given below:

F̂ x(y)− F x(y) =
1

F̂ x
D

{(
F̂ x
N(y)− E[F̂ x

N(y)]
)
−
(
F x(y)− E[F̂ x

N(y)]
)}

− F x(y)

F̂ x
D

{
F̂ x
D − 1

}
. (5)

�

Auxiliary results

We put the quantities, for x ∈ F , (y, ỹ) ∈ R2 and i, j = 1, ..., N :

Ki := K

(
d(x,Xi)

hK

)
, Hi(y) := H

(
y − Yi
hH

)
,Wij := W

(
d(Xj, Xi)

an
,
Ỹj − Ỹi
an

)
.

We note for j ∈ V̄ :

û(Xj, Ỹj) =

∑
i∈V Hi (y)Wij∑

i∈V Wij

:=
ûxN(y)

ûxD
.

We need the following lemma to establish the uniform almost complete convergence.

6
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Lemma 4.1.

Under assumptions (A1)− (A6), we get

• F1 = sup
x∈SF

|ûxD − 1]| = Oa.co.

(√
log dn
nφ(an)

)
and

∞∑
n=1

P (|ûxD| ≤ 1/2) <∞.

• F2 = sup
x∈SF

sup
y∈SR

|ûxN(y)− E[ûxN(y)]| = Oa.co.

(√
log dn
nφ(an)

)
.

• F3 = sup
x∈SF

sup
y∈SR

|u(xj, ỹj)− E[ûxN(y)]| = O(aA1

n ) +O(hA2

H ).

Proof:

(1) As F1 is a particular case of F2 (by taking H(.) ≡ 1), then the proof will be omitted. Now, we
have

P (|ûxD| ≤ 1/2) ≤ P (|ûxD − 1| > 1/2) ,

thus, by applying the result above, we get
∞∑
i=1

P (|ûxD| ≤ 1/2) <∞.

(2) We conceive the following decomposition, where for all x ∈ SF , we set k (x) = argmin
k∈{1,...,dn}

|x−

xk| and we use the compactness of SR, where, we can write SR ⊂
⋃qn
j=1 Sj, Sj =

(lj − ln, lj + ln) and take yt = argmin
l∈{l1,...,lqn}

|y − l|, to obtain

sup
x∈SF

sup
y∈SR

|ûxN(y)− E[ûxN (y)]|︸ ︷︷ ︸
F2

≤ sup
x∈SF

sup
y∈SR

|ûxN (y)− ûxk(x)N (y) |︸ ︷︷ ︸
P1

+ sup
x∈SF

sup
y∈SR

|ûxk(x)N (y)− ûxk(x)N (yt) |︸ ︷︷ ︸
P2

+ sup
x∈SF

sup
y∈SR

|ûxk(x)N (yt)− E[û
xk(x)
N (yt)]|︸ ︷︷ ︸

P3

+ sup
x∈SF

sup
y∈SR

|E[û
xk(x)
N (yt)]− E[û

xk(x)
N (y)]|︸ ︷︷ ︸

P4

+ sup
x∈SF

sup
y∈SR

|E[û
xk(x)
N (y)]− E[ûxN (y)]|︸ ︷︷ ︸

P5

.

• For P1 and P5, we have from (A3) and the boundness of W (., .) we can write

P1 ≤
C

φ(an)
sup
x∈SF

sup
y∈SR

1

n

∑
i∈V

|W (x, ỹ)−W (xk(x), ỹ)|

≤ Cdnqn
anφ(an)

,
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and analogously, for P2 we obtain

P2 ≤
Cdnqn
anφ(an)

1B(x,an)∪B(xk(x),an),

by applying Bernstein’s inequality, with

Zi =
ε

anφ(an)
1B(x,an)∪B(xk(x),an),

which gives, for n tending to infinity,

P1 = O

(√
log dn
nφ (an)

)
and P2 = O

(√
log dn
nφ (an)

)
.

Moreover, using the fact that P5 ≤ P1 and P4 ≤ P2 to get, for n tending to infinity,

P5 = O

(√
log dn
nφ (an)

)
and P4 = O

(√
log dn
nφ (an)

)
.

• Now concerning P3. For all η > 0, we have

P

(
P3 > η

√
log dn
nφ(an)

)
≤ qndn max

xk∈{1,...,dn}
max

yt∈{1,...,tqn}

P

(
|ûxk(x)N (yt)− E[û

xk(x)
N (yt)]| > η

√
log dn
nφ(an)

)
,

we can use the Bernstein’s exponential inequality to Γi, where

Γi =
1

nφ(an)

{
Wi,j(xk(x), yt)Hi(yt)− E

[
Wi,j(xk(x), yt)Hi(yt)

]}
, for j ∈ V̄ ,

and we have |Γi| ≤ C4/φ(an), E|Γi|2 ≤ C/φ(an).

However, take Cη2 = 2β and qn = O(l−1
n ), we get

qndnP

(
sup
x∈SF

sup
y∈SR

|ûxk(x)N (yt)− E[û
xk(x)
N (yt)]| > η

√
log dn
nφ(an)

)
≤ qndn2 exp{−Cη2 ln dn},

then, by (A6) we get

P3 = Oa.co.

(√
log dn
nφ(an)

)
. (6)

(3) We have for j ∈ V̄ :

F3 := E[ûxN(y)]− u(x, ỹ)

= E
[
Wij

(
E
(
H1 (y) |X, Ỹ

)
− u(x, ỹ)

)]
,

and we have E(H1(y)|X, Ỹ ) = u(X, Ỹ ), then, from (A2), we get

|u(X, Ỹ )− u(x, ỹ)| ≤ C(aA1

n + hA2

H ).

Finally, from (F1), (F2) and (F3), we finished the proof of Lemma 4.1. �
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Lemma 4.2.

Under the assumptions (A1)− (A6), we obtain

sup
x∈SF

sup
y∈SR

|F x(y)− E[F̂ x
N(y)]| = O(hA1

K ) +O(hA2

H ) +O(aA1

n ) +Oa.co.

(√
log dn
nφ(an)

)
.

Proof:

We have |V | = n, |V̄ | = N − n,

F x(y)− E[F̂ x
N(y)] = F x(y)− E

[
n
H1(y)K1

E [K1]
+ (N − n)

û(Xj, Ỹj)K1

E [K1]

]

= F x(y)− nE
[
H1(y)K1

E [K1]

]
− (N − n)E

[
û(Xj, Ỹj)Kj

E [K1]

]
:= T1 + T2.

• Concerning the term T1:

F x(y)− E
[
H1(y)K1

E [K1]

]
= F x(y)− E

[
E
[
H1(y)K1

E [K1]

∣∣∣X1

]]
= F x(y)− E [H1(y)|X1] .

We know that

E [H1(y)|X1] =

∫
R
H ′(t)FX1(y − hHt)dt,

and

|E [H1(y)|X1]− F x(y)| ≤
∫
R
H ′(t)|FX1(y − hHt)− F x(y)|dt.

So, from (A2), we get

|E [H1(y)|X1]− F x(y)| ≤ C

∫
R
H ′(t)

(
hA1

K + |t|A2 hA2

H

)
dt,

then, T1 = O(hA1

K ) +O(hA2

H ).
• Concerning the term T2:

F x(y)− E

[
û(Xj, Ỹj)K1

E [K1]

]
= E

(
u(Xj, Ỹj)− û(Xj, Ỹj)

K1

E [K1]

)
+ E

(
F x(y)−H1(y)

K1

E [K1]

)
+ E

((
H1(y)− u(Xj, Ỹj)

) K1

E [K1]

)
.

Thus,
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(a) Firstly, we have

sup
x∈SF

sup
y∈SR

∣∣∣E(u(Xj, Ỹj)− û(Xj, Ỹj)
K1

E [K1]

) ∣∣∣ = O

(
sup
x∈SF

sup
y∈SR

∣∣∣u(x, y)− û(x, y)
∣∣∣) ,

by the following decomposition for j ∈ V̄ :

û(Xj, Ỹj)− u(Xj, Ỹj) = − u

ûxD
(ûxD − 1) +

1

ûxD
{ûxN(y)− E[ûxN(y)]− (u− E[ûxN(y)])}

:= − u

ûxD
T2,1 +

1

ûxD
(T2,2 − T2,3) ,

then, from (Lemma 4.1), we get

T2,1 = T2,2 = Oa.co.

(√
log dn
nφ(an)

)
and T2,3 = O(aA1

n ) +O(hA2

H ).

(b) Secondly, we have

∣∣∣E(F x(y)−H1(y)
K1

E [K1]

) ∣∣∣ = |F x(y)− E[H1(y)|X1]|,

and E[H1(y)|X1] =
∫
RH

′(t)FX(y − hHt)dt, so, from the hypothesis (A2), we get

∣∣∣E(F x(y)−H1(y)
K1

E [K1]

) ∣∣∣ = O(hA1

K ) +O(hA2

H ). (7)

(c) Thirdly, its clear that after (b), we get

∣∣∣E((H1(y)− u(Xj, Ỹj)
) K1

E [K1]

) ∣∣∣ = 0. (8)

Finally, from T1 and T2 the proof of Lemma 4.2 is achieved. �

Lemma 4.3.

Under the assumptions (A1) and (A3)− (A6), we obtain

sup
x∈SF

sup
y∈SR

|F̂ x
N(y)− E[F̂ x

N(y)]| = Oa.co.

(√
logN

Nφ(hK)

)
.

Proof:

We keep the same notation used previously, in the definitions of k(x) and yt. The proof is based on
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the following decomposition:

sup
x∈SF

sup
y∈SR

|F̂ x
N(y)− E[F̂ x

N(y)]| ≤ sup
x∈SF

sup
y∈SR

|F̂ x
N(y)− F̂ xk(x)

N (y)|+ sup
x∈SF

sup
y∈SR

|F̂ xk(x)
N (y)− F̂ xk(x)

N (yt)|

+ sup
x∈SF

sup
y∈SR

|F̂ xk(x)
N (yt)− E[F̂

xk(x)
N (yt)]|

+ sup
x∈SF

sup
y∈SR

|E[F̂
xk(x)
N (yt)]− E[F̂

xk(x)
N (y)]|

+ sup
x∈SF

sup
y∈SR

|E[F̂
xk(x)
N (y)]− F̂ x

N(y)|

=: E1 + E2 + E3 + E4 + E5. (9)

• Concerning E1 and E5, by following the same lines as for studying the terms P1 and P5, we
obtain:

E1 = Oa.co.

(√
logN

Nφ(hK)

)
and E5 =

(√
logN

Nφ(hK)

)
.

• Concerning the term E2, by using the Lipschitz’s condition on the kernel H(.), we can write

|F̂ xk(x)
N (y)− F̂ xk(x)

N (yt)| ≤ Ch−1
H |y − yt|︸ ︷︷ ︸

ln

( 1

NE [K1]

∑
i∈V

Ki︸ ︷︷ ︸
F̂xD

+
∑
j∈V̄

Kj

E [K1]︸ ︷︷ ︸
F̂xD

)
,

under (A6), (A4), (A5) and from the almost comply consistency of F̂D (Lemma 4.4), and take
ln = N−β , we get

E2 = Oa.co.

(√
logN

Nφ(hK)

)
and E4 = O

(√
logN

Nφ(hK)

)
. (10)

• For E3, we have

E3 = sup
x∈SF

sup
y∈SR

|F̂ x
N(zy)− E[F̂ x

N(zy)]|

≤ sup
x∈SF

sup
y∈SR

∣∣∣ 1

N

(∑
i∈V

Hi(yt)Ki(xk(x))

E [K1]
− E

(∑
i∈V

Hi(yt)Ki(xk(x))

E [K1]

))∣∣∣
+ sup

x∈SF

sup
y∈SR

∣∣∣∑
j∈V̄

Kj(xk(x))

E [K1]
− E

∑
j∈V̄

Kj(xk(x))

E [K1]

∣∣∣
=: E2,1 + E2,2, (11)

then, for E2,1:

P

(
E2,1 > κ

√
logN

Nφ(hK)

)
≤ qndn max

x∈SF
max
yt∈SR

P

(∣∣∣ 1

N

∑
i∈V

(Λi)
∣∣∣ > κ

√
logN

Nφ(hK)

)
,

with

Λi =
Hi(yt)Ki(xk)

E [K1]
− E

(
Hi(yt)Ki(xk(x))

E [K1]

)
.
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So, by the Bernstein’s exponential inequality for Λi, where, |Λi| ≤ C/φ(hK) and E|Λi|2 ≤
C ′/φ(hK), as usually, we take qn = O(l−1

n ), Cκ2 = 2β + 1, such that

qn max
yt∈SR

P

(∣∣∣ 1

N

∑
i∈V

Λi

∣∣∣ > κ

√
logN

Nφ(hK)

)
≤ qn2 exp{−Cκ2 logN}

≤ CNβN−2β−1,

so,

P

(
E2,1 > κ

√
logN

Nφ(hK)

)
≤ CN−β−1,

now, by take H(yt) = 1 for E2,1, we obtain E2,2 in very easy manner.
So,

E3 = Oa.co.

(√
logN

Nφ(hK)

)
. (12)

Finally, the Lemma 4.3 is achieved. �

Lemma 4.4.

Under the assumptions (A1) and (A3)− (A6), we obtain

sup
x∈SF

∣∣∣F̂ x
D − 1

∣∣∣ = Oa.co.

(√
logN

Nφ(hK)

)
,

and ∑
i∈N

P(F̂ x
D < 1/2) <∞.

Proof:

We have

F̂ x
D − 1 =

1

N

N∑
i=1

Ki

EK1

− 1

N
E

(
N∑
i=1

Ki

EK1

)

=
1

N

N∑
i=1

Ki

EK1

− EKi

EK1

=
1

N

N∑
i=1

∆i,

where ∆i =
Ki

EK1

− E
Ki

EK1

. Under (A6), for m = 1, 2, we have

0 <
C

′

φ(hK)
< E(Km

1 ) <
C

φ(hK)
,
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then

|∆i| <
C

φ(hK)
= θ1,

and

E∆2
i <

C
′

φ(hK)
= θ2.

We apply the Bernstein-type exponential inequality, for all ε ∈]0, θ1
θ2

[, we get

P

(∣∣∣F̂ x
D − 1

∣∣∣ > ε

√
logN

Nφ(hK)

)
≤ 2 exp

(
−ε2 logN

4φ(hK)θ2

)
(13)

= 2N−ε
2/4φ(hK)θ2

= 2N−Cε
2

.

It follows that for ε2 large enough
∞∑
i=1

P

(∣∣∣F̂ x
D − 1

∣∣∣ > ε

√
logN

Nφ(hK)

)
< +∞.

For the second part, we have

P{|F̂ x
D| ≤ 1/2} ≤ P{|F̂ x

D − 1| > 1/2}
≤ P{|F̂ x

D − EF̂ x
D| > 1/2}.

We deduce that ∑
i∈N

P
(
F̂ x
D < 1/2

)
<∞. �

4.2. The consistency of the conditional quantile estimator

In this section we study the asymptotic behavior of the conditional quantile. Obviously, we will
estimate it by mean of the conditional distribution estimator. We introduce q̂γ , the estimator of qγ
defined as

F̂ x (q̂γ) = γ,

where γ ∈]0, 1[.

To achieve our result, we need the following hypotheses.

(A7) H(.) is strictly increasing cond-cdf
(A8) The distribution F x(.) is strictly increasing, continuous and differentiable in neighborhood of

qγ .
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Note that (A8) control the flatness of the conditional c.d.f. around the quantile to be estimated.

Corollary 4.1.

Under assumptions of the Theorem 4.1 and (A8), we obtain

|q̂γ − qγ| = O(hA1

K + hA2

H + aA1

n ) +Oa.co.

((
logN

Nφ(hK)

)1/2
)

+Oa.co.

((
log dn
nφ(an)

)1/2
)
.

Proof:

We present briefly the proof, where Taylor expansion of F x(.) drive to the existence of some q∗

between q̂γ and qγ and under the condition (A8) we get:

F̂ x (q̂γ)− F̂ x (qγ) = (q̂γ − qγ) F̂ x(1) (
q∗γ
)
,

|q̂γ − qγ| =
1

F̂ x(1)
(
q∗γ
) [∣∣∣F̂ x (q̂γ)− F̂ x (qγ)

∣∣∣] .
If we could confirm that

∃δ > 0,
∞∑
n=1

P
(
F̂ x(1)

(q∗) < δ
)
<∞,

we obtain

P (|q̂γ − qγ| > ε) ≤ P
(∣∣∣F̂ x (q̂γ)− F̂ x (qγ)

∣∣∣ > δ (ε)
)

= P
(∣∣∣F x (qγ)− F̂ x (qγ)

∣∣∣ > δ (ε)
)

≤ P
(

sup
x∈SF

sup
y∈SR

∣∣∣F̂ x (y)− F x (y)
∣∣∣ > δ (ε)

)
.

Under assumption (A8), and by comparing the rates of convergence given in Theorem 4.1, we have∑
n

P (|q̂γ − qγ| > ε) ≤
∑
n

P
(

sup
x∈SF

sup
y∈SR

∣∣∣F̂ x (y)− F x (y)
∣∣∣ > δ (ε)

)
<∞. �

5. Simulation

In this section, we evaluate the behavior of the proposed estimator by conducting a number of sim-
ulation studies. Let F̂ x

V (y) be the standard Nadaraya-Watson estimator with the true observations
in the validation data set. That is,

F̂ x
V (y) =

∑
i∈V H

(
y−Yi
hH

)
K
(
d(x,Xi)
hK

)
∑

i∈V K
(
d(x,Xi)
hK

) .

A simulation was conducted to compare the proposed estimators F̂ x
R(y) with F̂ x

V (y) and F̂ x
C(y),

where F̂ x
C(y) is defined above in Equation (1). It should be pointed out that F̂ x

C(y) can serve as

14
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a gold standard in the simulation study, even though it is practically unachievable because of the
measurement errors.

We generated the response variables Y such that

Yi = m(Xi) + εi for i = 1, ..., 250,

where the functional regressors Xi are defined (see Figure 1), for any t ∈ [0, π
2
], by:

Xi(t) = 3Wi sin(2πt) + Ait with Wi ∼ N (1, 0.5) and Ai ∼ N (0, 1),

the error ε has the standard normal distribution and it is independent of X, and m(Xi) is given by

m(Xi) =
5

1 +
∫ π

2

0
Xi(t)dt

.

A sample of smooth curves Xi(t) are plotted in Figure 1.

●
0.0 0.5 1.0 1.5

−
6

−
4

−
2

0
2

4
6

8

t

X
(t

)

Figure 1. Curves (N=250)

Now, let S0 = {1, . . . , 200} and S1 = {201, . . . , 250} be two subsets of indices. Then, we choose
L = {(Xi, Yi)}i∈S0

as the learning sample and T = {(Xi, Yi)}i∈S1
as the test sample. We have

from Ibrahim et al. (2020) that the surrogate variable Ỹi of Yi, for all i ∈ S0, was generated from

Ỹi = ρZi + ei,

where Zi is the standard score of Yi and ei ∼ N (0,
√

1− ρ2). In such a way that the correlation
coefficient between Yi and Ỹi is approximately equal to ρ which would not be controllable in
practice. In the sequel of this simulation study, we take ρ = 0.35 or ρ = 0.75.

From the learning sample containing N = 200 functional data, we randomly choose a set V of
n validation data {(Xi, Yi)}i∈V which allows to build the functional kernel estimator F̂ x

V (y) of

m(x). The estimator F̂ x
R(y) is then constructed by using the surrogate data

{(
Xi, Ỹi

)}
i∈V̄

with
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the help of the validation data, where V̄ = {1, . . . , N}\V . It should be pointed out that for N = n

(complete observations), we have

F̂ x
V (y) = F̂ x

R(y) = F̂ x
C(y).

The bandwidths hH and hK are selected by a cross-validation method. Because of the smoothness
of the curves, we have built the predictors through the semi-metric based on the first derivatives
(see Benhenni et al. (2007)). For the bandwidths an, we used the same principal steps in Ibrahim et
al. (2020), the kernels K(.) and W (., .) are chosen to be the quadratic and the integrate quadratic
kernels, these latter are Epanechnikov kernels.

4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

C
D

F

Reel CDF F

Estimated CDF FR

Estimated CDF FV

Figure 2. CDF comparison

Figure 2 represents the curves of the CDF with F x(y) =
∫ y

0
1

2π
exp −(z−m(x))2

2
dz, where, it is clear

that our F̂ x
R(y) is closer to the real curve which represents the complete sample and consequently,

F̂R(y) performs better than F̂ x
V (y).

Hereafter, we will apply our result on the median and obtained results are given in Figure 3.
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Figure 3. Comparative prediction between the median for each: F̂x
R(y), F̂x

C(y) and F̂x
V (y)

Table 1. MSE result

n/N → 0.125 0.25
ρ
↓

F̂ x
V (y) 0.35 0.6543 0.7127

0.75 0.6729 0.7149

F̂ x
R(y) 0.35 0.5503 0.5922

0.75 0.5692 0.6018

F̂ x
C(y) – 0.5248 0.5248

It can be noticed from Figure 3 that the estimator F̂ x
R(y) is better than the estimator F̂ x

V (y). Also,
it appears clearly that in this case the performance of both estimates is closely linked to the cor-
relation coefficient and the ration n/N since the values of MSE-error increase substantially with
respect to those parameters (see Table 1). In this table, we summarize the MSE-error for two values
of n/N and ρ, this error increases with respect to those parameters. It is noted that the results are
sufficiently good for all sample size, and further results are given for large sample sizes in Figure
4.
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Figure 4. A boxplots of the MSE of F̂x
R(y) and F̂x

V (y)

Figure 4 displays the boxplot of MSE. It can be seen from this figure that our estimator F̂ x
R(y)

remains more stable than F̂ x
V (y), and we can conclude to good asymptotic performance of F̂ x

R(y).

6. Conclusion

This paper presents the conditional distribution function’s estimator using the kernel method for a
surrogated scalar response variable given a functional random one. This estimator is built from the
validation data. We obtained the uniform, almost complete convergence of this model using kernel
estimate and the conditional quantile estimator under some classical assumptions. To improve the
performance of our proposed estimator and the theoretical results, we realized a simulation study.
Other research issues are possible, such as extensions to local linear method estimation and the
semiparametric linear regression model which can also be studied using this kind of data. Finally,
the k nearest neighbor method can be adapted to treat the outliers in the data set as proposed in the
literature by Attouch et al.
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