

UNIVERSITI PUTRA MALAYSIA

NEURAL NETWORK MODEL AND FINITE ELEMENT SIMULATION OF SPRINGBACK IN PLANE-STRAIN METALLIC BEAM BENDING

FAYIZ Y. M. ABU KHADRA.

FK 2006 21

NEURAL NETWORK MODEL AND FINITE ELEMENT SIMULATION OF SPRINGBACK IN PLANE-STRAIN METALLIC BEAM BENDING

By

FAYIZ Y. M. ABU KHADRA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

February 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

NEURAL NETWORK MODEL AND FINITE ELEMENT SIMULATION OF SPRINGBACK IN PLANE-STRAIN METALLIC BEAM BENDING

By

FAYIZ Y. M. ABU KHADRA

February 2006

Chairman: Professor Abdel Magid Salem Hamouda, PhD

Faculty: Engineering

Bending has significant importance in the sheet metal product industry. Moreover, the springback of sheet metal should be taken into consideration in order to produce bent sheet metal parts within acceptable tolerance limits and to solve geometrical variation for the control of manufacturing process. Nowadays, the importance of this problem increases because of the use of sheet-metal parts with high mechanical characteristics. This research proposes a novel approach to predict springback in the air bending process. In this approach the finite element method is combined with metamodeling techniques to accurately predict the springback.

Two metamodeling techniques namely the neural network and the response surface methodology are used and compared to approximate two multidimensional functions. The first function predicts the springback amount for a given material, geometrical parameters, and the bend angle before springback. The second function predicts the punch displacement for a given material, geometrical parameters, and the bend angle after springback. The

training data required to train the two-metamodeling techniques were generated using a verified nonlinear finite element algorithm developed in the current research. The algorithm is based on the updated Lagrangian formulation, which takes into consideration geometrical, material nonlinearity, and contact. To validate the finite element model physical experiments were conducted. A neural network algorithm based on the backpropagation algorithm has been developed. This research utilizes computer generated D-optimal designs to select training examples for both metamodeling techniques so that a comparison between the two techniques can be considered as fair.

Results from this research showed that finite element prediction of springback is in good agreement with the experimental results. The standard deviation is 1.213 degree. It has been found that the neural network metamodels give more accurate results than the response surface metamodels. The standard deviation between the finite element method and the neural network metamodels for the two functions are 0.635 degree and 0.985 mm respectively. The standard deviation between the finite element method and the response surface method and the response surface methodology are 1.758 degree and 1.878 mm for both functions, respectively.

Abstrak tesis yang dikemukakan kepada Senat Univeristi Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

MODEL RANGKAIAN NUERAL DAN SIMULASI UNSUR TIDAK TERHINGGA LENTURAN BALIK DALAM TERIKAN SESATAH LENTURAN RASUK LOGAM

Oleh

FAYIZ Y. M. ABU KHADRA

Februari 2006

Pengerusi: Profesor Abdel Magid Salem Hamouda, PhD

Fakulti: Kejuruteraan

Lenturan mempunyai kepentingan signifikasi di dalam industri produk kepingan logam. Lanjutan daripada itu kesan lenturan balik ke atas kepingan logam patut diambil kira untuk menghasilkan lenturan terhadap kepingan logam di dalam had toleransi yang munasabah dan menyelesaikan variasi geometrical untuk kawalan proses pembuatan. Kini. kepentingan permasalahan ini meningkat disebabkan oleh pengunaan kepingan logam yang mempunyai ciri mekanikal yang tinggi. Penyelidikan ini mencadangkan satu pendekatan novel untuk menganggarkan kesan lenturan balik didalam proses lenturan udara. Dalam pendekatan ini, kaedah unsur terhingga telah dikombinasikan dengan kaedah permodelan meta untuk menganggarkan kesan lenturan balik dengan mudah dan tepat.

Dua teknik permodelan meta, iaitu rangkaian neural dan respon permukaan model meta telah digunakan dan dibandingkan untuk menentukan secara tepat dua fungsi dimensi kepelbagaian. Fungsi pertama menganggarkan kesan lenturan balik jumlah sesuatu bahan, parameter geometri dan sudut

lenturan sebelum lenturan balik. Fungsi kedua menganggarkan pergerakan tumbukan untuk sesuatu bahan, parameter geometri dan sudut lenturan balik sesudah kesan lenturan balik. Data latihan yang diperlukan untuk melatih dua teknik permodelan meta telah diambil dengan menggunakan model unsure terhingga bukan linear dimana ia adalah berasaskan formulasi terkini Lagrangian yang mengambil kira geometri, sifat bukan linear bahan dan jalinan. Untuk menentu-sahkan model unsur terhingga ini, ujikaji fizikal telah dijalankan. Satu alogritma rangkaian neural yang berasaskan propagasi terbalik alogritma telah dibangunkan. Penyelidikan ini menggunakan rekabentuk D-optimal yang diambil dari komputer untuk memilih contoh latihan bagi kesemua teknik permodelan meta tersebut dan untuk membuat perbandingan diantara permodelan yang boleh dianggap adil.

Keputusan daripada penyelidikan ini menunjukkan penganggaran lenturan balik FEM adalah persamaan baik dengan keputusan ujikaji dan deviasi piawai ialah 1.213 darjah. Keputusan juga mendapati rangkaian neural model meta adalah lebih tepat daripada respon permukaan model meta. Deviasi piawai diantara FEM dan rangkaian neural model meta bagi dua fungsi adalah 0.635 darjah dan 0.985 mm. Deviasi piawai diantara FEM dan methodologi respon permukaan ialah 1.758 darjah dan 1.878 mm untuk kedua-dua fingsi tersebut.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and deep thanks to my supervisor Professor Dr. Abdel Magid Salam Hamouda for his Rind assistance, support, advice, encouragement and suggestions throughout this work and during the preparation of this thesis.

I would like to express my appreciation to Associate professor Shamsuddin Sulaiman and Dr. Elsadig Mahadi for their help, suggestions and assistance during the preparation of this thesis.

Finally, I would like to express my indebtedness to my family. My thank you goes especially to my father and my brother Fawwaz, for their moral and financial support.

I certify that the examination Committee has met on 22th February 2006 to conduct the final examination of Fayiz Y. M. Abu Khadra on his Doctor of Philosophy thesis entitled "Neural Network Model and Finite Element Simulation of Springback in Plane-Strain Metallic Beam Bending" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Napsiah Ismail, PhD

Associate professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Barkawi Sahari, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Wong Shaw Voon, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Elsayed A. Elsayed, PhD

Professor Faculty of Engineering Rutgers University (External Examiner)

HASANA/HAPHD. GHAZALI Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 26 APR 2006

This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Abdel Magid Salam Hamouda, PhD

Professor Faculty of Engineering (Chairman)

Shamsuddin Sulaiman, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Elsadig Mahadi, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 MAY 2006

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any degree at UPM or other institutions.

2

FAYIZ Y. M. ABU KHADRA Date: 21/04/ 2006

TABLE OF CONTENTS

CHAPTER1INTRODUCTION1.1Background1.2Problem Statement1.2Problem Statement1.3Research objectives1.4Thesis Organization2LITERATURE REVIEW2.1Plasticity2.1Plasticity2.1.1Yield Criteria7	Page / / X ((/ (X
1.1Background11.2Problem Statement21.3Research objectives41.4Thesis Organization52LITERATURE REVIEW62.1Plasticity62.1.1Yield Criteria7	
2.1Plasticity62.1.1Yield Criteria7	
2.1.1 Yield Criteria 7	
2.1.2Strain Hardening Laws92.1.3The Plastic Flow Rule122.2Bending and Springback142.2.1Bending14	
2.2.1Denoting142.2.2The Elastic- Perfectly plastic Bending Mechanics172.2.3Existing Research212.3Application of FEM to Sheet Bending Process382.3.1Geometric Nonlinearities392.3.2Contact and Friction432.3.3Element Type46	
2.3.4Solver type482.3.5Existing Research512.4Metamodeling Techniques552.4.1Neural Networks56	
2.4.1 Neural Networks 50 2.4.1.1 Basic Concepts 57 2.4.1.2 Learning Method 59 2.4.1.3 Multi-Level Perceptron 60 2.4.1.4 Application of Neural Network 63 2.4.2 Response Surface Methodology 65 2.4.2.1 Mathematical Form for the RSM Models 65 2.4.2.2 Design of Experiments for RSM Models 67	

			Algorithm	68
	2.6	Summa	ry	71
3	ME	HODOL	OGY	73
	3.1	The Stru	ucture of the Study	73
	3.2	Experim	nental study	75
		3.2.1	Materials	75
		3.2.2		77
		3.2.3	Experimental Procedure	78
	3.3	Finite E	lement Analysis	79
		3.3.1	Springback Simulation	79
		3.3.2	Finite Element Software	80
		3.3.3	Validation of the Finite Element Model	80
	3.4	Metamo		81
			Metamodels A and B	81
			Training Examples	83
			Neural Networks	83
			Response Surface Methodology	86
		Error M		89
	3.6	Summa	ary	91
4	FIN	TE ELMI	ENENT RESULTS FOR SPRINGBACK IN	
	BEN	IDING		92
	4.1	Experin	nental Work	92
		4.1.1	Overview	92
		4.1.2	Results and Discussion	96
	4.2		lement Model	100
			Basic Assumptions	100
			Element Type	101
			Finite Element Procedure	103
			Material Behavior	106
			Contact	109
			Loading and Unloading	111
			Convergence Criteria	112
		4.2.8	Mesh Sensitivity	113
			Effect of the Number of Increments	114
	4.3		on of the Finite Element Model	116
		4.3.1	Material Behavior	116
			•	117
		4.3.3	Springback Amount	118
		4.3.4	Accuracy of the Finite Element Model	121
	4.4		es Analysis of the Bending Process	123
		4.4.1	Equivalent Von Mises Strain and Stress	123
		4.4.2	Residual Stress	126
	4.5		etric Study	129
		4.5.1	Effects of Material Parameters on	400
			Springback	129
		4.5.2	Effect of Geometrical Parameters on	400
			Springback	133

	4.6	Conclusions	136
5	RES	ULTS FOR NEURAL NETWORK METAMODELS	138
	5.1	Neural Network Program	138
		5.1.1 Activation Function	138
		5.1.2 Normalization of the Input-Output Sets	139
		5.1.3 Initial weights	140
		5.1.4 Calculation of the Layers Response	140
		5.1.5 Updating the Weights	141
		5.1.6 Stopping Criteria	142
		5.1.7 The Neural Network Program	144
	5.2	Application of the Neural Network Program to the	
		Springback Problem	146
		5.2.1 Optimum Parameters for the Metamodels	146
		5.2.2 Accuracy of the Metamodels	154
	5.3	Integrated Metamodel Genetic Algorithm	
		Optimization	157
		5.3.1 Encoding and initialization of GA	157
		5.3.2 Selection	158
		5.3.3 Crossover	158
		5.3.4 Mutation	160
		5.3.5 Results and Discussion	160
	5.4	Conclusions	163
6	RES	ULTS FOR RESPONSE SURFACE METAMODELS	164
	6.1	Importance of the Inputs Parameters	164
		6.1.1 General Sensitivity Analysis	164
		6.1.2 Analysis of Variance	166
	6.2	Response Surfaces	171
		6.2.1 Design Selection	171
		6.2.2 Comparison between the NN and the RSM	
		Models	178
	6.3	Discussion	189
	6.4	Conclusions	191
7		USSION AND CONCLUSIONS	193
	7.1	Summary and Conclusions	193
	7.2	Achievement of the Objectives	195
	7.3	Robustness of the Methodology	197
	7.4	Contributions	198
	7.5	Recommendations for Future Research	198
REFEREN	REFERENCES 200		
APPENDI	X		209
BIODATA	OF T	HE AUTHOR	225

LIST OF TABLES

Table		Page
4.1	List of sheets used and their properties	95
4.2	Effect of material and geometrical parameters on springback	
	-p	135
5.1	Optimum parameters for the two metamodels	139
6.1	Experimental layout of Taguchi table L 27 and the	
	calculated springback	168
6.2	Analysis of Variance for springback	169
6.3	Error metric for the different models for metamodel A	180
6.4	Error metric for the different models for metamodel B	185

LIST OF FIGURES

Figure		Page
2.1	Schematic of the isotropic hardening rule	9
2.2	Different strain hardening laws	11
2.3	Schematic of the kinematic hardening rule	12
2.4	Yield surface and normality criterion 2-D stress space	13
2.5	Air bending process	16
2.6	V-bending Process	16
2.7	Wiping bending (straight flanging)	17
2.8	Moment-curvature relationship during loading and unloading	18
2.9	Stress distribution during the different stages in the bending process	20
2.10	Normalized springback obtained theoretically (α_f/α_0) theoretical, vs. normalized springback found experimentally (α_f/α_0) _{experimental}	32
2.11	Description of Motion	41
2.12	Individual Neuron Structure	58
2.13	A three-layered neural network	61
2.14	Learning algorithm of a neural network	62
2.15	Flow chart for genetic algorithm	70
3.1	Flow chart describes this study	74
3.2	Standard tensile specimen	76
3.3	The tool used for the bending test	78
3.4	Air bending process	82
3.5	Finite element applied for training the neural network	85
3.6	Steps to construct a response surface model	87
4.1	Stress-strain curves for S3	95

مەر	4.2	Experimental Springback angle as a function of the bend angle before springback (W_d =40)	98
	4.3	Experimental Springback angle as a function of the bend angle before springback (W_d =50mm)	99
	4.4	Experimental Springback angle as a function of the bend angle before springback (W_d =60mm)	99
	4.5	Finite element model	101
	4.6	Gaussian integration points for element type 11	102
	4.7	Von Mises yield Surface	108
	4.8	Schematic of Isotropic Hardening Rule	110
	4.9	Punch Control	111
	4.10	Effect of number of element on the springback angle	114
	4.11	Effect of the number of increments in unloading stage on the springback angle	115
	4.12	Effect of the number of increments in loading stage on the springback angle	115
	4.13	Nodes must follow the constitutive relation	116
	4.14	Comparison punch load-displacement for S3	118
	4.15	Experimental bend for S3 (W _d =40)	119
	4.16	Finite element model bend S3 ($W_d = 40$)	119
	4.17	Bending angle versus springback angle for material S1 $(W_d = 40)$	120
	4.18	Bending angle versus springback angle for material S7 (W_d =50)	120
	4.19	Comparison between the finite element and experimental springback angle for all bend cases used in this study	121
	4.20	Deformation history and the Equivalent Von Mises Stress (MPa)	124
	4.21	Deformation history and total equivalent plastic strain (mm/mm)	125
5	4.22	Predicted stress as under loading and after unloading through the sheet thickness	127

٠

4.23	Stress along the sheet for the inner fiber	128
4.24	Stress along the sheet for the outer fiber	128
4.25	Effect of the young's modulus on the springback amount	131
4.26	Effect of the yield strength on the springback amount	131
4.27	Effect of the strength coefficient on the springback amount	132
4.28	Effect of the strain hardening constant on the springback amount	132
4.29	Effect of the die width on the springback amount	134
4.30	Effect of the die radius on the springback amount	134
4.31	Effect of the punch radius on the springback amount	136
5.1	Sigmoid function	139
5.2	Flow chart of the neural network approximator program	134
5.3	Structure of the neural network program	145
5.4	Structure of the neural network metamodels	147
5.5	Effects of the number of neurons in the hidden layer on the standard deviation for metamodel A	150
5.6	Effect of the number of neurons in the hidden layer on the STDV and RMSE for metamodel B	150
5.7	Effect of learning factor on the standard deviation for metamodel A	151
5.8	Effect of learning factor on the standard deviation for metamodel B	151
5.9	Effect of normalization range on the STDV and RMSE for metamodel A	152
5.10	Effect of normalization range on the STDV and RMSE for metamodel B	152
5.11	RMSE versus the number of iteration for the two metamodels	153
5.12	Comparison between the NN metamodel and FEM springback	155
5.13	Comparison between the NN displacement and the FEM displacement	155

5.14	Comparison between the NN and the experimental springback	156
5.15	Comparison between the NN and the experimental displacement	156
5.16	Optimization loop	159
5.17	Springback for the initial population	161
5.18	Springback for the final population	162
5.19	Average and best fitness as function of the generation number	162
6.1	Results of general sensitivity analysis for springback	166
6.2	Results of the analysis of variance for springback	171
6.3	Available design points in the database	175
6.4	Selected points using the D-optimality criterion based on linear (L) model	176
6.5	Selected points using the D-optimality criterion based on linear +squares (LS) model	176
6.6	Selected points using the D-optimality criterion based on Linear +Interaction (LI) model	177
6.7	Selected points using the D-optimality criterion based on Full quadratic (FQ) model	177
6.8	Comparison between the different models for springback design selected based on linear model (L)	181
6.9	Comparison between the different models for springback design selected based on linear+squares (LS) model	181
6.10	Comparison between the different models for springback design selected based on linear+ interactions (LI) model	182
6.11	Comparison between the different models for springback design selected based on full quadratic (FQ) model	182
6.12	Standard deviation for the different neural network models for springback	183
6.13	Standard deviation for the different response surface models for springback	183

6.14 Comparison between the different models for springback design selected based on linear model (L) 186
6.15 Comparison between the different models for springback design selected based on linear+squares

(LS) model

- 6.16 Comparison between the different models for displacement design selected based on linear+ interactions (LI) model 187
- 6.17 Comparison between the different models for springback design selected based on full quadratic (FQ) model 187
- 6.18 Standard deviation for the different NN models for displacement 188
- 6.19 Standard deviation for the different RSM models for displacement 188

186

1 9 7

LIST OF ABBREVIATIONS

E	Young's modulus of elasticity
K	Strength coefficient
N	Strain hardening exponent
М	Bending moment
1/P	Curvature
Т	Sheet thickness
Ν	Poisson's ratio
θ	Bend angle
W	Work done
Z	Distance from neutral axis
ANN	Artificial neural networks
NN	Neural networks
FEM	Finite element method
FEA	Finite element analysis
Μ	Bending moment
RESIDUAL	Residual stress
F	Deformation gradient
dē ^p	Equivalent plastic strain increment
σ	Equivalent stress
μ	Friction coefficient
Δv	Sliding velocity
LMS	Least Mean Squares algorithm
MSE	mean square error
MLP	Multilevel perceptron
$\beta_0, \beta_1, \beta_2$	Regression coefficients
3	Approximation error
В	Coefficient vector
Δθ	Springback
θ ₁	Bend angle before springback
θ2	Bend angle after springback

_	
Σ _Y	Yield strength
R _P	punch radius
R _D	die radius
W _D	die width
Z	Punch displacement
STDV	Standard Deviation
Y	Measured response
ŷ	Predicted response
R ²	Pearson's correlation ratio
RE	Relative error
UTS	ultimate tensile strength
$\dot{ au}_{ij}$	Jaumann rate of the Kirchoff stress
$\dot{oldsymbol{arepsilon}}_{ij}$	Strain rate
S_f	Surface on which traction prescribed
\dot{t}_i	Rate of the normal traction
v _i	Velocity
δL_{ij}	Velocity gradient
H'	Strain-hardening rate
α	Constant equal to 1 for plastic state and 0 for the elastic state
σ'_{ij}	Effective stress deviatoric part of $\sigma_{\scriptscriptstyle ij}$
$\overline{\sigma}$	Effective stress
U	Nodal displacement vector
K _T	Current tangent stiffness matrix
F	External load vector
1	Internal force vector
Β _K	Stress-displacement matrix
Vĸ	Element volume
ΔT	Time increment
σ ₁ , σ ₂ , σ ₃	Principal Cauchy stresses
σ _{'j}	Deviatoric Cauchy stress

$ F_{residual} _{\infty}$	Magnitude of the maximum residual load
$\delta u _{\infty}$	Incremental displacement
TOL	Preset tolerance
$C_1 \text{ AND } C_2$	Constant
V_{ji}	Input/hidden weights
W_{kj}	Hidden/output weights
R	Random vector
δ_{ok}	Error signal term
F	Activation functions
Z	Single pattern vector
Οκ	Output from the k _{th} neuron
Dĸ	Target output
GA	Genetic algorithm
IN	Input parameters
OUT	Output features
ANOVA	Analysis of variance
SS	Sum of squares
Seq SS	Sequential sums of squares
Adj MS	Adjusted mean squares
Σ^2	Variance of the response
L	Linear model
LS	Linear+squares model
LI	Linear+interactions model
FQ	Full quadratic model

CHAPTER 1

INTRODUCTION

1.1 Background

Bending in manufacturing of engineering metal sheet parts is a cost effective technique since it allows the elimination of machining and welding operations. The components produced by the sheet-metal bending range from simple to complex shapes and can be as small as certain parts for the electronic industry or as large as car bodies for the automotive industry.

Sheet metal air bending processes are one of the most frequently used manufacturing operations in industry. Air bending is a forming process with great flexibility compared to other die bending processes. With the use of only one tool set it is possible to bend sheets of various thickness and mechanical properties to different bending angles. As the tooling is retracted, the elastic strain energy stored in the material recovers to reach a new equilibrium and causes a geometry distortion due to elastic recovery, the so-called springback. Springback refers to the shape discrepancy between the fully loaded and unloaded configurations. Springback depends on a complex interaction between material properties, part geometry, die design, and processing parameters.

Nowadays, the importance of the springback problem increases because of the use of sheet-metal parts with high mechanical characteristics. The capability to model and simulate the springback phenomenon early in the new product design process can significantly reduce the product development cycle and cost.

1.2 Problem Statement

Analytical models based on materials properties and tool geometry are available to predict springback. Most of the analytical models based on a lot of simplifying assumptions due to the complexity of the problem and do not provide accurate predictions. One accurate way to predict the springback is to use the finite element method (FEM).

The finite element method is a powerful numerical technique that has been applied in the past years to a wide range of engineering problems. More recently FEM has been used to model fabrication processes. When modeling fabrication processes that involve deformation, such as sheet metal bending, the deformation process must be evaluated in terms of stresses and strain states in the body under deformation including contact issues. The major advantage of this method is its applicability to a wide class of boundary value problems with little restriction on work piece geometry. However, sheet metal forming simulation using the finite element method involves material, geometric and contact nonlinearity, which make simulation of the forming process computationally expensive.

Moreover, finite element simulation applied to the sheet metal bending process becomes a trial-and-error process in which a set of input factors is used to predict a set of output performance measures. If the desired performance is achieved, a good system design has been attained. Otherwise the process is repeated until a satisfactory set of performance measures is obtained. Unfortunately, the iterative nature of this process can result in both high computing cost and difficulties in interpretation and prediction of the results.

In order to overcome these problems this study develops a novel approach using finite element method combined with metamodeling techniques so that the springback can be accurately predicted.

One of the main objectives of a metamodel is to accurately represent the input–output relationships over a wide range of the parameter space, while being computationally more efficient than the underlying finite element simulation model. Furthermore, the concept of metamodels can be useful to facilitate understanding the relationships between springback and the factors that influence the springback. In this research, two metamodeling techniques namely the neural network and the response surface methodology are used and compared to approximate two multidimensional functions used to predict the springback and the displacement required to achieve a certain bend angle after springback.

