

UNIVERSITI PUTRA MALAYSIA

PERFORMANCE STUDIES OF STATIC SYNCHRONOUS COMPENSATOR AND STATIC SYNCHRONOUS SERIES COMPENSATOR MODES FOR CONVERTIBLE STATIC COMPENSATOR

WAHIDAH BINTI ABD HALIM.

FK 2005 53

PERFORMANCE STUDIES OF STATIC SYNCHRONOUS COMPENSATOR AND STATIC SYNCHRONOUS SERIES COMPENSATOR MODES FOR CONVERTIBLE STATIC COMPENSATOR

By

WAHIDAH BINTI ABD HALIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2005

Dedicated to my beloved husband Ishak, my parents, sisters, and in-laws for giving a constant source of support and encouragement.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

PERFORMANCE STUDIES OF STATIC SYNCHRONOUS COMPENSATOR AND STATIC SYNCHRONOUS SERIES COMPENSATOR MODES FOR CONVERTIBLE STATIC COMPENSATOR

By

WAHIDAH BINTI ABD HALIM

May 2005

Chairman: Associate Professor Norman Mariun, PhD

Faculty: Engineering

This thesis presents an overview of the emerging Flexible AC Transmission System (FACTS) and Convertible Static Compensator (CSC) technologies. CSC, the flexible multifunctional compensator is an innovation from FACTS technology. These technologies are fully utilized the existing transmission system assets, that improve transmission functionality for economical and environmental reasons.

The CSC can occupy as shunt and/or series compensation devices providing various modes. The CSC can operate in 11 different configurations depending on control objectives, for voltage control at bus system as well as power flow control on two existing transmission lines. The CSC can function as a Static Synchronous Compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Unified Power Flow Controller (UPFC) and Interline Power Flow Controller (IPFC).

This research work focused on STATCOM and SSSC for CSC as shunt and series controller, respectively. The basic operation of the controllers is explained, together with the circuit configurations and general control strategies. The STATCOM and

SSSC are based on a voltage-sourced converter (VSC) which consist of Gate Turn-Off (GTO) Thyristor as the switching devices, are used in this research work to study the performance of the controllers.

An 11-bus system as the test system is used throughout the study to verify the proposed models and its control strategies. The model of the controllers and its control are then validated through PSCAD/EMTDC simulation. Steady-state analysis is done to demonstrate the capability of the controllers designed for improving voltage regulation and power flows in the transmission systems. The result obtained from the simulations clearly showed that the designed STATCOM and SSSC controllers are capable in regulating voltage and increased the transmitting power.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KAJIAN PRESTASI MOD PEMAMPAS SEGERAK STATIK DAN PEMAMPAS SIRI SEGERAK STATIK UNTUK PEMAMPAS STATIK BOLEHUBAH

Oleh

WAHIDAH BINTI ABD HALIM

Mei 2005

Pengerusi: Profesor Madya Norman Mariun, PhD

Fakulti: Kejuruteraan

Tesis ini membentangkan keseluruhan mengenai perkembangan teknologi Sistem Penghantaran Arus Ulang-Alik Fleksibel (SPAUF) dan Pemampas Statik Bolehubah (PSB). PSB, pemampas fleksibel yang mempunyai pelbagai fungsi merupakan satu inovasi daripada teknologi SPAUF. Teknologi ini mengeksploitasikan sepenuhnya aset sistem penghantaran sedia ada, untuk memperbaiki fungsi penghantaran disebabkan faktor ekonomi dan alam sekitar.

PSB boleh digunakan sebagai alat pemampas secara selari dan/atau siri yang membenarkan pelbagai mod. PSB boleh beroperasi dalam 11 konfigurasi berlainan bergantung k epada t ujuan k awalan, b agi k awalan v oltan p ada s istem b as d an j uga kawalan aliran kuasa pada dua talian penghantaran sedia ada. PSB boleh berfungsi sebagai Pemampas Segerak Statik (PSS), Pemampas Siri Segerak Statik (PSSS), Gabungan Pengawal Aliran Kuasa (GPAK) dan Pengawal Aliran Kuasa Antara-talian (PAKA).

Kajian penyelidikan ini memfokuskan kepada PSS dan PSSS dalam PSB sebagai pengawal selari dan sesiri. Asas operasi bagi pengawal-pengawal tersebut diterangkan bersama dengan tatarajah litar dan strategi kawalan. PSS dan PSSS berasaskan penukar bekalan voltan yang mengandungi *Gate Turn-Off (GTO) Thyristor* sebagai alat pensuisan, digunakan di dalam kajian ini untuk mengkaji prestasi pengawal-pengawal tersebut.

Sistem 11-bas digunakan sistem kajian pada keseluruhan tesis untuk mengesahkan model yang dicadangkan dan strategi kawalannya. Model pengawal dan strategi kawalannya disahkan melalui simulasi PSCAD/EMTDC. Analisis keadaan mantap dilakukan bagi mendemontrasi keupayaan pengawal-pengawal tersebut yang direka untuk memperbaiki pengaturan voltan dan aliran kuasa dalam sistem penghantaran. Keputusan yang diperolehi daripada simulasi yang dijalankan menunjukkan bahawa pengawal PSS dan PSSS yang direka berkeupayaan mengatur voltan dan meningkatkan kuasa penghantaran.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincerest gratitude to all those who have contributed, directly or indirectly, in accomplishing this project. Special thanks are extended to my project supervisor Assoc. Prof. Ir. Dr. Norman Mariun and co-supervisors Dr. Senan Mahmod Abdullah and Mr. Noor Izzri Abdul Wahab, for their invaluable guidance throughout the completion of this project.

I would like to express my appreciation and thanks to Kolej Universiti Teknikal Kebangsaan Malaysia (KUTKM) for financial support, all the lecturers involved especially Mrs. Aida Fazliana Abd Kadir from KUTKM, and all my friends; also to everyone that has contributed in completing this master project. I will never forget your help and hope that this finished product justifies your assistance.

Last, but not least, I thank my husband Mr. Ishak Suleiman and my family, who were a constant and active source of support throughout the endeavor.

I certify that an Examination Committee met on 16th May 2005 to conduct the final examination of Wahidah binti Abd Halim on her Master of Science thesis entitled "Performance Studies of Static Synchronous Compensator and Static Synchronous Series Compensator Modes for Convertible Static Compensator" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

SUDHANSHU SHEKHAR JAMUAR, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

MOHIBULLAH, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

HASHIM HIZAM, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

CHE MAT HADZER MAHMUD, PhD

Associate Professor School of Electrical and Electronic Engineering Universiti Sains Malaysia (External Examiner)

GULAM RUSUL RAHMAT ALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2 1 JUL 2005

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

NORMAN MARIUN, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia

SENAN MAHMOD ABDULLAH, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia

NOOR IZZRI ABDUL WAHAB Lecturer Faculty of Engineering Universiti Putra Malaysia

eij

AINI IDERIS, PhD Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date : 1 1 AUG 2005

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that if has not been previously or concurrently submitted for any other degree at UPM or other institutions.

WAHIDAH BINTI ABD HALIM

Date: 18 July 2005

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	x
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATION	xvii

CHAPTER

1	INTI	INTRODUCTION				
	1.1	Flexible AC Transmission System	1			
	1.2	Research Background	6			
	1.3	Objectives of Research	8			
	1.4	Scope of Work	8			
	1.5	Research Methodology	9			
	1.6	Organization of Thesis	9			
2	LITI	LITERATURE REVIEW				
	2.1	Convertible Static Compensator (CSC)	11			
		2.1.1 CSC Power Hardware	14			
		2.1.2 CSC Control Hardware	14			
	2.2	Voltage-Sourced Converter	16			
		2.2.1 Basic Concept of VSC	16			
	2.3	Static Synchronous Compensator (STATCOM)	19			
	2.4	Static Synchronous Series Compensator (SSSC)	25			
	2.5	Trends in CSC, STATCOM and SSSC Research Work	29			
	2.6	Summary	33			
3	MAT	MATERIAL AND METHODS				
	3.1	The 11-bus System for Simulation	34			
	3.2	Design of the Proposed STATCOM	40			
	3.3	Design of the Proposed SSSC	43			
	3.4	Control Strategies for STATCOM and SSSC	46			
		3.4.1 Control of AC Voltage or Reactive Power	48			
		3.4.2 SPWM Switching Technique	49			
		3.4.3 Generating the Firing Pulses	52			
	3.5	Summary	54			

4 RESULTS AND DISCUSSION			
	4.1	Identification of the Controllers' Location	55
	4.2	Test System with STATCOM in Steady-state	58
	4.3	Test System with SSSC in Steady-state	71
	4.4	Summary	83
5	CON	CLUSION AND FUTURE WORK	
	5.1	Conclusion	84
	5.2	Future Work	86
REFE	REN	CES	87
APPE	NDIC	ES	
	A – 1	1-BUS SYSTEM DATA	91
	B – C	CONVERSION OF P.U VALUE TO ACTUAL VALUE	
	F	FOR 11 BUS SYSTEM	94
	C – N	ATLAB SIMULATION RESULTS	96
BIOD	ATA	OF THE AUTHOR	101

LIST (OF	TA	BL	ES
--------	----	----	----	----

Table		Page
1.1	Basic type of FACTS controller	3
1.2	Control Attributes for Various Controllers	5
2.1	CSC Configurations	13
4.1	Voltage level for 11-bus system without any controllers	56
4.2	Power flow for the 11-bus system without any controllers	57
4.3	Comparison of voltage level for 2 critical locations with STATCOM for 11-bus system	58
4.4	Comparison of real power for 2 critical locations with STATCOM for 11-bus system	60
4.5	Comparison of reactive power for 2 critical locations with STATCOM for 11-bus system in steady-state	60
4.6	Profile of the STATCOM	69
4.7	STATCOM Angle Order	69
4.8	The effect of changes in angle order for STATCOM	71
4.9	Comparison of voltage level for 2 critical locations with SSSC for 11-bus system	72
4.10	Comparison of real power for 2 critical locations with SSSC for 11-bus system	73
4.11	Comparison of reactive power for 2 critical locations with SSSC for 11-bus system	74
4.12	SSSC Angle Order	82
4.13	The effect of changes in angle order for SSSC	82

LIST OF FIGURES

Figur	e	Page
2.1	CSC conceptual one-line diagram	12
2.2	The control of CSC	15
2.3	Valve for a voltage-sourced converter	17
2.4	Voltage-sourced converter concept	18
2.5	STATCOM based on voltage-sourced converter	20
2.6	A static synchronous compensator operated in inductive and capacitive mode	22
2.7	STATCOM phasor diagram(a) at ac terminal, (b) at dc terminal	24
2.8	SSSC based on voltage-sourced converters	26
2.9	SSSC is applied in transmission system	28
2.10	SSSC phasor diagram(a) at ac terminal, (b) at dc terminal	29
3.1	One line diagram for 11- bus system	35
3.2	The 11-bus system model in PSCAD/EMTDC	36
3.3	Research methodology flow chart	39
3.4	The 11-bus system with STATCOM in parallel with either bus 7 or bus 8.	40
3.5	The 11-bus system model in PSCAD/EMTDC with STATCOM connected to either bus 7 or bus 8	42
3.6	The 11-bus system with SSSC in series with either line 7-8b or line 8-9b	43
3.7	The 11-bus system model in PSCAD/EMTDC with SSSC in series with either line 7-8b or line 8-9b	45
3.8	Basic STATCOM control scheme	46
3.9	Basic SSSC control scheme	47
3.10	AC voltage or reactive power direct control for STATCOM	48

3.11	AC voltage direct control is compared to a sawtooth PLL signal for SSSC	49
3.12	Generation of triangular waveforms for STATCOM	50
3.13	Generation of reference sine waveforms for STATCOM	51
3.14	Generation of reference sine waveform for SSSC	51
3.15	Interpolated Firing Pulse Component for STATCOM	53
3.16	Interpolated Firing Pulse Component for SSSC	53
4.1	Per-unit voltage magnitude at (i) bus 5, (ii) bus 6, (iii) bus 7 and (iv) bus 8, when STATCOM is applied in 11-bus system	62
4.2	Per-unit voltage magnitude at (v) bus 9, (vi) bus 10 and (vii) bus 11, when STATCOM is applied in 11-bus system.	63
4.3	Real power flow for (i) line 5-6, (ii) line 6-7 and (iii) line 7-8 when STATCOM is applied in 11-bus system.	65
4.4	Real power flow for (iv) line 8-9, (v) line 9-10 and (vi) line 10-11, when STATCOM is applied in 11-bus system.	66
4.5	Reactive power flow for (i) line 5-6, (ii) line 6-7 and (iii) line 7-8, when STATCOM is applied in 11-bus system.	67
4.6	Reactive power flow for (iv) line 8-9, (v) line 9-10 and (vi) line 10-11, when STATCOM is applied in 11-bus system.	68
4.7	STATCOM performance when added to 11-bus system.	70
4.8	Active and reactive power in receiving end	75
4.9	Per-unit voltage magnitude at (i) bus 5, (ii) bus 6, (iii) bus 7 and (iv) bus 8, when SSSC is applied in 11-bus system	76
4.10	Per-unit voltage magnitude at (v) bus 9, (vi) bus 10 and (vii) bus 11, when SSSC is applied in 11-bus system	77
4.11	Real power flow for (i) line 5-6, (ii) line 6-7 and (iii) line 7-8, when SSSC is applied in 11-bus system	78
4.12	Real power flow for (iv) line 8-9, (v) line 9-10 and (vi) line 10-11, when SSSC is applied in 11-bus system	79
4.13	Reactive power flow for (i) line 5-6, (ii) line 6-7 and (iii) line 7-8, when SSSC is applied in 11-bus system	80

4.14 Reactive power flow for (iv) line 8-9, (v) line 9-10 and (vi) line 10-11, when SSSC is applied in 11-bus system. 81

LIST OF ABBREVIATIONS

ac	Alternating Current
CSC	Convertible Static Compensator
dc	Direct Current
EMTP	Electromagnetic Transient Program
FACTS	Flexible AC Transmission System
GTO	Gate Turn Off
HVDC	High Voltage DC Transmission
IEEE	The Institute of Electrical and Electronics Engineers
IPFC	Interline Power Flow Controller
MATLAB	MATrix LABoratory
PI	Proportional Integral
PLC	Power Line Carrier
PLL	Phase Locked Loop
PSCAD/EMTDC	Power System CAD/Electromagnetic Transient DC
PWM	Pulse Width Modulation
R & D	Research and Development
SPWM	Sinusoidal PWM
SSSC	Static Synchronous Series Compensator
STATCOM	Static Synchronous Compensator
UPFC	Unified Power Flow Controller
VSC	Voltage-sourced Converter

CHAPTER 1

INTRODUCTION

This part describes the introduction to the research work. It will explain about the objectives, scope of work, research methodology and organization of the thesis.

1.1 Flexible AC Transmission System

As the growth of complex electrical power network, a new approach called Flexible Alternating Current Transmission System (FACTS) has been implemented to increase the capability of the existing transmission systems. Through this approach, new power electronic controllers with high-current, high-voltage were introduced to control voltage level and power flows on transmission system without decreasing the system stability and security [1, 2].

Hingorani, as the pioneer has put forward FACTS, and aimed to transport the control technology based on thyristor into the ac system [2-4]. FACTS is adopt modern power electronics application at the important location of the transmission system in order to control and adjust one or more of the main parameters of the transmission system, to enhance the value of ac transmission assets [3]. These parameters include voltages, impedance, phase angle, current, active power and reactive power [4]. The application of FACTS proved that the technology brings many benefits to the world and there are many areas for improvement. In the meantime, current researches are focused to increase its effectiveness.

FACTS involves reliable and high-speed power electronic switches instead of mechanically controlled devices. FACTS is also supported by advances in digital protective relays, digital controls, integrated communications and advanced control centers [2,5,6]. The heart of FACTS is thyristors: small, high voltage, semiconductor based devices that can switch electricity at megawatt levels within milliseconds [4,7]. Each controller in FACTS employs thyristor in various configurations to perform different functions.

In general, FACTS controllers can be divided into four categories. The controllers are series controllers, shunt controllers, combined series-series controllers and combined series-shunt controllers [4]. The description for each controller is shown in Table 1.1 [4].

Table 1.1 : Basic type of FACTS controller

FACTS controllers have been successfully implemented around the world. The following situations demonstrate the advantages of FACTS controller when it is put into practice [3,4,8]. Basically, different types of controllers will illustrate different attributes.

- 1. Control power flow so that it flows on the prescribed transmission routes.
- 2. Increase the loading capacity of transmission lines to their thermal capabilities.
- Increase the system security through raising the transient stability limit, limiting short-circuit currents and overloads, managing cascading outages and damping of power systems oscillations.
- Provide secure tie line connections to neighboring utilities and regions thereby decreasing overall generation reserve requirements on both sides.
- 5. Provide greater flexibility in siting new generation.
- Upgrade of lines. FACTS redirects electric flow to improve utilization of existing transmission network.
- 7. Reduce reactive power flows, thus allowing the lines to transmit more active power.
- 8. Reduce loop flows.
- 9. Increase utilization of lowest cost generation. When this cannot be done, it follows that there is not enough cost-effective transmission capacity. Cost-effective enhancement of capacity will therefore allow increased use of lowest cost generation.
- 10. FACTS improves system stability that enables higher power transfer levels over greater distances.

In reality, any one or two of the above-cited benefits would be a principal justification for the selection of FACTS controller. Table 1.2 gives a checklist of control attributes for various controllers [4].

FACTS Controller	Control Attributes
Static Synchronous	Voltage control, VAR compensation, damping
Compensator (STATCOM	oscillations, voltage stability
without storage)	
Static Synchronous	Voltage control, VAR compensation, damping
Compensator (STATCOM with	oscillations, voltage stability, transient and
storage, BESS, SMES, large dc	dynamic stability, AGC
capacitor)	
Static VAR Compensator	Voltage control, VAR compensation, damping
(SVC, TCR, TCS, TRS)	oscillations, voltage stability, transient and
	dynamic stability
Thyristor-Controlled Braking	Damping oscillations, transient and dynamic
Resistor (TCBR)	stability
Static Synchronous Series	Current control, damping oscillations, voltage
Compensator (SSSC without	stability, transient and dynamic stability, fault
storage)	current limiting
Static Synchronous Series	Current control, damping oscillations, voltage
Compensator (SSSC with	stability, transient and dynamic stability
storage)	
Thyristor-Controlled Series	Current control, damping oscillations, voltage
Capacitor (TCSC, TSSC)	stability, transient and dynamic stability, fault
	current limiting
Thyristor-Controlled Series	Current control, damping oscillations, voltage
Reactor (TCSR, TSSR)	stability, transient and dynamic stability, fault
	current limiting
Thyristor-Controlled Phase-	Active power control, damping oscillations,
Shifting Transformer (TCPST	voltage stability, transient and dynamic
or TCPR)	stability
Unified Power Flow Controller	Active and reactive power control, voltage
(UPFC)	control, VAR compensation, damping
	oscillations, voltage stability, transient and
	dynamic stability, fault current limiting
Thyristor-Controlled Voltage	Transient and dynamic voltage limit
Limiter (TCVL)	
Thyristor-Controlled Voltage	Reactive power control, voltage control,
Regulator (TCVR)	damping oscillations, voltage stability,
	transient and dynamic stability
Interline Power Flow Controller	Reactive power control, voltage control,
(IPFC)	damping oscillations, voltage stability,
	transient and dynamic stability

 Table 1.2: Control Attributes for Various Controllers

1.2 Research Background

Due to deregulation of electricity markets, the need for new power flow controllers will certainly increase. The FACTS controllers offer the corrections of transmission capability, in order to fully utilize existing transmission system and controlling power flow while maintaining the system reliability [9]. FACTS controllers are based on high-power electronic switching devices called thyristors. The thyristor has indeed revolutionized the high power industry due to higher reliability, low cost, ruggedness and lower maintenance.

FACTS application studies require careful planning and coordination in the specification, design and operating stage of project. Before meaningful results can be expected from the application studies, representative models for the transmission system and relevant FACTS controllers need to be established and verified.

In this research work, it will focus on STATCOM and SSSC for Convertible Static Compensator (CSC) as shunt and series controller, respectively. The CSC is employing a combination of FACTS and conventional technologies. Depending on control needs and objectives of CSC, manipulation of the disconnect switches, circuit switches and circuit breakers provides four primary control modes. The CSC can function as a STATCOM, SSSC, UPFC and IPFC to improve the capability as well as flexibility of power system [10,11].

This research addresses the problem of regulating voltage and controlling power flow in power system using STATCOM and SSSC. These controllers are also known as

controlled reactive-power compensation devices. It provides the desired reactive power generation or absorption especially at the point of connection. Evaluation on the performance of these two controllers in steady state operation will be presented.

Since the most important device for FACTS controllers are made of thyristor, Gate Turn-Off Thyristor (GTO) is used as the basic element of the voltage-sourced converter STATCOM and SSSC in this research. The GTO device is chosen because it facilitates current turn-on as well as turn-off by using control signals. Furthermore, high-power GTOs are now available (100 mm, 6 kV or 150 mm, 9 kV) due to rapidly grown technology in this area [12].

In order to study in detail about the STATCOM and SSSC, the 11-bus system has been chosen to be implemented as a test system in PSCAD/EMTDC. This system is introduced in reference [13] and some researchers also used the 11-bus system as their test system, as in reference [14] and [15]. The 11-bus system is a simple twoarea system, which is suitable to illustrate the STATCOM and SSSC model. This system is divided into two areas, area 1 and area 2. Area 1 has to supply power to area 2 to overcome huge load at bus 9 [13,14]. The test system consists of several transmission lines of various lengths, which are 10 km, 25 km and 110 km.

