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Faculty: Engineering 

This thesis presents an estimation technique of the inverse rotor time constant for 

Indirect Rotor Field Oriented Control (IRFOC) induction motor application. In this 

estimation technique two different equations are used to estimate the rotor flux in the 

stator reference frame. One of the equations is a function of the rotor time constant, 

rotor angular velocity and the stator currents, and the other equation is a function of 

measured stator currents and voltages. The equation that uses the voltage and the 

current signals of the stator serves as reference model, while the other equation 

works as an adjustable model with respect to the variation of the rotor time constant. 

Measurements of two phases of the current, and speed using an optical encoder are 

required in this estimation technique. The stator phase voltages are estimated from 

the DC bus voltage and the switching commands signals with compensation of the 

dead time effect. 

Field oriented control of induction motor is gaining wide s~cceptance in high 

perfommce AC aotor drive applications. Field oriented control, in its both foms 



as a direct or indirect, gives the AC motor dynamics that are equivalent to that of a 

DC motor. However, direct and indirect field oriented control suffer from specific 

theoretical and practical problems. The approach of direct field oriented control with 

Hall sensors for flux sensing has limitations governed by the physical structure of the 

machine itself. On the other hand, the approach of indirect field oriented control of 

induction machines is highly dependent on the rotor parameters, which are not easily 

accessible for measurements except for the rotor speed. 

In a DC motor, spatial relationship of the torque and flux is maintained by the 

physical construction of the motor armature and field circuits. However, in an 

induction motor such spatial relationship does not maintain as such machine has 

usually a single terminal where electric power is supplied. Therefore, such 

relationship is maintained by external control methods. In a basic IRFOC of an 

induction motor, speed and phase currents are sensed in order to control the stator 

current vector such a way so it can be resolved into two components, one is to 

control the rotor flux and the other to control the motor torque. Successful 

decomposition of stator current vector into these two components requires the 

knowledge of the instantaneous positior, of the rotor flux vector. Since the position of 

the rotor flux vector is estimated in an IRFOC scheme, and is dependent on the 

motor model (more specifically the rotor parameters), these parameters must be 

obtained accurately and match the motor parameters at all times. Unfortunately, rotor 

parameters vary and are not easily accessible for measurements. Therefore, this 

uncertainty about the rotor flux vector position degrades the dynamic operation of 

the drive. 
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Enormous efforts have been made to improve IRFOC 

complicated hardware and software in order to coixpensate for such imperfection. 

Hence, this work focuses on the Indirect Rotor Field Oriented Control of induction 

motors with estimation of the rotor time constant. A simple yet effective rotor time 

constant identification method is presented and used for updating the slip calculator 

used by the IRFOC algorithms. 

A complete simulation model of an induction motor and IRFOC scheme is presented 

and tested using SIMULINWMATLAB, and experimentally implemented on a DSP 

Board (MCK243j without any need for voltage phase sensors. Siinulation and 

experimental results were presented and compared to verify the validity of the 

proposed estimator for different operating conditions. 
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Tesis ini membentangkan teknik anggaran kepada pemalar masa rotor berkadar 

songsang kepada kawalan motor berasaskan medan secara tidak langsung (IRFOC). 

Di dalarn teknik anggaran ini terdapat dua persamaanfforrnulasi yang digunakan bagi 

membuat anggaran fluks rotor di dalam bingkai rujukan stator. Antara persamaan 

yang terlibat ialah fungsi pemalar masa rotor, halaju bersudut rotor dan arus stator. 

Manakala persamaan-persamaan lain yang terlibat ialah fungsi arus dan voltan stator 

ymg telah diukw. Persamaan yang menggunakan isyarat arus dan voltan bagi stator 

berfungsi sebagai model yang boleh diubahsuai bergantung kepada variasi pemalar 

masa rotor. Ukuran bagi dua fasa arus dan kelajuan menggunakan pengekod optik 

diperlukan di dalam teknik anggaran ini. Fasa voltan stator dianggarkan daripada 

voltan bus arus terus dan isyarat arahan pengsuism dengan gantirugi bagi kesan 

masa tarnat. 

Kawalan berasaskan medan bagi induksi motor kini telah mendapat tempat dan 

penerimm yang tinggi dalam bidang apiikasi pernaw motor asus uiang-alik yang 



berkebolehan tinggi. Kawalan motor berasaskan medan ini, samada secara langsung 

mahupm tidak langsung, m m p  memberikan dinamik motor arus ulang-alik yafig 

serupa seperti motor arus terus.Walaubagaimanapun,kawalan motor berasaskan 

medan secara langsung mahpun tidak langsung ini, menghadapi masalah teori dan 

praktik yang tertentu. Pendekatan bagi kawalan motor berasaskan medar, secara 

langsung dengan alat pengesan Hall bagi pengesanan fluks mempunyai had yang 

terhasil daripada kesan stmktur fizikal mesin itu sendiri. Selain daripada itu, 

pendekatan bagi IRFOC bagi induksi mesin amat bergantung kepada parameter rotor, 

yang mana tidak mudah untuk diukur kecuali bagi kelajuan rotor. 

Di dalam motor arus tern,  hubungan antara tork dan fluks diselenggarakan oleh 

binaan fizikal armatur motor dan litar-litar medan. Walaubagaimanapun, di dalam 

induksi motor hubungan seperti itu tidak dapat diselenggarakan kerana mesin seperti 

itu kebiasaannya mempunyai terminal tunggal di mana kuasa elektrik dibekalkan. 

Oleh itu, hubungan tersebut diselenggarakan melalui kaedah kawalan luaran. Di 

dalam asas kawalan motor berasaskan medan secara tidak langsung bagi induksi 

motor, kelajuan dan fasa arus dikesan bagi mengawal vektor arus statik di mana ia 

membolehkannya diselesaikan kepada dua komponen, satu untuk mengawal auks 

rotor dan satu lagi bagi mengawal tork motor. Nyahkomposisi yang berjaya bagi 

vektor arus statik kepada dua komponen tersebut memerlukan pengetahuan tentang 

posisi segera bagi vector fluks rotor. Memandangkan posisi vektor fluks rotor 

dianggarkan di dalam skema IRFOC, dan ianya bergantung kepada jenis motor 

(secara lebih spesifik parameter rotor), parameter-parameter ini perlulah diperolehi 

secara tepat dan sepadan dengan parameter motor sepanjang masa. 

Maiangn~a~parameter rotor berubah-ubah(tidak tetap) dan tidak mudah didcur. Zlieh 
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itu, ketidaktetapan tentang posisi vektor fluks rotor menurunkan operasi dinamik 

pemacu tersebut. 

Pelbagai usaha telah dijalankan bagi meningkatkan skema IRFOC denagn 

merekabentuk perkakasan dan perisian yang kompleks bagi menyempurnakannya. 

Kaji selidik ini memfokuskan ke atas kawalan induksi motor berorientasikan medan 

rotor secara tidak langsung atau IRFOC dengan bercirikan kemampuan untuk 

membuat anggaran bagi pemalar masa rotor. Kaedah pengenaipastian pemalar masa 

rotor yang mudah tetapi efektif telah dipersembahkan dan digunakan di dalam 

kajiselidik ini bagi mengemaskini mesin icira gelinciran yang digunakan oleh 

logaritma-logaritma IRFOC. 

Satu modal simulasi lengkap bagi induksi motor dan skema IRFOC telah 

dipersembahkan dan diuji menggunakan SIMULINK 1 MATLAB dan 

diimplementasikan secara eksperimen di atas papan pemprosesan Isyarat Digital 

(MCK243) tanpa menggunakan pengesan voltan bagi pengiraan fasa voltan. 

Keputusan bagi simulasi dan eksperimen telah dipersembahkan dan dibandingkan 

bagi mengesahkan kesahihan penganggar yang dicadangkan bagi keadaan 

pengoperasian yang berbeza. 

... 
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A 
Reference quadrature component of stator current in excitation 
reference fiame, A 

xxi 



K flx 

Ki 
KI 
K i~ r  
Kin 
Kinv  

KiQl5 

Kis 

Quadrature component of stator current vector in stator reference 
frame, A 
Value of quadr~ture component of stator current vector in stator 
reference frame at sample n, A 
Total moment of inertia of the motor and load, kg.m2 
Critical proportional gains for closed loop root locus system (Ch.3) 
Correction gain used when saturation of a PI controller occurs 
Constant that translates measured current into Q 15 format (Ch.4) 
Ziegler-Nichols critical proportional gain (Ch.3) 
Conversion factor between encoder number of pulses and speed 
(Ch.4) 
Scaling factor adjusts flux in Q15 format for flux estimation from 
rotor quantities ((3.4) 
Integral gain (used for a general PI controller in Ch.4) 
Integral gain (used for current PI controller in Ch.3) 
Integral gain of inverse rotor time constant PI controller (Ch.3) 
Discrete integral gain (used for a general PI controller in Ch.4) 
Constant that translates inverter voltage into Q15 format (Ch.4) 
Current controller integral gain in Q15 format (Ch.4) 
Scaling factor adjusts current in Q15 format for flux estimation from 
stator quantities (Ch.4) 
Scaling factor adjusts current in Q15 format for flux estimation from 
rotor quantities (Ch.4) 
Scaled value of current controller integral gain (Ch.4) 
Integral gain of speed controller (Ch.3) 
Integral gain of speed controller in 415 format (Ch.4) 
Integral gain of digital speed controller (Ch.4) 
Scaled Integral gain of speed controller (Ch.4) 
Root locus system proportional tuning gain (Ch.3) 
Scaling factor adjusts speed in Q15 format for flux estimation from 
rotor quantities (Ch.4) 
Proportional gain (used for a general PI controller in Ch.4) 
Proportional gain (used for current PI controller Ch.3) 
Proportional gain of inverse rotor time constant PI controller 
Discrete proportional gain (used for a general PI controller in Ch.4) 
Current controller proportional gain in Q15 format (Ch.4) 
Scaled value of current controller proportional gain (Ch.4) 
Proportional gain of speed controller (Ch.3) 
Proportional gain of speed controller in Q15 format (Ch.4) 
Proportional gain of digital speed controller (Ch.4) 
Scaled proportional gain of speed controller (Ch.4) 
Slip frequency adjustment factor (Ch.4) 
Slip frequency adjustment factor (Ch.4) 
Torque proportionality constant in DC machine 
Scaling factor adjusts dead time term in Q 15 format (Ch.4) 
Scaling factor adjusts ON time TXon(,=, b, ,, ,I in Q 15 format (Ch.4) 
Scaling factor adjusts voltage in Q15 format for flux estimation from 
stator qmntities (Ch.4) 
Ziegler-Nichols closed loop proportional tuning gain (Ch.3) 
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