

UNIVERSITI PUTRA MALAYSIA

CHARACYERIZATION OF FRETTING FATIGUE OF 7075-T6 ALUMINIUM ALLOY

M. SURESH DEVANESAN JACOB.

FK 2006 85

CHARACTERIZATION OF FRETTING FATIGUE OF 7075-T6 ALUMINIUM ALLOY

$\mathbf{B}\mathbf{y}$

M. SURESH DEVANESAN JACOB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

October 2006

DEDICATION

MY SON JESHUA BENNY JACOB AND WIFE REENA

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

CHARACTERIZATION OF FRETTING FATIGUE OF 7075-T6 ALUMINIUM ALLOY

By

M. SURESH DEVANESAN JACOB

October 2006

Chairman:

Associate Professor Prithivi Raj Arora, PhD

Faculty

Engineering

The main aim of the research work is to present theoretical and experimental approaches to the problem of fretting fatigue using 7075-T6 aluminum alloy as a specimen and En24 steel as a pad. A literature review is carried out to explain the contact mechanics of complete contact configuration for the fretting fatigue loading condition. The literature review includes fretting fatigue crack initiation, crack propagation and failure mechanisms and concludes with the different fretting fatigue test facilities. A novel fretting fatigue test rig has been designed to measure and control the critical parameters: normal load, frictional force and relative displacement at the contact interface using a data acquisition facility. The crack initiation and propagation data also recorded during the experiments to ascertain the crack behavior.

The fretting fatigue tests have been carried for the three cyclic axial stresses 290 MPa, 300 MPa and 325 MPa with normal stress 45 MPa, 60 MPa, 90 MPa. During the

UPM

experiments the frictional force, Q is measured and plotted with the number of cycles. The frictional force response increases rapidly during initial stage of experiments and attains a steady state condition approximately after 100 cycles and dwells there until the specimen fails. The frictional force versus axial load hysterias loops for different cycles are drawn which shows that the contact zone experiences partial slip regime. The Coulomb law is applied to determine the coefficient of friction which shows that higher coefficient of friction is observed for the lower normal stress and decreases gradually with an increases in normal stress. The crack propagation with dl/dN and Δk_l growth curves shows that considerable retardation in crack growth is observed for the higher normal stress of 90 MPa with the three axial stresses which are caused by crack closure due to high compressive normal load. The experimental observation of fretting fatigue life results shows that increase in normal stress reduces the crack initiation cycles as well as the total life to failure for that constant axial stress. The fatigue life reduces by an average factor of 7.34, 12.46 and 17.48 respectively for the axial stress of 290 MPa with the normal stress of 45 MPa, 60 MPa and 90 MPa. The similar behaviour is observed for the other combinations fretting fatigue loading condition.

A theoretical model is developed using the asymptotic analysis to study the equivalence of stress state at the pad edge for the complete contact of dissimilar materials with Dundurs parameters α,β and at the root of the notch based on the order of stress singularity, (λ -1). The strain energy density criterion is applied to predict the crack initiation angle using the order of stress singularity, (λ -1). The crack initiation angle compares well with the experimental angle values, which is obtained through the

scanning electron microscope. A fretting fatigue life prediction model is developed based on the strain energy density criterion in which a critical process zone size is used to estimate crack initiation life and crack analogue model is used to determine the crack propagation life. The critical process zone size is estimated using the notch analogy for the fretting fatigue loading condition. The theoretically calculated crack initiation and propagation lives compares well with the experimental results.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENCIRIAN KELESUAN PENGGESELSUAIAN BAGI 7075-T6 ALUMINIUM ALOI

Oleh

M. SURESH DEVANESAN JACOB

Oktober 2006

Pengerusi:

Profesor Madya Prithivi Raj Arora, PhD

Fakulti

Kejuruteraan

Tujuan penyelidikan ini adalah untuk menunjukkan pendekatan secara teori dan uji kaji bagi masalah kelesuan penggeselsuaian menggunakan aloi aluminium 7075-T6 sebagai spesimen dan besi En24 sebagai pad. Asas mekanik sentuhan bagi penyambungan kelesuan penggeselsuian telah dikaji dengan memberi kepentingan khusus kepada konfigurasi sentuhan menyeluruh (rata atas rata). Pelbagai teori untuk menerangkan permulaan retakan, perambatan retakan dan mekanisme kegagalan kelesuan penggeselsuaian turut dibincangkan. Satu penelitian jelas bagi peralatan ujian kelesuan penggeselsuaian yang berbeza telah dijalankan. Satu rig ujian kelesuan penggeselsuaian cipta baru telah direka bentuk sedemekian cara di mana parameter genting iaitu beban sentuh normal, daya geseran, dan sesaran relatif diantara permukaan sentuhan spesimen/pad dikuasai secara berkesan dan diukur dengan tepat. Terdapat satu kemudahan tambahan dimana mikroskop video digunakan untuk melihat permulaan retakan kecil (diantara 60μm) pada hujung sentuhan dan dengan menggunakan

UPM

kemudahan yang sama data perambatan retakan turut direkodkan. Kemudahan peralatan digunakan untuk tujuan pengumpulan data.

Ujian kelesuan penggeselsuaian telah dijalankan menggunakan rig kelesuan pengeselsuaian bagi tiga tegasan paksi berkitar 290 MPa, 300 MPa dan 325 MPa dengan tegasan normal 45 MPa, 60 MPa, dan 90 MPa. Semasa ujian kelesuan penggeselsuaian, daya geseran, Q diukur dengan daya geseran sel beban dan tindakbalas daya geseran diplot dengan bilangan kitaran. Tindakbalas daya rintangan meningkat secara mendadak di peringkat permulaan kajian dan mencapai keadaan mantap lebih kurang selepas100 kitaran dan berada dalam keadaan tersebut sehingga spesimen gagal. Daya geseran dengan beban paksi gelung histeresis bagi kitaran yang berbeza turut diperolehi. yang menunjukkan bahawa "partial slip regime" terhasil pada permukaan sentuhan sepanjang keseluruhan ujikaji. Teori Coulomb digunakan bagi memperolehi pekali geseran yang menunjukkan bahawa pekali geseran yang lebih tinggi dapat dilihat pada tegasan normal yang rendah dan pekali geseran menurun secara perlahan dengan penambahan beban normal.

Lengkungan perambatan keleseuan keretakan dan da/dN melawan Δk_1 kelengkungan pertumbuhan keretakan menunjukkan bahawa kadar kelambatan pertumbuhan diperhatikan untuk tegasan normal 90MPa yang lebih tinggi dengan tiga tegasan paksi disebabkan oleh penutupan keretakan oleh beban normal mampatan yang tinggi. Didapati bahawa, penambahan yang berlaku pada tegasan normal mengurangkan keretakan permulaan kitaran dan juga mengurangkan jangka hayat kegagalan bagi

tegasan paksi yang malar. Hayat keretakan kelesuan bahan mengurang dengan factor purata 7.34, 12.46 dan 17.48 untuk tegasan paksi 290 MPa dengan tegasan normal 45 MPa, 60 MPa dan 90 MPa. Tegasan paksi yang lain dan kombinasi tegasan normal dengan kelakuan yang sama dapat diperhatikan.

Model teori dibangunkan berdasarkan pada analisis asimtot untuk mempelajari tegasan pada hujung pad untuk sentuhan menyeluruh di antara bahan berlainan dengan parameter Dundur's iaitu α , β dan punca berdasarkan turutan tegasan singularity $(\lambda-1)$ yang sama. Kriteria ketumpatan tenaga terikan digunakan bagi meramalkan sudut permulaan keretakan menggunakan tegasan singularity $(\lambda-1)$. Keretakan yang dikenalpasti memberi perbandingan yang sempurna dengan keretakan permulaan melalui pengimbasan electron mikrografik.

Model peramalan jangka hayat kelesuan penggeselsuaian dibangunkan berdasarkan kepada kriteria ketumpatan tenaga terikan dimana proses zon saiz genting digunakan untuk menganggarkan jangka hayat permulaan keretakan dan model analog keretakan digunakan untuk menentukan jangka hayat perambatan keretakan. Proses zon saiz genting dianggarkan menggunakan analogi notch bagi keadaan bebanan keseluan penggeselsuaian. Permulaan keretakan dan jangka hayat perambatan yang dihitung secara teori mempunyai persamaan yang baik dengan keputusan eksperimen.

ACKNOWLEDGEMENTS

"The fear of the Lord is the beginning of knowledge, But fools despise wisdom and discipline" (Psalm 1:7)

Thank You Heavenly Father for giving me wisdom and knowledge to do my research

I would like to thank Associate Professor Dr. Prthivi Raj Arora for his guidance, invaluable assistance and supervision throughout this project. His knowledge, constructive criticism and encouragement were vital to my learning. I am grateful to my supervisory committee members, Associate Professor Dr. Mohd Sapuan Salit and Dr. El-Sadiq Mahdi for their invaluable suggestions during the course of technical discussions. I am also indebted to Dr. M. Saleem for the patient explanations to all our mathematical queries.

I would also like to thank my department colleagues and lab incharges for their assistance and support during my research work. I am also grateful to my friends who have given moral support and encouragement during my stay in Malaysia. I acknowledge the support provided by the Ministry of Science Technology and Environment (MOSTE) and University Putra Malaysia for the research grant to carry out the research work

Finally yet importantly I am grateful to my parents for their prayers and to my family members for their support and encouragement.

I certify that an Examination Committee has met on 16th October 2006 to conduct the final examination of M. Suresh Davanesan Jacob on his Doctor of Philosophy thesis entitled "Characterization of Fretting Fatigue of 7075-T6 Aluminum Alloy" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Megat Mohamad Hamdan Megat Ahmad, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ir. ShahNor Basri, PhD

Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Rizal Zahari, PhD

Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Shaker A. Meguid, PhD

Professor Nanyang Technological University (External Examiner)

HASANAH TOHD. GHAZALI, PhD

Professor/Deput/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2 1 DEC 2006

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Prithivi Raj Arora, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd. Sapuan Salit, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

El-Sadiq Mahdi Ahmad Saad, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 JANUARY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

M. SURESH DEVANESAN JACOB

Date: 10. 01. 2007

TABLE OF CONTENTS

1.1Background11.2Recent Developments in Fretting Fatigue Study21.3Scope of the Research Work31.4Objective of the Research Work41.5Structure of the Thesis51.6Fretting Fatigue Examples7				Page
ABSTRAK ACKNOWLEDGEMNTS ACKNOWLEDGEMNTS APPROVAL DECLARATION ILIST OF TABLES NOMENCLATURE 1 INTRODUCION 1.1 Background 1.2 Recent Developments in Fretting Fatigue Study 2.1.3 Scope of the Research Work 3.1.4 Objective of the Research Work 4.1.5 Structure of the Thesis 1.6 Fretting Fatigue Examples 2 LITERATURE REVIEW 2.1 Introduction 2.2 Types of Fretting Contacts 2.3 Fretting Fatigue Crack Initiation 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Mechanism 17 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Mechanism 17 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Mechanism 17 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Mechanism 17 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Crack Propagation 36 2.6.1 Normal Crack Method 37 2.6.2 Stress Singularity Method 38 38 39 30 30 30 31 31 32 31 32 32 34 34 35 36 36 36 36 36 36 36 37 37 38 38 39 39 30 30 30 31 31 31 32 32 33 34 34 34 34 34 34 34 34 34 34 34 34	DEI	DICATIO	ON	ii
ABSTRAK ACKNOWLEDGEMNTS APPROVAL DECLARATION LIST OF TABLES NOMENCLATURE 1 INTRODUCION 1.1 Background 1.2 Recent Developments in Fretting Fatigue Study 2.1.3 Scope of the Research Work 1.4 Objective of the Research Work 1.5 Structure of the Thesis 1.6 Fretting Fatigue Examples 2 LITERATURE REVIEW 2.1 Introduction 2.2 Types of Fretting Contacts 2.3.1 Normal Load Case 2.3.2 Frictional Load Case 2.3.1 Fretting Fatigue Crack Initiation Mechanism 1.7 2.4.1 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Crack Propagation 33 2.6 Stress Singularity Method 44 2.6.2 Stress Singularity Method 44 2.6.3 Crack Analogue Model 45				
X DECLARATION Xii	ABS	STRAK		_
DECLARATION xii LIST OF TABLES xviii LIST OF FIGURES xix NOMENCLATURE xxiv CHAPTER 1 INTRODUCION 1.1 Background 1 1.2 Recent Developments in Fretting Fatigue Study 2 1.3 Scope of the Research Work 3 1.4 Objective of the Research Work 4 1.5 Structure of the Thesis 5 1.6 Fretting Fatigue Examples 7 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Propagation 33 2.5 Fretting Fatigue Crack Propagation <th>ACl</th> <th>KNOWL</th> <th>EDGEMNTS</th> <th>ix</th>	AC l	KNOWL	EDGEMNTS	ix
LIST OF TABLES xviii NOMENCLATURE xviii CHAPTER INTRODUCION 1.1 Background 1 1.2 Recent Developments in Fretting Fatigue Study 2 1.3 Scope of the Research Work 3 1.4 Objective of the Research Work 4 1.5 Structure of the Thesis 5 1.6 Fretting Fatigue Examples 7 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Propagation 30 2.5 Fretting Fatigue Crack Propagation 36 2.6.1 Normal Crack Meth	API	PROVAL	1	X
LIST OF FIGURES NOMENCLATURE xix xxiv CHAPTER 1 INTRODUCION 1.1 Background 1 1.2 Recent Developments in Fretting Fatigue Study 2 1.3 Scope of the Research Work 3 1.4 Objective of the Research Work 4 1.5 Structure of the Thesis 5 1.6 Fretting Fatigue Examples 7 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Crack Method 39 2.6.1				xii
NOMENCLATURE xxiv CHAPTER 1 INTRODUCION 1.1 Background 1 1.2 Recent Developments in Fretting Fatigue Study 2 2 1.3 Scope of the Research Work 3 3 1.4 Objective of the Research Work 4 4 1.5 Structure of the Thesis 5 1.6 Fretting Fatigue Examples 7 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting Fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Crack Method 39 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45				xviii
INTRODUCION				
INTRODUCION 1.1 Background 1.2 Recent Developments in Fretting Fatigue Study 2 1.3 Scope of the Research Work 3 1.4 Objective of the Research Work 4 1.5 Structure of the Thesis 5 1.6 Fretting Fatigue Examples 7 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model	NO]	MENCL.	ATURE	xxiv
1.1 Background 1 1.2 Recent Developments in Fretting Fatigue Study 2 1.3 Scope of the Research Work 3 1.4 Objective of the Research Work 4 1.5 Structure of the Thesis 5 1.6 Fretting Fatigue Examples 7 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 36 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45	CH	APTER		
1.2 Recent Developments in Fretting Fatigue Study 1.3 Scope of the Research Work 3 1.4 Objective of the Research Work 4 1.5 Structure of the Thesis 5 1.6 Fretting Fatigue Examples 7 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 2.4.1 Fretting fatigue Crack Initiation Mechanism 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model	1	INTR	CODUCION	
1.4 Objective of the Research Work 1.5 Structure of the Thesis 1.6 Fretting Fatigue Examples 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model		1.1	Background	
1.4 Objective of the Research Work 1.5 Structure of the Thesis 1.6 Fretting Fatigue Examples 2 LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model		1.2		2
1.5 Structure of the Thesis 1.6 Fretting Fatigue Examples 2 LITERATURE REVIEW 2.1 Introduction 2.2 Types of Fretting Contacts 2.3 Fretting Fatigue Contact Mechanics 2.3.1 Normal Load Case 2.3.2 Frictional Load Case 2.3.2 Frictional Load Case 2.4 Fretting Fatigue Crack Initiation 2.4.1 Fretting fatigue Crack Initiation Mechanism 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model				
LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 36 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45				
LITERATURE REVIEW 2.1 Introduction 8 2.2 Types of Fretting Contacts 9 2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 36 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45				
2.1Introduction82.2Types of Fretting Contacts92.3Fretting Fatigue Contact Mechanics112.3.1Normal Load Case122.3.2Frictional Load Case152.4Fretting Fatigue Crack Initiation172.4.1Fretting fatigue Crack Initiation Mechanism172.4.2Fretting Fatigue Crack Initiation Location and Orientation202.5Fretting Fatigue Crack Propagation332.6Fretting Fatigue Life Prediction Methods362.6.1Normal Crack Method392.6.2Stress Singularity Method412.6.3Crack Analogue Model45		1.6	Fretting Fatigue Examples	7
2.2Types of Fretting Contacts92.3Fretting Fatigue Contact Mechanics112.3.1Normal Load Case122.3.2Frictional Load Case152.4Fretting Fatigue Crack Initiation172.4.1Fretting fatigue Crack Initiation Mechanism172.4.2Fretting Fatigue Crack Initiation Location and Orientation202.5Fretting Fatigue Crack Propagation332.6Fretting Fatigue Life Prediction Methods362.6.1Normal Crack Method392.6.2Stress Singularity Method412.6.3Crack Analogue Model45	2	LITE	RATURE REVIEW	
2.3 Fretting Fatigue Contact Mechanics 11 2.3.1 Normal Load Case 12 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 36 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45				
2.3.1 Normal Load Case 2.3.2 Frictional Load Case 15 2.4 Fretting Fatigue Crack Initiation 2.4.1 Fretting fatigue Crack Initiation Mechanism 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45				
2.3.2 Frictional Load Case 2.4 Fretting Fatigue Crack Initiation 2.4.1 Fretting fatigue Crack Initiation Mechanism 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 35		2.3		
 Fretting Fatigue Crack Initiation 17 2.4.1 Fretting fatigue Crack Initiation Mechanism 17 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 Fretting Fatigue Crack Propagation 33 Fretting Fatigue Life Prediction Methods 36 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45 				
2.4.1 Fretting fatigue Crack Initiation Mechanism 2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 2.5 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45				
2.4.2 Fretting Fatigue Crack Initiation Location and Orientation 20 Fretting Fatigue Crack Propagation 33 2.6 Fretting Fatigue Life Prediction Methods 36 2.6.1 Normal Crack Method 39 2.6.2 Stress Singularity Method 41 2.6.3 Crack Analogue Model 45		2.4		
 2.5 Fretting Fatigue Crack Propagation 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 2.6.2 Stress Singularity Method 2.6.3 Crack Analogue Model 33 36 39 41 45 				
 2.6 Fretting Fatigue Life Prediction Methods 2.6.1 Normal Crack Method 2.6.2 Stress Singularity Method 2.6.3 Crack Analogue Model 36 47 48 49 49 40 <li< td=""><td></td><td>2.5</td><td></td><td></td></li<>		2.5		
2.6.1 Normal Crack Method392.6.2 Stress Singularity Method412.6.3 Crack Analogue Model45			• •	
2.6.2 Stress Singularity Method2.6.3 Crack Analogue Model41		2.6		
2.6.3 Crack Analogue Model 45				
· · · · · · · · · · · · · · · · · · ·			•	
2.7 I fetting I augue Test Teeninques 4/		27	<u> </u>	
2.8 Conclusion of Literature Review 51				

3	RES	EARCH METHODOLOGY	
	3.1	Introduction	53
	3.2	Materials and Methods	54
	3.3	Fretting fatigue test rig	5.5
		3.3.1 Theoretical Design Considerations	5.5
		3.3.2 Description of Fretting Fatigue Test Rig	56
		3.3.3 Frictional Force Load Cell and Calibration	58
		3.3.4 Normal Force Load Cell and Calibration	60
		3.3.5 Alignment and Adjustment	6
	3.4	Data Acquisition Procedural Details	62
	3.5	Optical Damage Observation	64
	3.6	Surface Roughness Measurement	66
	3.7	Experimental Set Up	67
		3.7.1 Design of Experiments	67
		3.7.2 Test Variables	68
		3.7.3 Test Procedure	68
		3.7.4 Parameters Controlled During Experiments	69
		3.7.5 Measurement of Key Parameters during Experiments	70
	3.8	Structure of Test Program	72
4	EXP	ERIMENTAL RESULT FOR 7075-T6 ALUMINIUM ALLOY	Y
	4.1	Introduction	73
	4.2	Frictional Force Results	73
	4.3	Relative Slip Amplitude Results	87
	4.4	Coefficient of Friction Results	90
	4.5	Crack Growth Results	92
	4.6	Linear Elastic Fracture Mechanics Concept	101
	4.7	Fretting Fatigue Life	105
		4.7.1 Fretting Fatigue Crack Initiation Life	106
		4.7.2 Total Life Cycles and Life Reduction Factor	110
	4.8	Scanning Electron Microscope Observations	115
5	FRE	TTING FATIGUE CRACK INITIATION THEORETICAL	
		EXPERIMENTAL STUDY	
	5.1	Introduction	122
	5.2	Asymptotic Analysis	123
		5.2.1 Formulation for Complete Contact Problem	123
		5.2.2 Solutions for Boundary Value Problem Using Mellin	126
		Transform	
		5.2.3 Dundurs' Parameters and Coefficient of Friction for	130
		Contact Problem	150
		5.2.4 Formulation for the Notch Problem	132
	5.3	Development of Model: Matching the Order of Singular Stress	134
		for the Complete Contact with the Notch Root	1.57
		5.3.1 Effect of Coefficient of Friction on the Matching of	137
		Stress State	137

		5.3.2 Matching of Singular Stress State for Fretting Fatigue and Notch Problem	139
	5.4	Crack Initiation Angle	140
	5.5	G	142
	5.6	Results and Discussion	145
6	FRE	TTING FATIGUE LIFE PREDICTION	
	6.1	Introduction	154
	6.2	Estimation of Critical Process Zone Size	155
		6.2.1 Strain Energy Density Criterion	155
		6.2.2 Matching of Physical Domain	157
		6.2.3 Stress Distributions around the Notch Root by Finite Element Method	159
		6.2.4 Determination of Process Zone Size	1.00
	6.3		162
	0.5	Fretting Fatigue Life Prediction	164
		6.3.1 Crack Initiation Life Prediction	165
		6.3.2 Crack Propagation Life Prediction	169
7	CON	CLUSIONS AND RECOMMENDATIONS	
	7.1	Conclusions	176
	7.2	Recommendations	178
REF	ERENC	CES	179
APP	ENDIC	ES	188
BIO	DATA (OF THE AUTHOR	225

LIST OF TABLES

Table		Page
1.1	Fretting fatigue examples	7
2.1	Fundamental functions for use in inversion of singular integral equation	13
3.1	Mechanical properties	54
3.2	Chemical composition of 7075-T6 aluminium alloy	55
3.3	Chemical composition of EN24 steel	55
4.1	Experimental details giving test specimen loading conditions	75
4.2	Fretting fatigue crack growth results	105
4.3	Fretting fatigue crack initiation cycles for various cyclic axial stress and normal stresses	107
4.4	Fretting fatigue and plain fatigue results for 7075-T6 aluminium alloy for various axils stress and various normal stresses	110
5.1	The order of stress singularity data	138
5.2	Experimental loading conditions and test results	146
5.3	Calculated stress intensity factor values for experimental loading conditions	146
5.4	Crack initiation angle data	147
6.1	Fretting fatigue crack initiation life cycle based on theoretical model	167
6.2	Fretting fatigue failure life cycles	171

LIST OF FIGURES

Figure	;	Page
1.1	Structure of the Research Plan	6
2.1	Schematic illustration of fretting fatigue	9
2.2	a) Complete contact b) Incomplete contact	9
2.3	Contact between two bodies subjected to normal load, P and tangential load, Q	11
2.4	Schematic of a complete contact between two bodies subjected to normal traction, $p(x)$ and shear traction, $q(x)$	14
2.5	Schematic illustration of the variations of frictional force with the applied cyclic axial stress	15
2.6	Schematic illustration of notion of the critical plane for crack initiation	25
2.7	Representation of the pile up of dislocation loops on inclined plane a) Rising slip pattern b) Sinking slip pattern c) Combination of both	27
2.8	Schematic illustration of crack analogue model a) Flat on flat contact b) Double edge cracked specimen	30
2.9	Fretting fatigue crack propagation mechanism	34
2.10	Plot of crack growth rate against stress intensity factor range	35
2.11	Crack initiation and propagation damage rate	37
2.12	Assumed distribution of frictional force	39
2.13	Stress singularity behaviors at contact edge a) Schematic of contact configuration b) Stress distribution	42
2.14	Schematic illustration of fretting fatigue test apparatus	48
3.1	7075-T6 aluminum alloy blank cutting layout	55
3.2	Fretting fatigue test rig	58

3.3	Frictional force load cell calibrations arrangement	59
3.4	Frictional force load cell calibration	60
3.5	Normal force load cell calibration arrangement	61
3.6	Normal force load cell calibration	61
3.7	Schematic illustration of pad alignment	63
3.8	Graphical user interface of VI logger DAQ software	64
3.9	Optical damage observation system	65
3.10	Graphical user interface of ANALYSIS software	66
3.11	Surface roughness measurement setup	67
3.12	Schematic of the relative slip extensor meter fixed with pad holder	71
3.13	The schematic of the research program	72
4.1	Frictional force hysteresis loops (cyclic axial 290 MPa, normal stress 60 MPa)	75
4.2	Frictional force hysteresis loops (cyclic axial 300 MPa, normal stress 60 MPa)	80
4.3	Frictional force hysteresis loops (cyclic axial 325 MPa, normal stress 90 MPa)	81
4.4	Frictional force versus number of cycles (cyclic axial 290 MPa, normal stress 60 MPa)	82
4.5	Frictional force versus number of cycles (cyclic axial 300 MPa, normal stress 60 MPa)	83
4.6	Frictional force versus number of cycles (cyclic axial 325 MPa, normal stress 90 MPa)	84
4.7	Scanning electron microscope micrograph (cyclic axial 300 MPa, normal stress 60 MPa)	85
4.8	Variation of stabilized frictional force with axial stress for different normal stress	87

4.9	Relative slip amplitude with number of cycles	89
4.10	Relative pad displacement with axial stress	90
4.11	Variation of coefficient of friction	91
4.12	Crack propagation pictures captured using video microscope	97
4.13	Crack length versus number of cycles for varying normal stress	99
4.14	Crack length versus number of cycles for varying axial stress	101
4.15	da/dN versus Δk_l curves	104
4.16	Axial stress versus crack initiation cycles for varying axial stress	108
4.17	Normal stress versus crack initiation cycles for varying normal stress	109
4.18	The representative S-N curve for 7075-T6 aluminum alloy	111
4.19	Normal Stress versus Life Reduction Factor under Fretting Fatigue for 7075-T6 Aluminium Alloy Specimen	113
4.20	Scatter of fretting fatigue experimental results	114
4.21	Scanning Electron Microscope Micrographs of Fretting Fatigue Contact Interface	117
4.22	Scanning Electron Microscope Micrograph of Fretting Fatigue Contact Interface (Cyclic Axial Stress=290 MPa, Normal Stress =60 MPa)	119
4.23	Scanning Electron Microscope Micrograph of Fretting Fatigue Contact Interface (Cyclic Axial Stress=300 MPa, Normal Stress=60 MPa)	120
4.24	Scanning Electron Microscope Micrograph of Fretting Fatigue Contact Interface (Cyclic Axial Stress=325 MPa, Normal Stress = 90 MPa)	121
5.1	a) Square ended rigid punch on an elastic half plane b) A wedge sliding on an elastic half plane	125
5.2	Plot of showing Dundurs' parallelogram	130
5.3	Schematic of the notched specimen	133
5.4	Determination of the order of stress singularity: A schematic diagram	135

5.5	Order of Stress Singularity for the Case: $-1 \le \alpha \le 1$ and $\beta=0$	137
5.6	Plot of α , β and f against order of stress singularity for Type A and Type B behavior	139
5.7	Representation of Notch Analogue with Fretting Fatigue Complete Contact for Generalized Stress Intensity	144
5.8	SEM Micrographs of crack initiation angle at the pad contact edge for different loading conditions with $R=0.1$, Frequency = 10 Hz	149
5.9	Crack Initiation Angle for Various Normal and Cyclic Axial Loading Conditions	151
5.10	Crack Initiation Angle versus Coefficient of Friction for Different Cyclic Axial Stress	153
6.1	Schematic illustration of process zone at the notch root	158
6.2	Schematic of Quarter model created for ANSYS simulation	160
6.3	Finite Element Analysis Model	160
6.4	Nodes Selection for Further Analysis	160
6.5	Calculated Coefficient of friction for the Notch Specimen along the line <i>OA</i>	162
6.6	Strain Energy Density Function along the line <i>OA</i> from the Notch Root	163
6.7	Critical Process Zone Size with Varying Axial Stress	164
6.8	Fretting Fatigue Crack Initiation Cycles	168
6.9	Fretting Fatigue Failure Cycles for Varying Normal Stress	173
6.10	S.N Curve of Fretting Fatigue Failure Cycles	174

NOMENCLATURE

σ_a	(MPa)	Cyclic axial stress
σ_n	(MPa)	Normal stress
$\sigma_{\!\scriptscriptstyle \mathcal{Y}}$	(MPa)	Yield strength
σ_u	(MPa)	Ultimate strength
$\sigma_{ heta heta}$	(MPa)	Normal stress in polar coordinate
$\sigma_{r heta}$	(MPa)	Shear stress in polar coordinate
F_a	(kN)	Cyclic axial load
P	(N)	Normal load
Q	(N)	Frictional force
2a	(mm)	Contact width
l	(mm)	Crack length
k_I	(MPa√m)	Mode I stress intensity factor
k_2	(MPa√m)	Mode II stress intensity factor
$k_{\it eff}$	(MPa√m)	Effective stress intensity factor
K_{IC}	(MPa√m)	Fracture toughness
E	(GPa)	Young's modulus (Elasticity modulus)
μ	(GPa)	Shear modulus (Rigidity modulus)
δ	(mm)	Relative displacement
θ	(deg)	Polar coordinate
r	(mm)	Polar coordinate
$ heta_0$	(deg)	Crack initiation angle

S (MPa m) Strain energy density factor Strain energy density function (MPa/m) Critical process zone size (µm) r_c Wedge angle (deg) φ (deg) Notch half angle γ Eigen value λ Poisson's ratio Coefficient of friction Dunudrs' first parameter α Dundurs' second parameter β Crack initiation life N_I Crack propagation life N_P N_T Total life

CHAPTER 1

INTRODUCTION

1.1 Background

Fretting damage is due to small oscillatory relative displacement between two contacting components under compression and one of them is subjected to a cyclic axial load. It involves a synergistic action of three discrete mechanisms wear, corrosion and fatigue (see Section 2.1 for more details on a definition of fretting fatigue). This fretting damage is known as fretting fatigue and is responsible for reduction in component's service life (Forsyth, 1981 and Hoeppner, 1974) and thereby increased maintenance cost of the component. Since the fretting fatigue study requires interaction of many fields e.g. fatigue, contact mechanics, material science and fracture mechanics, the understanding of fretting fatigue has become rather more challenging topic for material research community for many decades. The uncertainty in controlling and/ or measuring the large number of contributing parameters e.g. friction force, relative slip, surface damage, and environment etc further makes it difficult to understand the mechanics of fretting fatigue. Till to date not much study has been carried out to give a concrete picture of fretting fatigue process. Due to the numerous occurrences of fretting damage and fretting fatigue failures in structural members the fundamental understanding of fretting fatigue has become more important. For example the fretting fatigue failures do occur around the riveted joints, spline joints, bolted connections, rotor blade dovetail joint assemblies etc.

Moreover most aerospace structural components experience some form of clamping force either via direct compression by an applied load (e.g. roller thrust against a bearing raceway) or through transfer by fastener or series of fasteners (e.g. riveted joints in a wing or fuselage panel). In each case the conditions for fretting contact are met and the concurrent damage leads to fretting and fretting fatigue failures. Common materials suffer by fretting fatigue are the aviation aluminium alloys (2xxx or 7xxx series alloys) and titanium alloys (Iyer et al, 1996 and Szolwinski and Farris, 2000). Moreover the aluminium alloy of 7xxx series is used in most of the engineering applications due to lightweight and good mechanical properties (Hoeppner and Goss, 1971). Thus the material 7075-T6 will be the primary focus of the experiments in this study.

1.2 Recent Developments in Fretting Fatigue Study

The study of fretting fatigue can be traced back to the failure analysis of railroad tracks in the late eighteen century; however the remarkable headway has occurred in the last twenty years. During nineteen century the development in fretting fatigue research centred around the progression of wear damage and its impact in fretting fatigue life. In particular the research teams in France developed fretting maps from the large quantity of experiments showing regimes of no slip, partial slip or stick-slip, gross slip plotted in an analytical space bounded by the applied normal load and displacement (Vingsbo and Soderberg, 1988) by which the effect of wear on fretting damage and fretting fatigue life is estimated. During the same time Oxford university research team took extensive effort in developing an experimental apparatus to measure and control all fretting

