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Static Random Access Memory (SRAM) is a high speed semiconductor memory 

which is widely used as cache memory in microprocessors and microcontrollers, 

telecommunication and networking devices. 

The SRAM operations are categorized into two main groups: asynchronous and 

synchronous. A synchronous SRAM has external clock input signal to control all 

the memory operation synchronously at either positive or negative edge of the 

clock signal. While, in asynchronous SRAM, the memory events are not referred 

or controlled by the external clock. 

In this study, we have proposed an asynchronous SRAM which configured with a 

self-holding system in the control unit. The self-holding SRAM control system 

can produce appropriate signals internally to operate the SRAM system 

automatically, eliminating hold and wait time, and eliminating Sense Enable and 

Output Enable signals which usually used in SRAM control system. All input 
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signals are synchronized by the internal control unit. The overall SRAM 

operations however do not depend on the rising of falling edge of the global 

(external) clock signal, and thus, the design is still categorized under 

asynchronous SRAM. 

The proposed self-holding control system has been developed for a 1 kilobit 

SRAM using MIMOS 0.35 micron 3.3V CMOS technology Due to limited 

computer resources such as speed and space, the design had been limited to 1 

kilobit memory size. The design covers both schematic and layout designs using 

Hspice and Cadence Layout Editor, respectively. Meanwhile analysis covers 

Hspice, Timernill and LVS (Layout versus Schematic). 

The simulation results have shown the self-holding SRAM control system was 

working successfully. The design operation speed was 7.0% faster as compared to 

the SRAM system without the self-holding circuit. An operation speed of 66Mhz 

with access time of 2.85ns was achieved. 
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SRAM atau "Static Random Access Memory" merupakan ingatan semikonduktor 

yang berkelajuan tinggi di man ia digunakan secara meluas sebagai ingatan utama 

dalam litar pemprosesan mikro, litar pengawalan mikro, telekomunikasi dan 

peranti rangkaian. 

Operasi SRAM dapat dikategorikan dalam dua kumpulan utama, iaitu litar tak 

segerak and litar segerak. SRAM segerak mempunyai kawalan masukan berjam 

luaran bagi mengawal kesemua operasi secara segerak samada pada pinggir positif 

atau pinggir negatif. Sementara itu, dalam SRAM tak segerak, operasinya tidak 

merujuk atau dikawal oleh kawalan berjam luaran. 

Dalam kajian ini, kami mencandangkan satu litar SRAM tak segerak dengan litar 

pegang-sendiri. Sistem kawalan bagi sistem SRAM tersebut dapat menjana 

keluaran yang sepatutnya secara dalaman bagi mengoperasi SRAM secara 

automatik, menghapuskan masa pegang dan masa menunggu, serta menghapuskan 
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masukan "Deria Dibenarkan" dan "Keluaran Dibenarakan". Semua masukan 

dlsegerakkan oleh unit kawalan dalaman. Namun, keseluruhan operasi SRAM 

tidak bergantung kepada pinggir positif atau pinggir negatif masukan berjam, dan 

dengan demikian, ia masih dikenali sebagai SRAM tak segerak. 

Sistem kawalan yang dicandangkan dlbina untuk 1 kilobit sistem SRAM dengan 

menggunakan teknologi MIMOS 0.35 mikron 3.3V CMOS. Disebabkan oleh 

keterhadan kelajuan komputer dan simpanannya, rekabentuk telah hterhadkan 

kepada ingatan bersaiz 1 lulobit sahaja. Rekabentuk merangkumi litar dan 

bentangan dengan menggunakan Hspice dan Cadence Layout Editor masing- 

masing. Sementara itu, analisi merangkumi Hspice, Timemill dan LVS (Bentangan 

lawan Litar). 

Simulasi telah menunjukkan sistem kawalan pegang-sendirir SRAM tersebut 

berjaya berfungsi. Rekabentuk tersebut berfungsi dengan 7.0% lebih laju 

berbanding dengan sistem tanpa kawalan pegang-sendiri. Kelajuan operasi adalah 

66Mhz dengan masa capaian bernilai 2.85ns. 
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CHAPTER 1 

INTRODUCTION 

1.1 Semiconductor Memories 

Semiconductor memories have a wide market and commercial values. 

Semiconductor memories are divided into two families; volatile and non-volatile. 

Volatile memories are able to retain the data in the device as long as the power is 

supplied. For non-volatile memories, the data can retain in the device after the 

cutoff of the power supply. As an example, Read Only Memory (ROM) is a non- 

volatile memory while Random Access Memory (RAM) is a volatile memory. 

Recently, combination of volatile and non-volatile memories has been highly 

applied especially in critical operation such as networking and workstation. 

Various types of semiconductor memories have been introduced in almost all kind 

of electrical products ranging from home products to networking and 

communication products. Dynamic Random Access Memory (DRAM), Static 

Random Access Memory (SRAM), Electrical Erasable Read Only Memory 

(EEPROM), Double Data Rate DRAM (DDRRAM), Dual Channel DDRRAM, 

Rambus, Magnetic Random Access Memory (MRAM), Flash memory, Ferro- 

Electric Random Access Memory, Mirror Bit Random Access Memory, and so 

on. 



Due to the high demand of semiconductor memories for consumers, 

semiconductor technologies continue to scale down to achieve higher density and 

higher performance. 

1.2 SRAM 

Static Random Access Memory (SRAM) is a very fast and low power memory. It 

consists of latch type cells where refresh circuitry is not required. Refresh 

circuitry is needed in DRAMS (Dynamic Random Access Memory) to retain the 

stored data. The refresh system in DRAM requires complex design and 

engineering sophistication [I]. For SRAM, data are stored in the memory cells as 

long as voltage is supplied to the devices. 

Today, SRAMs are used as main memory in small systems with high performance 

like L l  cache (register), and L2 cache (SRAM) memory in microprocessors [4]. 

Figure 1.1 shows a typical personal computer (PC) microprocessor memory 

configuration. 

Microprocessor 

SRAM 

Figure 1.1 : Typical PC microprocessor memory configuration[6]. 
Source: ZCE(1ntegrated Circuit Engineering)Corporation 

DRAM 



Due to the low power consumption, SRAMs have become more and more popular 

in low power applications. The advantages of CMOS SRAMs are as following: 

Low supply voltage and low power dissipation compared to 

DRAMS, due to its small standby current. For mobile devices, 

battery will have longer lifetime. 

High noise immunity and high noise margin 

Simple control logic and easy to use because there is no refreshing 

circuitry and no address multiplexing. 

Fast access time. 

However, SRAMs have higher cost per bit compared to other technologies [4]. It 

is also difficult to use internal voltage down converters VDc in low power SRAM. 

Figure 1.2 shows a general asynchronous SRAM system block diagram. 

Control Circuits 

Figure 1.2 : SRAM block diagram. 



To perform the read operation, the address bits are placed on the address bus and 

corresponding row and column of the memory cell or cell in the array will be 

activated. Then, Chip Select (CSNB) is enabled, followed by Output Enable 

(OEB). As shown in Figure 1.8a, the data bits are then ready on the data bus. 

Meanwhile, to perform the write operation, the corresponding row and column of 

the memory cell will be activated as the read operation. As shown in Figure 1.8b, 

the Write Enable (WENB) is enabled and followed by data to be written which is 

fetched from DataIn. 

1.3 SRAM History 

SRAMs have been developed in three technological paths; bipolar, CMOS and 

NMOS [I]. Figure 1.3 shows the SRAM technologies development flow chart. 

Refer to Figure 1.3, each technology has its own characteristics and market 

demands, which depends on system requirements. Early CMOS SRAMs are in 

low speed, consume large chip area, and suffered latch-up problem. The first 

SRAM was developed by using the bipolar technology. The bipolar SRAM has 

suffered high power consumption and high power dissipation. After the invention 

of NMOS technology, most of the SRAMs were fabricated using NMOS 

technology due to its lower power consumption and dissipation. However, 

research and development have done to enhance the CMOS performance. After 

the development of polysilicon and aluminium for the CMOS technology, NMOS 

SRAM technology was replaced. The new CMOS technology has the capacity to 

implement larger and higher density of CMOS memory cell compared to the 
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