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Abstract

In this work, we investigate the asymptotic properties of a nonparametric mode of a conditional
density when the real response variable is censored and the explanatory variable is valued in a semi-
metric space under ergodic data. First of all, we establish asymptotic properties for a conditional
density estimator from which we derive an central limit theorem (CLT) of the conditional mode
estimator. Simulation study is also presented to illustrate the validity and finite sample performance
of the considered estimator.

Keywords: Asymptotic normality; Censored data; Conditional mode; Ergodic processes func-
tional data; Strong consistency
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1. Introduction

Survival analysis methods have been used in a number of applied fields (medicine, biology, epi-
demiology, engineering, econometrics, finance, social sciences, demography, etc.). The analysis of
failure time data usually means addressing one of three problems: the estimation of survival func-
tions, the comparison of treatments or survival functions, and the assessment of covariate effects
or the dependence of failure time on explanatory variables. There are many reasons that make it
difficult to get complete data in studies involving survival times. A study is often finished before
the death of all patients, and we may keep only the information that some patients are still alive
at the end of the study, not observing when they really die. In the presence of censored data, the
time to event is unknown, and all we know is that the survival time has occurred before, between
or after certain time points, this obviates the need for inference methods for censored data. When
the failure time is observed completely, there are numerous methods to make non parametric infer-
ence on its conditional distribution. For instance, Nadaraya (1964) and Watson (1964) proposed a
nonparametric estimator to estimate the conditional expectation as a locally weighted average us-
ing a kernel function. Beran (1981) extended the Kaplan-Meier estimator and proposed a method
for non-parametric estimation (generalized Kaplan-Meier) of the conditional survival function for
right-censored data.

Results regarding the estimation of the conditional models from right censored data can be found
for instance in Dabrowska (1992), where author gave the nonparametric regression with censored
survival time data. In Li and Doss (1995) an approach to nonparametric regression for life history
data using local linear fitting was given. Dehghan and Duchesne (2016) established the estimation
of the conditional survival function of a failure time given a time-varying covariate with interval-
censored observations. Many works in the statistical literature deal with nonparametric estimation
when the variable of interest is either complete or singly censored. However, in reliability and
survival time studies, one can encounter a more complicated random censorship situation. An
example of such a model, given in Patilea and Rolin (2006), is to consider a reliability system
consisting of three components with two components in series and one component in parallel with
the series system, the authors defined the product-limit estimators of the survival function with
twice censored data.

On the other hand, the problem of nonparametric conditional models for censored data where
the observations can be censored from either left or right are very limited in the literature. This
gap can partially be explained by the difficulties arising in the estimation of the conditional dis-
tribution and/or density function with two-sided censored data. The problem of estimating the
(unconditional) distribution function for data that may be censored from above and below has been
considered by several authors.

Despite the regression function is of interest, other statistics such as quantile and mode regression
might be important from a theoretical and a practical point of view. Quantile and/or mode regres-
sion is a common way to describe the dependence structure between a response variable X and
some covariate Z. Unlike the regression function that relies only on the central tendency of the
data, the conditional quantile function allows the analyst to estimate the functional dependence
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between variables for all portions of the conditional distribution of the response variable.

Mode regression is a common way to describe the dependence structure between a response vari-
able X and some covariate Z. Unlike the regression function (which is defined as the conditional
mean) that relies only on the central tendency of the data, the conditional mode function allows the
analysts to estimate the functional dependence between variables for all portions of the conditional
distribution of the response variable. On the other hand, compared with the standard approach
based on functional conditional mean prediction that is sensitive to outliers, functional condition
mode prediction could be seen as a reasonable alternative to conditional mean because of its robust-
ness. Moreover, quantiles are well known for their robustness to heavy-tailed error distributions and
outliers which allow to consider them as a useful alternative to the regression function see Chaouch
and Khardani (2015). Conditional model are used in finance and/or insurance to model the risks of
extreme values. The regression quantile function provide a well description of the data, specifically
the conditional median function (see Chaudhuri et al. (1997)). Estimation of the conditional mode
of a scalar response given a functional covariate has attracted the attention of many researchers.

In the censored case, Ould-Saïd and Cai (2005) stated the uniform strong consistency with rates
of the kernel estimator of the conditional mode function, in this context, we refer to Ling et al.
(2016) for the estimation of conditional mode for functional stationary ergodic data with missing
at random. The ergodic theory has appeared in statistical mechanics, notably in Maxwell’s and
Gibbs’s theories. It is necessary to make a sort of logical transition between the average behavior of
the set of dynamic systems and the temporal average of the behaviors of a single dynamic system.
It is derived from an ingenious hypothesis used for a long time without justifying it, and in various
forms. In the context of the ergodic functional case with censored observations the literature is very
restricted.

So, in the present work, we investigate the asymptotic properties of the conditional mode function
of a randomly censored scalar response given a functional covariate when the data are sampled
from a stationary and ergodic process. Our results can be used to construct prediction intervals, for
instance in electricity when one wants to construct a maximum interval of demand (or needs) of
electricity in the presence of censored data. In practice, this study has great importance because
it permits us to construct a prediction method based on the conditional mode estimator. Here, we
consider a model in which the response variable is censored but not the covariate. Besides the
infinite dimensional character of the data, we avoid here the widely used strong mixing condition
and its variants to measure the dependency and the very involved probabilistic calculations that it
implies. Therefore, we consider, in our setting, the ergodic property to allow the maximum possible
generality with regard to the dependence setting. Further motivations to consider ergodic data are
discussed in Laib and Louani (2010, 2011) where details defining the ergodic property of processes
are also given.

The layout of the paper is as follows. In the next section, our model is described. Section 3 is
dedicated to fixing notations and hypotheses. We state our main result of strong consistency rate as
well as the asymptotic normality, where the technical proofs are given with some auxiliary results.
In Section 4. Lastly, an application of the proposed estimator is illustrated in Section 5.
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Consider a random pair (Z, T ) which is valued in E × R, where E is some semi-metric abstract
space equipped with semi-metric d(·, ·), and T takes values in R. Let (Ti, Zi)1≤i≤n be the statisti-
cal sample of pairs which are identically distributed as (Z, T ) and supposed to be stationary and
ergodic. Henceforward, Z is called functional random variable f.r.v.

For z ∈ E, we denote by ϕ(·|z) the conditional density function of T given Z = z and we assume
that ϕ(·|z) has an unique conditional mode θ(z) defined as

θ(z) = arg sup
t∈SR

ϕ(t|z), (1)

where SR is a fixed compact subset of R.

2. The Model

Consider a randomly censored model given by two nonnegative stationary sequences of indepen-
dent and identically distributed (i.i.d) random variables T1, · · · , Tn (survival times) andC1, · · · , Cn
(censoring times) with the distribution functions F and G, respectively. In pratice, particularly, in
medical applications, it is not possible to observe the lifetimes T of all patients under study in
the presence of censoring. We only observe the triples (Xi, δi, Zi), where Xi = min{Ti, Ci} and
δi = 1{Ti≤Ci}, 1 ≤ i ≤ n with 1A denotes the indicator function of the set A, where both of Ti and
Ci are expected to exhibit some kind of dependence which ensures the identifiability of the model.

In biomedical case studies, it is assumed that Ci and (Ti, Zi) are independent, this condition is
plausible whenever the censoring is independent of the patient’s modality.

In this kind of model, it is well known that the empirical distribution is not a consistent estimator for
the distribution function G. Therefore, Kaplan and Meier (1958) proposed a consistent estimator,
for the survival function Ḡ(·) = 1−G(·) which is constructed by

Ḡn(t) =


n∏
i=1

(
1−

1− δ(i)

n− i+ 1

)1{X(i)≤t}

, if t < X(n),

0, otherwise,

where X(1) < X(2) < · · · < X(n) are the order statistics of (Xi)1≤i≤n and δ(i) is concomitant with
X(i).

Because of the relation between the conditional mode and the conditional density given in state-
ment (1), an estimator of θ(z) follows straightforwardly from an estimator of ϕ(t|z). Now, we
represent the kernel estimator of the conditional density function in the case of complete data, set

ϕn(t|z) =

h−1
n,H

n∑
i=1

K(h−1
n,Kd(z, Zi))H

′(h−1
n,H(t− Ti))

n∑
i=1

K(h−1
n,Kd(z, Zi))

, (2)

4
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whereK is a probability density function (so-called kernel function), hK = hn,K(resp. hH = hn,H)
is a sequence of positive real numbers (so-called bandwidth) which goes to zero as n tends to
infinity, H ′(·) is the first derivative of a given distribution function H(·). An analogous estimator
to Equation 2 was already given in Ferraty and Vieu (2006) in the general setting.

Firstly, we must know that our kernel type estimator of the conditional density ϕ(t|z) adapted for
censored samples is based on "a pseudo-estimator" of ϕ(t|z) that is defined as

ϕ̃n(t|z) =

n∑
i=1

δiḠ
−1(Xi)K(h−1

K d(z, Zi))H
′(h−1

H (t−Xi))

hH

n∑
i=1

K(h−1
K d(z, Zi))

=
ϕ̃n(z, t)

ψn(z)
,

where

ϕ̃n(z, t) =
1

nhHE(∆1(z))

n∑
i=1

δiḠ
−1(Xi)H

′(h−1
H (t−Xi))∆i(z),

and

ψn(z) =
1

nE(∆1(z))

n∑
i=1

∆i(z), with ∆i(z) = K(d(z, Zi)/hK).

In fact, this pseudo-estimator is not efficient since Ḡ(·) is unknown in practice. So, we should
replace Ḡ(·) by its Kaplan and Meier’s estimator Ḡn(·) previously defined.

Therefore, feasible estimator of the conditional density function ϕ(t|z) is denoted by

ϕ̂n(t|z) =

n∑
i=1

δiḠ
−1
n (Xi)K(h−1

K d(z, Zi))H
′(h−1

H (t−Xi))

hH

n∑
i=1

K(h−1
K d(z, Zi))

=
ϕ̂n(x, t)

ψn(z)
, (3)

where

ϕ̂n(z, t) =
1

nhHE(∆1(z))

n∑
i=1

δiḠ
−1
n (Xi)H

′(h−1
H (t−Xi))∆i(z).

Then, a natural kernel estimator of θ(z) which maximizes the kernel estimator ϕ̂n(·|z) of ϕ(·|z) is
given by

θ̂(z) = arg sup
t∈SR

ϕ̂n(t|z). (4)

Note that the estimate θ̂(z) is not necessarily unique and our results are valid for any chosen value
satisfying (4). We point out that we can specify our choice by taking

θ̂(z) = inf

{
x ∈ R such that ϕ̂n(x|z) = sup

t∈SR
ϕ̂n(t|z)

}
.
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3. Notations and Hypotheses

To formulate our assumptions, some additional notations are required. For i = 1, . . . , n, we
represent Fi as the σ-field generated by ((Z1, T1), . . . , (Zi, Ti)) and Gi the one generated by
((Z1, T1), . . . , (Zi, Ti), Zi+1).

Let Nz be a fixed neighborhood of z, and let B(z, h) the ball of center z and radius h, denote
Di(z) = d(z, Zi) a nonnegative random variable such that its cumulative distribution function is
determined by Fz(u) = P(Di(z) ≤ u) = P(Zi ∈ B(z, u)).

Furthermore, we define FFi−1

z (u) = P(Di(z) ≤ u|Fi−1) = P(Zi ∈ B(z, u)|Fi−1) the conditional
distribution function given the σ-field Fi−1 of (Di(z))i≥1.

Our nonparametric model will be quite general in the sense that we will just need the following
hypotheses:

(H0) For x ∈ E, there exists a sequence of nonnegative random functionals (fi,1)i≥1 almost
surely bounded by a sequence of deterministic quantities (bi(z))i≥1 accordingly, a sequence
of random functions (gi,z)i≥1, a deterministic nonnegative bounded functional f1 and a non-
negative real function φ tending to zero, as its argument tends to 0, such that if n→∞ and
h→ 0,

(a) Fz(h) = φ(h)f1(x) + o(φ(h)).
(b) For any i ∈ N, FFi−1

z (h) = φ(h)fi,1(z) + gi,z(h) with gi,z(h) = oa.s.(φ(h)) as gi,z(h)
φ(h)

almost surely bounded and n−1
∑n

i=1 g
j
i,z(h) = oa.s.(φ

j(h)) for j = 1, 2.

(c) n−1
∑n

i=1 f
j
i,1(z)→ f j1 (z), almost surely, for j = 1, 2.

(d) There exists a nondecreasing bounded function ς0 such that, uniformly in s ∈ [0, 1],
φ(hs)/φ(h) = ς0(s) + o(1), and, for j ≥ 1,

∫ 1

0
(Kj(t))′ς0(t) dt <∞.

(e) n−1
∑n

i=1 bi(z) −→ D(z) <∞.

(H1) The conditional density function ϕ(t|z) satisfies

(a)
∫
R
|t|ϕ(t|z) dt <∞, for all z ∈ E.

(b) The Hölder condition, that is,
∀(t1, t2) ∈ S2

R, ∀(x1, x2) ∈ N 2
x , for some α1 > 0 and α2 > 0,

|ϕz1(t1)− ϕz2(t2)| ≤ Cz(d(z1, z2))α1 + |t1 − t2|α2),

with Cz is a positive constant depending on z.

(H2) ϕ(·|z) is twice continuously differentiable in a neighbourhood of θ(z) with{
ϕ(1)(θ(z)|z) = 0,
|ϕ(2)(θ(z)|z)| 6= 0.

(H3) The cumulative kernel H is derivable such that∃C <∞, ∀(v1, v2) ∈ R2, |H ′(v1)−H ′(v2)| ≤ C|v1 − v2|,∫
|v|α2H ′(v) dv <∞, and

∫
H ′(v) dv = 1.

6
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(H4) For any m ≥ 1, E[(H ′(h−1
H (t− Ti)))m|Gi−1] = E[(H ′(h−1

H (t− Ti)))m|Zi].
(H5) For any z′ ∈ E and m ≥ 2, sup

t∈SR
|gm(z′, t)| = sup

t∈SR
|E[Hm(h−1

H (t− T1))|Z1 = x′]| <∞

and gm(z′, t) is continuous in Nz uniformly in t:

sup
t∈SR

sup
z′∈B(z,h)

|gm(z′, t)− gm(z, t)| = o(1).

(H6) K is a differentiable positive bounded function supported on [0, 1] of class C1(0, 1):
∃C ′, C ′′, −∞ < C ′ < K ′(t) < C ′′ < 0 for 0 < t < 1, |

∫ 1

0
(Kj)′(t) dt| <∞ for j = 1, 2.

(H7) The bandwidth hK and hH , satisfying lim
n→∞

hK = 0, lim
n→∞

hH = 0 and
log n

nhHφ(hK)
−→
n→∞

0.

(H8) (Cn)n≥1 and (Zn, Tn)n≥1 are independent.

Remark 3.1.

Our assumptions are very standard for this kind of model. Assumption (H0) plays an important
role in our methodology. It is known as the “concentration property.” (H1) is a regularity condition
which characterize the functional space of our model and is needed to evaluate the bias term of
our asymptotic results, while hypotheses (H3) and (H7) are technical conditions and are similar to
those done in Ferraty and Vieu (2006). As for (H6), it is classical in nonparametric estimation.

4. Main resullts

In this part, we formulate the main results of strong consistency (with rate) as well as the asymptotic
density and confidence interval of the conditional mode estimator are established.

4.1. Pointwise almost sure rate of convergence

We establish in Proposition 4.1 the rates of convergence of the kernel density estimator ϕ̂n(t|z),
when couples of variables (Zn, Tn)n≥1 are independents. An immediate consequence is the almost
sure convergence with a rate of the kernel mode estimator, as stated in Theorem 4.1.

Proposition 4.1.

Suppose that assumptions (H6)-(H7) and (H8) hold true, we get

sup
t∈SR
|ϕ̂n(t|z)− ϕ(t|z)| = Oa.s.(h

α1

K + hα2

H ) +Oa.s.

(√
log n

nhHφ(hK)

)
.

Proof:

First of all, denote

¯̃ϕn(z, t) =
1

nhHE(∆1(z))

n∑
i=1

E[δiḠ
−1(Xi)H

′(h−1
H (t−Xi))∆i(z)|Fi−1],

7
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and

ψ̄n(z) =
1

nE(∆1(z))

n∑
i=1

E[∆i(z)|Fi−1],

the conditional bias which is given by

Bn(z, t) =
¯̃ϕn(z, t)

ψ̄n(z)
− ϕ(t|z). (5)

In addition, there are quantities,

Rn(z, t) = −Bn(z, t)(ψn(z)− ψ̄n(z)),

and

Qn(z, t) = (ϕ̃n(z, t)− ¯̃ϕn(z, t))− ϕ(t|z)(ψn(z)− ψ̄n(z)).

Lets’s now introduce the following decomposition which is important to prove Proposition 4.1. For
all z ∈ E, we state

ϕ̂n(t|z)− ϕ(t|z) = ϕ̂n(t|z)− ϕ̃n(t|z) + ϕ̃n(t|z)− ϕ(t|z). (6)

Finally, the proof of this proposition is a direct consequence of the following intermediate results.
It suffices to combine lemmas Lemma 4.1, Lemma 4.2 and decomposition 6.

Lemma 4.1.

Using (H6)-(H7) and (H8), we can show that

sup
t∈SR
|ϕ̂n(t|z)− ϕ̃(t|z)| = Oa.s.

(√
log log n

n

)
.

Proof:

By following the same steps as for the proof of Lemma 5.2 in Khardani et al. (2010), we can also
prove our Lemma. �

Lemma 4.2.

Because of the conditions (H6)-(H7) and (H8), we have as n→∞

sup
t∈SR
|ϕ̃n(t|z)− ϕ(t|z)| = Oa.s.(h

α1

K + hα2

H ) +Oa.s.

(√
log n

nhHφ(hK)

)
.

Proof:

We just need to prove that ϕ̃n(t|z) − ϕ(t|z) = Bn(z, t) +
Rn(z, t) +Qn(z, t)

ψn(z)
is negligible as

n → ∞, where Bn(z, t) and Rn(z, t) converge almost surely to zero by Lemma 4.4. Note that
ψn(z) has been studied in Lemma 4.3, where it converges to 1. Now, we deal only with Qn(z, t) in
the following Lemma.

8
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Lemma 4.3.

Suppose that assumptions (H0)-(H6) and (H7) hold true. Then, for any z ∈ E, set

(i) ψn(z)− ψ̄n(z) = Oa.s.

(√
log n/nφ(hK)

)
.

(ii) lim
n→∞

ψn(z) = lim
n→∞

ψ̄n(z) = 1, a.s.

Proof:

The proof of this Lemma is the same as of Lemma 3 and Lemma 5 in Laib and Louani (2011). �

Lemma 4.4.

Under the hypotheses (H3)-(H6) and (H7) together with (H8), we have as n goes to infinity

sup
t∈SR
|Bn(z, t)| = Oa.s.(h

α1

K + hα2

H ), (7)

sup
t∈SR
|Rn(z, t)| = Oa.s.

(
(hα1

K + hα2

H )

(
log n

nφ(hK)

)1/2
)
. (8)

Proof:

In the beginning, we rewrite the statement 5 as

Bn(z, t) =
¯̃ϕn(z, t)− ψ̄n(z)ϕ(t|z)

ψ̄n(z)
.

If (H4) is verified, and in addition if 1{Ti≤Ci}χ(Xi) = 1{Ti≤Ci}χ(Ti), we obtain

¯̃ϕn(z, t) =
1

nhHE(∆1(z))

n∑
i=1

E{∆i(z)E[δiḠ
−1(Xi)H

′(h−1
H (t−Xi))|Gi−1, Ti]|Fi−1}

=
1

nhHE(∆1(z))

n∑
i=1

E{∆i(z)E[δiḠ
−1(Xi)H

′(h−1
H (t−Xi))|Zi, Ti]|Fi−1}

=
1

nhHE(∆1(z))

n∑
i=1

E{Ḡ−1(Xi)H
′(h−1

H (t− Ti))∆i(x)E[1{Ti≤Ci}|Zi, Ti]|Fi−1}

=
1

nhHE(∆1(z))

n∑
i=1

E{∆i(z)H ′(h−1
H (t− Ti))|Fi−1}.

Furthermore, simple calculations by using always a double conditioning with respect to Gi−1 leads
to

¯̃ϕn(z, t)−ψ̄n(z)ϕ(t|z) =
1

nhHE(∆1(z))

n∑
i=1

E
{

∆i(z)

[
E
(
H ′
(

(t− Ti)
hH

)∣∣Zi)−hHϕ(t|z)

]∣∣∣∣Fi−1

}
.
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In view of conditions (H1) and (H3), it follows that

|E(H ′(h−1
H (t− Ti)|Zi)− hHϕ(t|z)| ≤ CzhH

∫
R
H ′(u)(hα1

K + |u|α2hα2

H ) du. (9)

Hence, we get

¯̃ϕn(z, t)− ψ̄n(z)ϕ(t|z) = Oa.s.(h
α1

K + hα2

H )× 1

nE(∆1(z))

n∑
i=1

E{∆i(z)|Fi−1}.

= Oa.s.(h
α1

K + hα2

H )× ψ̄n(x). �

As a last step, we combine the above result with Lemma 4.3(ii) to obtain the following:

¯̃ϕn(z, t)− ψ̄n(z)ϕ(t|z)

ψ̄n(z)
= Oa.s.(h

α1

K + hα2

H ).

Now, the second part of Lemma 4.4 will be easily deduced from the definition of Rn(z, t), together
with Lemma 4.3 and Equation 7. �

Lemma 4.5.

Assume that (H0)-(H4) and (H6)-(H8) are satisfied. Then, for any z ∈ E, set

sup
t∈SR

|ϕ̃n(z, t)− ¯̃ϕn(z, t)| = Oa.s.

((
log n

nhHφ(hK)

)1/2
)
.

Proof:

To prove our result, we need the decomposition below,

sup
t∈SR
|ϕ̃n(z, t)− ¯̃ϕn(z, t)| ≤ J1,n + J2,n + J3,n,

where

J1,n = max
1≤k≤γn

sup
t∈Bk
|ϕ̃n(z, t)− ϕ̃n(z, tk)|, J2,n = max

1≤k≤γn
|ϕ̃n(z, tk)− ¯̃ϕn(z, tk)|,

J3,n = max
1≤k≤γn

sup
t∈Bk
|ϕ̃n(z, tk)− ¯̃ϕn(z, t)|.

Indeed, SR may be written as: SR ⊂ ∪γnk=1Bk = ∪γnk=1Bk(tk,<n), with tk(1 ≤ k ≤ γn) are the ball’s
centers. Let’s now study our three terms.

On the one hand, by a standard analytical argument and by using hypothesis (H3) and the result of
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Lemma 4.3, we can evaluate the first term in the following way:

J1,n ≤
1

nhHE(∆1(z))
max

1≤k≤γn
sup
t∈Bk

n∑
i=1

∣∣∣∣∣δiḠ−1(Xi)[H
′(h−1

H (t−Xi))−H ′(h−1
H (tk −Xi))]∆i(z)

∣∣∣∣∣
≤ C

nhHE(∆1(z))
max

1≤k≤γn
sup
t∈Bk

|t− tk|
hH

n∑
i=1

δiḠ
−1(Xi)∆i(z)

≤ γn
nh2

HE(∆1(z))

n∑
i=1

δiḠ
−1(Xi)∆i(z),

more precisely, by the fact that lim
n→∞

nϑh2
H =∞, we obtain,

J1,n −→ 0 a.s. as n→∞.

As the first and the third terms can be treated in the same manner, so J3,n is also negligible almost
surely,

J3,n −→ 0 a.s. as n→∞.

On the other hand, to examine the rest term, we start by showing that

ϕ̃n(z, tk)− ¯̃ϕn(z, tk) =
1

nhHE(∆1(z))

n∑
i=1

Ψi,n(z, tk),

where

Ψi,n(z, tk) = δiḠ
−1(Xi)H

′(h−1
H (tk −Xi))∆i(z)− E(δiḠ

−1(Xi)H
′(h−1

H (tk −Xi))∆i(z)|Fi−1),

represents a triangular array of stationary martingale differences with respect to the σ-field Fi−1.

Based on the proof of Lemma 5 in Laib and Louani (2011) and the assumptions (H0)-(H4) and
(H5), the quantity E(Ψp

i,n(z, tk)|Fi−1) can be developed as

|E(Ψp
i,n(z, t)|Fi−1)| = p!Cp−2[C2φ(hK)fi,1(z) +Oa.s(gi,z(hK))] ≤ p!Cp−2φ(hK)[Mbi(z) + 1],

where C = 2 max(1, a2
1) and M = (C2C)2.

ChoosingDn =
∑n

i=1 d
2
i with d2

i = φ(hK)[Mbi(z)+1]. By using hypotheses (H0)(b) and (H0)(e),
it yields n−1Dn = φ(hK)[MD(z) + oa.s(1)] asn→∞.

Thus, we apply the exponential inequality given in Lemma 1 in Laib and Louani (2011) with taking
Dn = Oa.s(nφ(hK)), Sn =

∑n
i=1 Ψi,n(z, t), and for any ε0 > 0 and C1 is a positive constant, the
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following calculations is valid

P

(
|J2,n| > ε0

√
log n

nhHφ(hK)

)
≤ P

(
max
k∈1···γn

|ϕ̃n(z, tk)− ¯̃ϕn(z, tk)| > ε0

√
log n

nhHφ(hK)

)

≤ max
k∈1···γn

P

(
|

n∑
i=1

Ψi,n(z, tk)| > nhHE(∆1(z))ε0

√
log n

nhHφ(hK)

)

≤ 2γn exp

( −
(
nhHε0E(∆1(z))

)2 log n

nhHφ(hK)

2Dn + 2CnhHE(∆1(x))ε0

√
log n

nhHφ(hK)

)

≤ 2γn exp{−C1ε
2
0 log n}

≤ 2

nC1ε20
.

Lastly, to achieve the proof we need only to take ε0 large enough and to use the Borel-Cantelli
Lemma. �

Lemma 4.6.

By the same hypotheses of Lemma 4.5, it yields

sup
t∈SR
|Qn(z, t)| = Oa.s.

(√
log n

nhHφ(hK

)
.

Proof:

Lemmas 4.3 and 4.5 lead directly to the proof. �

Finally, the proof of Proposition 4.1 is a direct consequence of the intermediate results announced
above, and consequently the proof is completed. �

Theorem 4.1.

Again by (H6)-(H7) and (H8) in conjunction with (H2), we obtain

|θ̂(z)− θ(z)| = Oa.s.(h
α1

K + hα2

H ) +Oa.s.

(√
log n

nhHφ(hK)

)
.

Proof:

The proof of Theorem 4.1 can be completed by the following lemma.
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Lemma 4.7.

Under the assumptions of Proposition 4.1, we obtain

lim
n→∞

|θ̂(z)− θ(z)| = 0, a.s.

Proof:

By the continuity of the function f(t|x), it follows that

∀ε > 0, ∃ζ(ε) > 0, |ϕ(t|z)− ϕ(θ(z)|z)| ≤ ζ(ε)⇒ |t− θ(z)| ≤ ε.

This allows us to write

∀ε > 0, ∃ζ(ε) > 0, P
(
|θ̂(z)− θ(z)| > ε

)
≤ P

(
|ϕ(θ̂(z)|z)− ϕ(θ(z)|z)| > ζ(ε)

)
. (10)

Next, by simple algebra, we also have

|ϕ(θ̂(z)|z)− ϕ(θ(z)|z)| ≤ 2 sup
t∈SR
|ϕ̂n(t|z)− ϕ(t|z)|. (11)

Lastly, the convergence of θ̂(z) to θ(z) almost surely will be easily deduced from the latter together
with 10 and Proposition 4.1. �

Finally the proof of Theorem 4.1 is based on the Taylor expansion of order two of ϕ(θ̂(z)|z) at the
point θ(z), on the use of the first part of (H2). Let

ϕ(θ̂(z)|z)− ϕ(θ(z)|z) =
1

2
ϕ(2)(θ∗(z)|z)(θ̂(z)− θ(z))2,

where min(θ(z), θ̂(z)) < θ∗(z) < max(θ(z), θ̂(z)).
Consequently, by considering the last equality with the statement 11, we derive

|(θ̂(z)− θ(z))|2 ≤ 1

ϕ(2)(θ∗(z)|z)
sup
t∈SR
|ϕ̂n(t|z)− ϕ(t|z)|.

Now, because of ϕ(2)(θ∗(z)|z) −→ ϕ(2)(θ(z)|z), and on the use of the second part of (H2), we
directly obtain

|(θ̂(z)− θ(z))|2 = Oa.s.

(
sup
t∈SR
|ϕ̂n(t|z)− ϕ(t|z)|

)
.

Thus, Proposition 4.1 allow us to get the claimed result. �

4.2. Asymptotique normality

The aim of this section is to establish the asymptotic normality which induces a confidence interval
of the conditional mode estimator. For this purpose, we shall list some basic conditions.
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(A0) The smoothing parameter hH satisfies: nh3
Hφ(hK) −→ 0, as n→∞.

(A1) The distribution function of the censored random variable, G has a bounded first derivative
G(1).

(A2) The cdf ϕ(t|z) verifies the Hölder condition, ∀(t1, t2) ∈ S2
R, ∀j = 1, 2, for some α0 > 0,

|ϕ(j)(t1|z)− ϕ(j)(t2|z)| ≤ C(|t1 − t2|α0).

(A3) The kernel H is twice differentiable such that∫
|t|α0(H(j)(v))2 dv <∞, for j = 1, 2, and

∫
(H ′(v))2 dv <∞.

Theorem 4.2.

Using the conditions (H0)-(H6)-(H7) and (A1)-(A3), it results in√
nhHφ(hK)(ϕ̂n(t|z)− ϕ(t|z))

D−→ N (0, σ2(z, t)),

where

σ2(z, t) =
M2

M2
1

ϕ(t|z)

Ḡ(t)f1(z)

∫
R
(H ′(v))2 dv,

with Mj = Kj(1)−
∫ 1

0
(Kj)′ς0(u) du for j = 1, 2.

Note that ”
D−→ ” symbolyzes the convergence in distribution.

Proof:

Initially, we suggest the following decomposition:

ϕ̂n(t|z)− ϕ(t|z) = [ϕ̂n(t|z)− ϕ̃n(t|z)] + [ϕ̃n(t|z)− ¯̃ϕn(t|z)] + [¯̃ϕn(t|z)− ϕ(t|z)]

= U1,n + U2,n + U3,n.

According to Lemma 4.1, the term U1,n converges almost surely to zero when n goes to infinity,
where

U1,n = Oa.s.

(√
log log n

n

)
. (12)

Moreover, it is simple to show that U3,n is also negligible, where we readily get

U3,n = ¯̃ϕn(t|z)− ϕ(t|z) = Bn(t|z).

Therefore, from Lemma 4.4, we obtain

U3,n = Oa.s.(h
α1

K + hα2

H ). (13)

Now, it suffices to prove the asymptotic normality of U2,n =
Qn(z, t) +Rn(z, t))

ψn(z)
, where Rn(z, t)

is negligible as n→∞, and ψn(z) converges almost surely towards 1, where

Rn(z, t) = −Bn(z, t)(ψn(z)− ψ̄n(z)),
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with

Bn(z, t) =
¯̃ϕn(z, t)

ψ̄n(z)
− ϕ(t|z).

Thus, the asymptotic normality will be provided by the term Qn(z, t) = [ϕ̃n(z, t) − ¯̃ϕn(z, t)] −
ϕ(t|z)(ψn(z)− ψ̄n(z)) which is treated in the lemmas Lemma 4.8 and Lemma 4.9 below.

Lemma 4.8.

Assume that conditions (H0)(a), (H0)(b) and (H0)(d) as well as (H6) are satisfied. Then, for any
real numbers 1 ≤ j ≤ 2 + δ and 1 ≤ k ≤ 2 + δ with δ > 0, asn→∞, one has

(i)
1

φ(hK)
E
[
∆j
i (z)|Fi−1

]
= Mjfi,1(z) +Oa.s.

(
gi,z(hK)

φ(hK)

)
.

(ii)
1

φ(hK)
E
[
∆j
i (z)

]
= Mjf1(z) + o(1).

(iii)
1

φk(hK)
(E(∆1(z)))k = Mk

1 f
k
1 (z) + o(1).

Proof:

The proof is given in Lemma 1 by Laib and Louani (2010). �

Lemma 4.9.

By the same hypotheses of Theorem 4.2, one writes asn→∞,√
nhHφ(hK)Qn(z, t)

D−→ N (0, σ2(z, t)).

Recall that σ2(z, t) is defined in Theorem 4.2.

Proof:

Easily, we get √
nhHφ(hK)Qn(z, t) =

n∑
i=1

µni, (14)

where

µni = Ξni − E[Ξni|Fi−1],

with

Ξni =

(
φ(hK)

nhH

)1/2(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi)− hHϕ(t|z)

)
∆i(z)

E(∆1(z))
.

Obviously, based on the central limit theorem for discrete-time arrays of real-valued martingales
(see Hall and Heyde (1980)), the asymptotic normality of Qn(z, t) can be obtained if we demon-
strate these two statements:
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I.
∑n

i=1 E[µ2
ni|Fi−1]

P−→ σ2(z, t).
II. nE[µ21[|µni|>ε]] = o(1) holds for any ε > 0 (Linderberg condition).

• Proof of the first part (I.):

Firstly, let us consider∣∣∣∣∣
n∑
i=1

E[Ξ2
ni|Fi−1]−

n∑
i=1

E[µ2
ni|Fi−1]

∣∣∣∣∣ ≤
n∑
i=1

(E[Ξni|Fi−1])2.

Applying Lemma 4.8 together with inequality 9, it yields

|E[Ξni|Fi−1]| = 1

E(∆1(z))

(
φ(hK)

nhH

)1/2∣∣∣∣E[∆i(z)

(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))− hHϕ(t|z)

)
|Fi−1

]∣∣∣∣
≤ C(hα1

K + hα2

H )

(
φ(hK)hH

n

)1/2(
fi,1(z)

f1(z)
+Oa.s

(
gi,z(hK)

φ(hK)

))
.

Subsequently, by (H0)(b)-(c), it follows that
n∑
i=1

(E[Ξni|Fi−1])2 = Oa.s.

(
hHφ(hK)(hα1

K + hα2

H )2
)
.

So, we just need to prove the following

lim
n→∞

n∑
i=1

E[Ξ2
ni|Fi−1]

P−→ σ2(z, t). (15)

For this, let’s use (H4) to get
n∑
i=1

E[Ξ2
ni|Fi−1] =

φ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E

{
∆2
i (z)E

[(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))− hHϕ(t|z)

)2

|Zi
]
|Fi−1

}

=
φ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E

{
∆2
i (z)E

[(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))− hHϕ(t|z)

)2

|Zi
]
|Fi−1

}
.

Moreover, set

E

[(
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))− hHϕ(t|z)

)2

|Zi

]
= V ar

[
δi

Ḡ(Xi)
H ′(h−1

H (t−Xi))|Zi
]

+

[
E
(

δi
Ḡ(Xi)

H ′(h−1
H (t−Xi))|Zi

)
− hHϕ(t|z)

]2

= Γ1,n + Γ2,n.

It should be noted that the second term is negligible: Γ2,n −→ 0, asn → ∞, where we used
inequality 9 and assumptions (H1), (H3) in order to get our result.
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Now, all what is left to be study is Γ1,n. Thus, we state

Γ1,n = E
[

δi
Ḡ2(Xi)

(
H ′
(
t−Xi

hH

))2∣∣∣Zi]︸ ︷︷ ︸
Λ1

−
[
E
(

δi
Ḡ(Xi)

H ′
(
t−Xi

hH

)∣∣∣∣Zi)]2

︸ ︷︷ ︸
Λ2

. (16)

• Concerning Λ1, by simple calculations, we obtain

Λ1 = E
[
E
(

δi
Ḡ2(Xi)

H ′
2

(
t−Xi

hH

)∣∣∣∣Zi, Ti)]
= E

(
1

Ḡ(Ti)
H ′

2

(
t− Ti
hH

)∣∣∣∣Zi)
=

∫
R

1

Ḡ(ω)
H ′

2

(
t− ω
hH

)
f(ω|Zi) dω

=

∫
R

1

Ḡ(t− vhH)
H ′

2

(v)dF (t− vhH |Zi).

Writing a Taylor expansion of order one of the function Ḡ−1(·) around zero leads to the existence
of some t∗ between t and (t− vhH) such that

Λ1 =

∫
R

1

Ḡ(t)
(H ′(v))2dF (t− vhH |Zi) +

h2
H

Ḡ2(t)

∫
R
v(H ′(v))2Ḡ(1)(t∗)ϕ(t− vhH |Zi) dv + o(1)

= λ1 + λ2.

If the hypotheses (H1), (A3) are verified, one has

λ1 = hH

∫
R

1

Ḡ(t)
(H ′(v))2ϕ(t− vhH |Zi) dv

≤ hH
Ḡ(t)

∫
R
(H ′(v))2(ϕ(t− vhH |Zi)− ϕ(t|z)) dv

+
hH
Ḡ(t)

∫
R
(H ′(v))2ϕ(t|z) dv

≤ hH
Ḡ(t)

(
Cz

∫
R
(H ′(v))2(hα1

K + |v|α2hα2

H ) dv + ϕ(t|z)

∫
R
(H ′(v))2 dv

)
= O

(
hα1

K + hα2

H

)
+

hH
Ḡ(t)

ϕ(t|z)

∫
R
(H ′(v))2 dv.

On the other hand, by (A1), one can write

λ2 ≤ h2
H(sup

v∈R
|Ḡ(1)(v)|/Ḡ2(t))

∫
R
vϕ(t− vhH |Zi) dv.

This means that as n→∞, λ2 = O(h2
H).
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• For the second term of (16), it suffices to evaluate its square root,

Λ′2 = E
(

δi
Ḡ(Xi)

H ′
(
t−Xi

hH

)∣∣∣∣Zi)
= E

(
H ′
(
t− Ti
hH

)∣∣∣∣Zi)
=

∫
R
H ′
(
t− ω
hH

)
f(ω|Zi) dω.

By changing variables, we arrive at

Λ′2 = hH

∫
R
H ′(v)(ϕ(t− vhH |Zi)− ϕ(t|z)) dv + hHϕ(t|z)

∫
R
H ′(v) dv.

So, under (H1) and (H3) we would have

Λ′2 = O
(
hα1

K + hα2

H

)
+ hHϕ(t|z),

which permit us to conclude that Λ2 is negligible. By Lemma 4.8, all of the above results leads to

φ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E{∆2
i (z)Γ1,n|Fi−1} =

hH
Ḡ(t)

ϕ(t|z)

∫
R
(H ′(v))2 dv

× φ(hK)

nhH(E(∆1(z)))2

n∑
i=1

E(∆2
i (z)|Fi−1),

−→ M2

M2
1

ϕ(t|z)

Ḡ(t)f1(z)

∫
R
(H ′(v))2 dv.

Lastly, we could establish that
n∑
i=1

E[Ξ2
ni|Fi−1] =

M2

M2
1

ϕ(t|z)

Ḡ(t)f1(z)

∫
R
(H ′(v))2 dv = σ2(z, t),

which is enough to confirm part (I).

• Proof of the second part (II.):

The definition of µni allows us to write: nE[µ2
ni1[|µni|>ε]] ≤ 4nE[Ξ2

ni1[|Ξni|>ε/2]].

Denote:A > 1 andB > 1 such that 1/A+1/A = 1.According to Hölder and Markov inequalities,
we have for any ε > 0

E[Ξ2
ni1[|Ξni|>ε/2]] ≤

E|Ξni|2A

(ε/2)2A/B
.

Choosing C0 a positive constant and 2A = 2 + δ for all δ > 0, it follows that
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4nE[Ξ2
ni1[|Ξni|>ε/2]] ≤ C0

(
φ(hK)

nhH

)(2+δ)/2
n

(E(∆1(z)))2+δ

×E

([
∆i(z)

∣∣∣ δi
Ḡ(Xi)

H ′(h−1
H (t−Xi)− hHϕ(t|z)

∣∣∣]2+δ
)

≤ C0

(
φ(hK)

nhH

)(2+δ)/2
n

(E(∆1(z)))2+δ
E((∆i(z))2+δ

×E
[∣∣∣H ′(h−1

H (t− Ti)− hHϕ(t|z)
∣∣∣2+δ∣∣∣Zi].

Meanwhile,

E

[∣∣∣H ′(h−1
H (t− Ti)− hHϕ(t|z)

∣∣∣2+δ∣∣∣Zi] =

∫
R

(
H ′
(
t− ω
hH

)
− hHϕ(t|z)

)2+δ

ϕ(ω|Zi) dω

≤ C
∫
R
H ′

2+δ

(
t− ω
hH

)
ϕ(ω|Zi) dω + h2+δ

H ϕ2+δ(t|z)

= ChH

∫
R
H ′

2+δ

(v)ϕ(t− vhH |Zi) dv + h2+δ
H ϕ2+δ(t|z)

= hH

[∫
R
H ′

2+δ

(v)ϕ(t− vhH |Zi) dv + h1+δ
H ϕ2+δ(t|z)

]
,

which implies that

4nE[Ξ2
ni1[|Ξni|>ε/2]] ≤ C0

(
φ(hK)

nhH

)(2+δ)/2
nhH

E(∆1(z)))2+δ

×E

(
(∆i(z))2+δ

[ ∫
R

(
H ′

2+δ

(v)ϕ(t− vhH |z) dv + h1+δ
H ϕ2+δ(t|z)

])

≤ C0

(
φ(hK)

nhH

)(2+δ)/2
nhHE[(∆i(z))2+δ]

(E(∆1(z)))2+δ
.

Making use of Lemma 4.8, then

4nE[Ξ2
ni1[|Ξni|>ε/2]] ≤ C0(nhHφ(hK))−δ/2

M2+δf1(z) + o(1)

M2+δ
1 f 2+δ

1 (z) + o(1)

= O((nhHφ(hK))−δ/2).

Ultimately, the proof of the second part is completed. Thus, Lemma 4.9 is proved. �

From that, the Theorem 4.2 is valid by combining Equations (12), (13) and Lemma 4.9. �
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Theorem 4.3.

If the hypotheses (A0)-(A1)-(A3) as well as (H0)-(H2)-(H6) are satisfied, then we have√
nh3

Hφ(hK)

%2(z, θ(z))
(θ̂(z)− θ(z))

D−→ N (0, 1),

where

%2(z, θ(z)) =
M2

M2
1

ϕ(θ(z)|z)

Ḡ(t)f1(z)(ϕ(2)(θ(z)|z))2

∫
R
(H(2)(v))2 dv.

Proof:

By the first order Taylor expansion of ϕ̂
(1)
n (·|z) in the neighborhood of θ̂(z), and since

ϕ̂
(1)
n (θ̂(z)|z) = 0, one has√

nh3φ(hK)|θ̂(z)− θ(z)| =
−
√
nh3φ(hK)ϕ̂

(1)
n (θ(z)|z)

ϕ̂
(2)
n (θ∗(z)|z)

,

where θ∗(z) is between θ(z) and θ̂(z).

In the verity, the proof of the statement below is analogous to that of Theorem 4.2. Let

−
√
nh3φ(hK)ϕ̂(1)

n (θ(z)|z)
D−→ N (0, %2

1(z, θ(z)),

with %2
1(z, θ(z)) =

M2

M2
1

ϕ(θ(z)|z)

Ḡ(t)f1(z)

∫
R
(H(2)(v))2 dv.

Then, proceeding as in Ferraty and Vieu (2006), where ϕ̂(2)
n (θ(z)|z) −→ ϕ(2)(θ(z)|z) asn → ∞,

and the fact that θ∗(z) is lying between θ(z) and θ̂(z), which gives

ϕ̂(2)
n (θ∗(z)|z) −→ ϕ(2)(θ(z)|z), asn→∞. �

4.3. Application and Confidence Bands

Observe that both the asymptotic variance σ2(z, t) and %2(z, θ(z)) are not useful in practice
since some of its related quantities (ϕ(·|z), ϕ(2)(·|z), θ(z), Ḡ(·),Mj for j = 1, 2) and functions
(φ(hK), f1(z)) are unknown. To overcome this difficulty and to make it usable, we have to esti-
mate it.

Hence, ϕ(·|z), ϕ(2)(·|z), θ(z) and Ḡ(·) must be changed respectively by the conditional density
estimators ϕ̂n(·|z) and ϕ̂(2)

n (·|z), the conditional mode estimator θ̂(z) and the Kaplan-Meier’s es-
timator Ḡn(·). Furthermore, under the conditions (H0)-(a) and (H0)-(d), ς0(·) can be estimated
by

ςn(·) =
Fz,n(uh)

Fz,n(h)
,
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where

Fz,n(u) =
1

n

n∑
i=1

1{d(z,Zi)≤u}.

Finally, since ς0 is replaced with ςn, so we can directly estimate M1 and M2 by M1,n and M2,n,
respectively.

Now, we can simply obtain a confidence interval in practice since all quantities are known. For this
purpose, let us introduce the following corollaries.

Corollary 4.1.

By the same assumptions of Theorem 4.2, one gets√
nh3

HFz,n(hK)

σ̂2(z, t)
(ϕ̂n(t|z)− ϕ(t|z))

D−→ N (0, 1), (17)

where

σ̂2(z, t) =
M2,n

M2
1,n

ϕ̂n(t|z)

Ḡn(t)

∫
R
(H ′(v))2 dv.

Proof:

Note that√
nh3

HFz,n(hK)

%̂2(z, θ̂(x))
(θ̂(z)− θ(z)) =

M1,n

M1

√
M2√
M2,n

[ϕ̂
(2)
n (θ̂(z)|z)]

[ϕ(2)(θ(z)|z)]

√
Fz,n(hK)Ḡn(t)ϕ(θ(z)|z)

φ(hK)Ḡ(t)ϕ̂n(θ̂(z)|z)f1(z)

×

√
nh3

Hφ(hK)

%2(z, θ(z))
(θ̂(z)− θ(z)).

By Theorem 4.3, it follows that√
nh3

Hφ(hK)

%2(z, θ(z))
(θ̂(z)− θ(z))

D−→ N (0, 1).

Making use of results given by Laib and Louani (2010), we obtain M1,n
P−→ M1,M2,n

P−→
M2, Fz,n(hK)/φ(hK)f1(z)

P−→ 1 asn→∞. On the other hand, we have Ḡn −→ Ḡ, according to
Deheuvels and Einmahl (2000). In addition, we have ϕ̂(2)

n (θ̂(z)|z) −→ ϕ(2)(θ(z)|z).

Finally, in conjunction with Lemma 4.7 and Proposition 4.1, one writes

M1,n

M1

√
M2√
M2,n

[ϕ̂
(2)
n (θ̂(z)|z)]

[ϕ(2)(θ(z)|z)]

√
Fz,n(hK)Ḡn(t)ϕ(θ(z)|z)

φ(hK)Ḡ(t)ϕ̂n(θ̂(z)|z)f1(z)

P−→ 1, asn→∞.

This yields the proof. �
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Corollary 4.2.

By the same assumptions of Theorem 4.3, one gets√
nh3

HFz,n(hK)(θ̂(z)− θ(z))
D−→ N (0, %̂2(z, θ̂(z))), (18)

where

%̂2(z, θ̂(z)) =
M2,n

M2
1,n

ϕ̂n(θ̂(z)|z)

Ḡn(t)(ϕ̂
(2)
n (θ̂(z)|z))2

∫
R
(H(2)(v))2 dv.

Proof:

Similarly as in Theorem 4.1, by using Taylor’s expansion of the function ϕ̂n(θ̂(z)|z) around θ(z),
and making use of Theorem 4.2, Theorem 4.3 and Lemma 4.7, we achieve the proof of the Corol-
lary. �

• From Corollaries 4.1 and 4.2, it is possible to construct confidence bands. Exactly, we can obtain
for each fixed η ∈ (0, 1) approximate (1 − η)% confidence intervals for the conditional density
and conditional mode, namely[

ϕ̂n(t|z)−
Iη/2σ̂(z, t)√
nhHFz,n(hK)

, ϕ̂n(t|z) +
Iη/2σ̂(z, t)√
nhHFz,n(hK)

]
,

and [
θ̂(z)−

Iη/2%̂(z, θ̂(z))√
nh3

HFz,n(hK)
, θ̂(z) +

Iη/2%̂(z, θ̂(z))√
nh3

HFz,n(hK)

]
,

where Iη/2 denotes the η/2 quantile of the standard normal distribution.

5. Simulation Study and Real Data Application

This section is proposed to illustrate our study for the conditional mode and to evaluate the ef-
fectiveness of the suggested estimator (i.e. in the censored nonparametric functional data analysis
case) (CNPFDA) (3) in comparison with the one for complete data (NPFDA) (2).

First of all, note that all the routines for functional data used in this application (developed in
R/S-Plus software) are available on the website https://www.math.univ-toulouse.fr/staph/npfda/

5.1. Simulation study

Now, we start by introducing the following stationary ergodic process defined on [0, π/3], where
the covariates are curves

Zi(t) = −1− cos(2Wi(t− π/3)), i = 1, · · · , 200; t ∈ [0, π/3], (19)
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whereWi is generated by the model constructed as:Wi =
1√
2
Wi−1 +ζi, with ζi are i.i.d. uniformly

distributed on (0, 1) and Wi is also simulated independently by W0 ∼ U(0, 1). For more clarifica-
tion, some of these curves (200 samples) are simulated, and the corresponding graph is presented
in Figure 1 below.

Figure 1. A sample of curves {Zi(t), t ∈ [0, π/3]}i=1,··· ,200

The scalar response variable is defined by the following regression relation Ti = r(Zi) + εi, where

r(Zi) =

(∫ 1

0

Z ′i(t) dt

)2

and ε ∼ N (0, 0.075). Then, n i.i.d. random variables Ci, i = 1, . . . , n

are drawn from an exponential distribution ε(1.5).

Recall that the calculations of our estimator (for the incomplete data) are linked to the observed
triplets (Zi, Xi, δi)i=1,...,n, where Xi = min(Ti, Ci) and δi = 1{Ti≤Ci} denotes the censorship
indicator.

Concerning the other parameters of our study: the regularity of the curves Zi leads directly to
choose the semi metric in E,

d(zi, zj) =

√∫ π/3

0

(z′i(t)− z′j(t))2 dt zi, zj ∈ E.

For the kernels K(·) and H(·) were chosen to be of quadratic type as

K(u) =
3

2
(1− u2)1(0,1)(u), H(u) =

3

4
(1− u2)1(−1,1)(u),
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respectively.

Then, the smoothing parameter hH ∼ hK =: h is obtained by the cross-validation method on the
k-nearest neighbors (Ferraty and Vieu (2006)).

In our experience, we consider a sample of 200 observations distributed on two parts A and B:
the first one is a learning subsample (Zi, Xi)i∈A with size(A) = 150, and the other is a testing
subsample (Zj, Xj)j∈B with size(B) = 50. We also compute the estimators X̃j = θ̃(Zj) and X̂j =

θ̂(Zj) j = {151, . . . , 200} for complete data and censored data, respectively, through the learning
sample. To evaluate the performance of both estimators (2) and (3), we propose the following mean
square errors (MSE):

z Under the complete data case: NPFDA.MSE =
1

50

200∑
j=151

(Xj − X̃j)
2.

z Under the censored data case: CNPFDA.MSE =
1

50

200∑
j=151

(Xj − X̂j)
2.

In order to simplifying the obtained results, Figure 2 and Figure 3 plot the predicted values as func-
tions of the true ones for the MSE under the complete data and censored data cases, respectively.

Figure 2. Prediction via the conditional mode for complete data case
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Figure 3. Prediction via the conditional mode for censored data case (CR∼ 3%)

At the end of this section, we will explain the impact of the different censored rates (CRs) on the
prediction results. For this purpose, we represent in Table 1 some CRs (6%, 17%, 25%, 50%) and
their corresponding MSE under censorship, where we fix the sample sizes by taking n = 200 then
n = 300 and we vary the percentage of censure for each case.

The performance of the conditional mode estimator θ̂(z) is evaluated on N = 300 replications
using different sample sizes n = 50, 100, 150, and 200. The mean square error (MSE) is considered
here, such that, for a fixed z. Figure 2 displays the distribution of the obtained MSE given by the
N replications. It can be observed that the proposed estimator performs well, especially when
the sample size increases. This conclusion is confirmed by Table 1 which provides a numerical
summary of the distribution of the MSE, with different censored rates (CR).

Table 1. MSE under the case of censored data

size(n) CR% MSE(for CNPFDA) size(n) CR% MSE(for CNPFDA)
6% 0.0443 6% 0.0401

200 17% 0.1005 300 17% 0.0941
25% 0.1330 25% 0.1306
50% 0.2712 50% 0.2487
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5.2. Confidence intervals

For a deeper analysis, a Monte-Carlo simulations based on 100 replications are performed to assess
the accuracy of both predictors based on CNPFDA and NPFDA approaches. Table 2 gives the mean
square error obtained for both estimators, across 100 replications, for different values of η, n and
for Censorship Rate CR = 30%.

Table 2. Comparison of average MSEs of conditional quantile estimators for different sample sizes and η with (CR∼
30%)

η 0.05 0.5 0.95
n=100 CNPFDA 0.0108 0.0100 0.0110

NPFDA 0.0635 0.0616 0.0639
n=300 CNPFDA 0.0079 0.0074 0.0080

NPFDA 0.0426 0.0402 0.0437
n=500 CESIM 0.0059 0.0053 0.0061

NPFDA 0.0300 0.0297 0.0308

With the increasing of n, the MSE decreases for both estimators decrease. In addition, when η =
0.5, we obtain the smallest mean square error. Further, again, it is well remarked that estimator
CNPFDA produces much more accurate estimation than NPFDA estimator.

Next, we verify if our estimator is remains the best (MSE smaller) by choosing other semi-metrics.
Table 3 compares the MSE, across 100 replications, between the two estimators considering the
semi-metric based on 2nd derivatives (deriv2), and the semi-metric based on functional principal
component analysis (pca), for different values of η and n and censored data case (CR∼ 60%).

Table 3. Estimation accuracy of the conditional quantile function between the functional single index model and the
nonparametric functional model with different choices of semi-metrics and different values of η and n with
(CR∼ 60%)

Error Model Semi-metric n = 200 n = 400

η = 0.05 η = 0.50 η = 0.95 η = 0.05 η = 0.50 η = 0.95

MSE CPFDA deriv2 0.08087 0.08080 0.08090 0.03052 0.03049 0.03055
pca 0.08094 0.08091 0.08097 0.03062 0.03061 0.03066

NPFDA deriv2 0.08438 0.08434 0.08489 0.03276 0.03271 0.03292
pca 0.08487 0.08483 0.08495 0.03301 0.03299 0.03309

As intuitively expected, with the increasing of the sample size n, the MSEs of both models for
different semi-metrics and different values of η monotonically decrease. In addition, it is well
observed that the mean square errors of our estimator are smaller than that of NPFDA.

Here we emphasizes a significant advantage of our estimator regarding prediction bands. One can
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think then our estimator may has an advantage with regard to prediction intervals compared to
that of NPFDA. To this end, we conduct a simulation in order to we examine the efficiency of our
assumption. The conditional median curves of both estimators (CNPFDA and NPFDA) are plotted
in Figure 4. The curve of NPFDA estimator is represented in red colour.

Figure 4. Conditional median (η = 0.5) curve

Next, we compare the 95% confidence intervals of both estimators for different values of n and for
Censorship Rates CR = 60%. The results are arranged in Table 4.

Table 4. Confidence intervals for CNPFDA with (CR∼ 48%)and NPFDA estimators for different values of n

n 100 200 300 400

CNPFDA [0.149, 0.194] [0.171, 0.196] [0.227, 0.257] [0.226, 0.248]
NPFDA [0.151, 0.190] [0.171, 0.198] [0.227, 0.258] [0.226, 0.249]

It is well seen that when n is large, our estimator is still better compared to NPFDA estimator.

5.3. Real data example: Peak electricity demand

This subsection applies our estimator to a real data. We evaluate and compare the finite sample
performance between a nonparametric functional model from Chaouch and Khardani (2015) and
our estimator (the functional single index model).
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So, we apply our method to the data constituting hourly electricity demand for the Rocky Mountain
region (WACM) of the United States. The data are daily electricity demands divided into 24 grids,
where each hour of the day corresponds to a grid, from July 2015 to November 2018. The updated
version of the data can be found on the site http://www.eia.gov/.

We construct our variables as follows. The observations of our covariate Z are the daily electricity
demands from 2016 to 2018, Zi = (zi1, . . . , zi24). Our sample consists of n = 1037 observations.
The observations of our response variable X are Xi = min(max(Zi), 1408), i = 1, . . . , n, where
1408 is the maximum peak of electricity demands in 2015.

In this part, we use Kaplan-Meier’s estimator Ḡn(·) as an estimator of Ḡ(·) to construct our condi-
tional distribution estimator, by taking the variables (Ci)i as deterministic (all equal to 1408, which
is the maximum of the peak observed in 2015).

Since we are performing analysis on a time series spread over 4 years, considering the year 2015 as
a base year, and in the simulation we are interested only in the years 2016-2018, we can consider
1408 as a maximum amplitude, that is, any value (or hourly observation) greater than 1408 can be
considered as aberrant data. So, on this basis, we built our response variable.

Concerning the estimation of our parameters, we chose deriv1 (the semi-metric based on the first
derivatives of the curves) as semi-metric, the kernels K(·) and H (u) are defined in the subsection
5.1. Then, as discussed previously, the optimal bandwidth h = hH = hK , are chosen using the
cross-validation method on the k-nearest neighbors. Finally, the curves of the data are represented
in Figure 5.

Figure 5. A sample of curves {Zi (t) , t ∈ [0, 1]}i=1,...,1037

To assess the in-sample estimation accuracy and out-of sample prediction accuracy of the models,
we split the original 1037 samples into two samples. The first one (learning set), from 1 to 960,
used for the estimation, while the second sample (testing set), from 961 to 1037, is served for
the prediction. To measure the estimation and prediction accuracies, we evaluate and compare the
forecast accuracy using the testing sample, from which we predict responses in the testing sample.
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To measure the performance of each functional prediction method, we consider the mean square
errors (MSE).

Figure 6. Prediction via the conditional mode by CNPFDA (CR∼ 4.5%)with MSE =0.0029 against NPFDA with MSE
=0.0198

Across 100 replications, the values of MSE of the two different models are given as MSE =
0.0029 (for our estimator) and MSE = 0.0198 (using NPFDA). The results by plotting the pre-
dicted values versus the true values are displayed in Figure 6. We therefore can conclude that there
is an improvement in estimation for our model in comparison to the nonparametric functional
model.

6. Conclusion

This paper focused on nonparametric estimation of conditional mode for dependant stationary
ergodic data under random censorship and defined as an argument of the maximum of the condi-
tional density. The resulting estimator has been shown to be asymptotically normally distributed
under some regularity conditions. The main implication is to obtain the confidence bands which
have been given in section 4.3. Of course, we use the plug-in rules to obtain an estimator of the
asymptotic variance term.

Our prime aim was to improve the performance of this model for the conditional mode with cen-
sored response variable under the ergodic property. The simulations experiments in this paper show
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that our methodology can be easily implemented and work very well in both simulated and real
data. It is well known that the kernel choice do not affect substantially the quality of the estimator.
In addition, in order to explore the effectiveness of our method in real situations, we applied the
CNPFDA estimator to data constituting hourly electricity demand for the Rocky Mountain region
of the United States as well as spectrometric data.
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