

UNIVERSITI PUTRA MALAYSIA

DESIGN AND DEVELOPMENT OF A MOBILE SOIL PROFILE DIGITIZER

WEE BENG SUI.

FK 2004 42

DESIGN AND DEVELOPMENT OF A MOBILE SOIL PROFILE DIGITIZER

By

WEE BENG SUI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of Requirements for the Degree of Master of Science

March 2004

DEDICATED TO

HIS PARENTS, BROTHERS AND SISTER

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for Degree of Master of Science

DESIGN AND DEVELOPMENT OF A MOBILE-TYPE 2 AXIS LASER SURFACE SOIL PROFILE DIGITIZER

By

WEE BENG SUI

March 2004

Chairman : Associate Professor Dr. Azmi HJ Yahya, Ph.D.

Faculty : Engineering

This study describes the design and development of an automated, mobile-type 2-axis laser soil surface profile digitizer for 3D mapping of soil surface. The construction of the digitizer consists of 2 main parts, the measurement apparatus and a special design trailer. The measurement apparatus provides the noncontact soil surface digitizing and the special design hydraulically powered open-base trailer is used for transporting, uplifting or releasing the measurement apparatus during field operation. The digitizer was pulled by a Massey Ferguson 3060 Instrumented agricultural tractor. Three PLC controlled stepper motors and 3 sets of precision ball screw carriage mechanism were used to drive the sensor in 2-axis of digitizing direction. Dewe-2010 PC Instrument was employed to perform the data acquisition and user control task for the digitizer. The simplified method of the user control interface integrates the concept of touch-screen virtual control panel built on DasyLab[®] V5.5 programming platform. The Digitizer was capable to digitize a maximum area of 1.05m x 1.8m with an adjustable digitizing speed, digitizing interval and digitizing area to suit with the required operation time and output resolution. Field tests were

conducted to determine adequate digitizing speed and digitizing interval for the digitizer, and also to evaluate the significant of tillage operations, tractor travel speeds and rotary tiller's speeds with respect to average elevation height, Degree of Tilth, and Random Roughness Index of the soil surface profile, and sensing error of the digitizer. Result from field test showed that implement types, tractor travel speed, and rotary tiller speed had significant effects on random roughness index of the soil surface profile. Implement types had only significant effect on the sensing error of the digitizer and rotary tiller speed had only significant effect the Degree of Tilth of the soil surface profile.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

MEREKABENTUK DAN MEMBINA SEBUAH ALAT PENDIGITALAN PROFIL PERMUKAAN TANAH LASER 2-PAKSI DAN MUDAH-ALIH

Oleh

WEE BENG SUI

Mac 2004

Pengerusi : Profesor Madya Azmi Hj. Yahya, Ph.D.

Faculty : Kejuruteraan

Kajian ini melibatkan rekabentuk dan pembangunan sebuah alat pendigitalan profil permukaan tanah laser 2-paksi jenis automatik dan mudah-alih untuk pemetaan 3dimensi permukaan tanah. Pembinaan alat pendigitalan ini terdiri daripada 2 bahagian utama, iaitu alat pengukuran dan sebuah treler yang direkabentuk khas. Alat pengukuran tersebut memainkan peranan sebagai alat pendigitalan permukaan tanah tanpa-sentuh, manakala treler khas dengan kuasa hidraul serta permukaan bawah terbuka pula memainkan peranan untuk mengangkut, menaikan, dan menurunkan alat pengukuran tersebut semasa pengendalian di ladang. Alat pendigitalan ini ditarik oleh sebuah traktor pertanian Massey Ferguson 3060 yang dilengkapi dengan sistem instrumentasi. Tiga motor lelangkah yang dikawal oleh PLC dan 3 set mekanisme pembawa jenis skrew bebola persis diguna untuk memacu penderia dalam 2 arah paksi pendigitalan. Perkakas PC Dewe-2010 digunakan untuk perolehan data serta kawalan untuk alat pendigitalan. Kaedah kawalanmudah tersebut menggunakan konsep skrin-sentuh maya yang berasaskan pengaturcaraan DasyLab[®] V5.5. Alat pendigitalan ini berupaya untuk mendigitalkan keluasan maximum bersaiz 1.05m x 1.80m dengan keupayaan mengubah kelajuan pendigitalan, julat pendigitalan serta keluasan pendigitalan

untuk disesuaikan dengan masa pengendalian dan resolusi keluaran. Ujian ladang dijalankan untuk menentukan laju serta julat pendigitalan yang sesuai bagi alat pendigitalan tersebut, dan juga untuk menilai kesan operasi pembajakan, kelajuan traktor, dan kelajuan alat bajak putar ke atas purata ketinggian, Darjah Kegemburan, dan Index Kekasaran Rawak bagi profile permukaan tanah, serta juga ralat penderiaan bagi alat pendigitalan. Keputusan ujian ladang menunjukan jenis pembajak, kelajuan traktor, dan kelajuan alat bajak putar memberikan kesan yang nyata hanya kepada Index Kekasaran Rawak bagi profil permukaan tanah. Manakala hanya jenis pembajak memberikan kesan yang nyata kepada ralat pendigitalan dan hanya kelajuan alat bajak putar memberikan kesan kesan kesan yang nyata kepada Darjah Kegemburan.

ACKNOWLEDGEMENTS

This work was carried out with a hope to contribute towards the expansion of the knowledge on precision agriculture. The completion of this thesis would have been impossible if not for the assistance and direct involvement of many kindhearted individuals. I am very much indebted to all my mentors and have no way of repaying such a debt except to express my sincerest gratitude.

First and foremost, I am very grateful to my supervisor, Assoc. Prof. Ir. Dr. Azmi Dato' Yahya, for his valuable comments, patience, guidance, and strong support for the very enriching and though-provoking discussions which helped to shape the thesis. He was always there to help whenever needed throughout my engagement on this project. Next, I would also like to thank the other 2 members in my supervisory committee; Mr. Isa Othman and Dr. Bambang Sunarjo Suparjo for the kindly contributions, feedback, and comment during the examination of my project.

Acknowledgement is also extended to MOSTE for my granting the financial support for my master degree study. For all the lecturers and staffs of the Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, thanks for giving me fully commitment and co-operation during the process of doing my Masters degree project.

I am also indebted to Dr. A. F. Kheiralla who has given various discussions and suggestions which contributed a lot towards the improvement of my final

manuscript. My heartfelt thanks also go to Roshdi Zamri, Gew Soon Kiat, Ng Eng Boon, Nar Hai Sin, Athur, Darius, Tan Chye Hee, and all my fellow friends for their sacrifices, encouragement, and generous co-operation throughout my project.

Thanks are extended to Mr. P. C. Tuang of MAC Engineering Sdn. Bhd. and Mr. William Wu of UEW Sdn. Bhd. for their assistance in the fabrication process of my project. My gratitude is also due to University Agriculture Park (TPU) for granting us the permission to conduct the field test in the corn field of Universiti Putra Malaysia.

I am forever indebted to my beloved family members for their understanding and everlasting love and care during the course of my study.

I certify that an Examination Committee met on 12th March 2004 to conduct the final examination of Wee Beng Sui on her Master of Science thesis entitled "Design and Development of a Mobile Soil Profile Digitizer" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ir. DESA AHMAD, Ph.D.

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

AZMI DATO' HJ. YAHYA, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

ISA OTHMAN

Center of Mechanization and Automation Malaysian Agricultural Research and Development Institute (MARDI) Serdang (Member)

BAMBANG SUNARYO SUPARJO, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

GULAM RUSUL PAHMAT ALI, Ph.D. Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 JUN 2004

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follows:

AZMI HJ YAHYA, Ph.D.

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

ISA OTHMAN

Center of Mechanization and Automation Malaysia Agriculture Research and Development Institute (MARDI) (Member)

BAMBANG SUNARJO SUPARJO, Ph.D.

Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDEŘIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 29 JUL 2004

DECLARATION FORM

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

WEE BENG SUI Date: 15/05/2004

TABLE OF CONTENTS

Page

DEDICATION	i
ABSTRACT	ii
ABSTRAK	iv
ACKOWLEDGEMENTS	vi
APPROVAL	viii
DECLARATION	x
LIST OF TABLES	xiii
LIST OF FIGURES	xv

CHAPTER

I	INT	RODUCTION	
	1.1	Justification	1
	1.2	Objectives	3
II	LIT	ERATURE REVIEW	
	2.1	Soil Surface Roughness	5
	2.2		18
III	MA	TERIALS AND METHODS	
	3.1	Design Consideration of the Digitizer	33
	3.2	General Configuration of the Digitizer	33
	3.3	Measurement Apparatus	36
	3.4	Trailer	38
	3.5	Motion Control System of Measurement Apparatus	40
	3.6	Instrumentation System of Measurement Apparatus	45
	3.7	Electrical Power Supply of Measurement Apparatus	48
	3.8	Digitizer Mechanical Setup	54
	3.9	Digitizer Software Setup	57
	3.10	Calibration of Elevation Measurement of the Sensor	58
	3.11	Laboratory Digitizing Experiment of the Digitizer	60
	3.12	Formulas for Quantifying Soil Surface Profile and	
		Sensing Error	60
	3.13	Calibration of Digitizing Interval of the Digitizer	64
	3.14	Soil Surface Roughness Resulted from Disk Plow,	
		Moldboard Plow, Disk Harrow, and Rotary Tiller	64
	3.15	Soil Surface Roughness Resulted from a Rotary Tiller	
		Operated at Different Tractor Travel Speed and	
		Rotary Tiller Speed	66
IV	RES	ULTS AND DISCUSSIONS	
	4 1		~~

- 4.1 Calibration of Elevation Measurement of the Sensor 68
- 4.2 Laboratory Digitizing Demonstration of the Digitizer 74

	4.3	Calibration of Digitizing Interval of the Digitizer	74
	4.4	Soil Surface Roughness Resulted from Disk Plow,	
		Moldboard Plow, Disk Harrow, and Rotary Tiller	78
	4.5	Soil Surface Roughness Resulted from a Rotary Tiller	
		Operated at Different Tractor Travel Speed and	
		Rotary Tiller Speed	88
V	CON	NCLUSIONS	98
BIB	LIOGR	APHY	102
APPENDICES		107	
A O	verall D	imensions of the Laser Soil Surface Profile Digitizer	108
B S	B Selection Charts of Linear Bushing Sizes		109
C S	C Selection Charts of Ball Screw and Nut Sizes		118
D S	election	Charts of Stepper Motor Sizes	123
ΕD	ata She	et of Pacific Scientific MA6410 Stepper Motor Driver	139
F D	ata Shee	et of Wenglor YT 33 MGV 80	
La	aser Dis	placement Sensor	148
BIODATA OF THE AUTHOR		149	

LIST OF TABLES

Table

2.1	Average Random Roughness value for different tillage operation	7
2.2	Random Roughness Index and estimated amount of soil erosion	16
4.1	ANOVA for sensor output voltage	70
4.2	Duncan multiple-range test on the sensor mean output voltage with different colored surfaces	70
4.3	Regression equations for sensor output voltage with different surface colors	71
4.4	Regression analysis for sensor voltage output for common surface colors	71
4.5	Verification of sensor measured voltage output against the predicted voltage output	71
4.6	Average elevation height, Degree of Tilth, Random Roughness Index at varying digitizing intervals	77
4.7	ANOVA for average elevation height, Degree of Tilth, Random Roughness Index at varying digitizing intervals	78
4.8	Soil properties, soil surface profile, and sensing error for different tillage operations	80
4.9	ANOVA for average elevation height, Degree of Tilth, Random Roughness Index, and sensing error when subjected to different tillage implements	83
4.10	Duncan's multiple-range test on Random Roughness Index when subjected to different tillage implements	84
4.11	Duncan's multiple-range test on sensing error when subjected to different tillage implements	84
4.12	Soil moisture content, soil cone index, and soil shear strength for different tilling configuration	91

4.13	ANOVA of average elevation heights when subjected to different tractor travel speed and rotary tiller speed	91
4.14	ANOVA of Degree of Tilth when subjected to different tractor travel speed and rotary tiller speed	91
4.15	Duncan's test on Degree of Tilth when subjected to different rotary tiller speed	92
4.16	ANOVA of Random Roughness Index when subjected to different tractor's travel speed and rotary tiller speed	92
4.17	Duncan's test on Random Roughness Index when subjected to different tractor travel speed	92
4.18	Duncan's test on Random Roughness Index when subjected to different rotary tiller speed	93
4.19	ANOVA of sensing error when subjected to different tractor travel speed and rotary tiller speed	93
4.20	Orthogonal regression analysis of Random Roughness Index with different tractor travel speed and rotary tiller speed	95
4.21	Orthogonal regression analysis of Random Roughness Index with different tractor travel speed and bite length	96

.

LIST OF FIGURES

Figure		Page
2.1	Random Roughness Measurement	6
2.2	Shelter Angle Concept	13
2.3	Clod Sizes and Its Equivalent Random Roughness Index	15
2.4	A Chain-Method Contact-Type Profile Meter	19
2.5	A Paper and Paint Contact-Type Profile Meter	19
2.6	A Multiple Pins Contact-Type Profile Meter	21
2.7	Experimental Instrumentation for Stereoscopic Measurements	28
2.8	Long Profiling Instruments	28
2.9	A Portable Tillage Profile	30
2.10	3-dimensional Schematic Diagram of Instantaneous Profile Laser Scanner	31
2.11	Instantaneous Profile Laser Scanner in Outdoor Use	31
3.1	General Configuration of the Digitizer	35
3.2	Measurement Principle of Laser Displacement Sensor	35
3.3	CAD Illustration of the Measurement Apparatus	39
3.4	CAD Illustration of the Trailer	39
3.5	The Hydraulic Circuit for the Trailer	40
3.6	The Complete Configuration of the PLC Unit	41
3.7	Stepper Motors and Inductive Proximity Sensors Location	44
3.8	Wiring Configuration of 37 Pin D-sub Male Connector	44
3.9	Complete Motion Control Circuit Diagram	46
3.10	Three-beams Correction Principle of Wenglor [®] YT33MGV	

	Laser Displacement Sensor	49
3.11	Wiring Configuration for 9 Pin D-sub Male Connector	49
3.12	DAQx-V module on Dewe-2010 PC Instrument	50
3.13	Instrumentation Cabinet	50
3.14	Pictorial Programming on DaisyLab®	51
3.15	Layout of Touch-screen Virtual Control Panel	51
3.16	Complete Instrumentation System Circuit Diagram	52
3.17(a)	The Yanmar LA-series Generator	53
3.17(b)	The Yanmar LA-series Generator on the MF 3060 Tractor	53
3.18	The Power Outlet Distribution Cabinet in the MF 3060 Tractor	54
3.19	The Complete Circuit Diagram of Electrical Power Supply of Measurement Apparatus	55
3.20	Digitizer Alignment Setup Parameters	56
3.21	Calibration of the Laser Displacement Sensor	59
3.22	Digitizing of an Egg Pad	61
3.23	Degree of Tilth Measurement	63
3.24	The Tilling Configuration of Rotary Tiller Experiment Plot	67
4.1	Calibration Curve for Output Voltage of the Sensor on Colored Surfaces	72
4.2	Verification Curve for Output Voltage of the Sensor on Type I Colored Soil Surface	72
4.3	Verification Curve for Output Voltage of the Sensor on Type II Colored Soil Surface	73
4.4	Verification Curve for Output Voltage of the Sensor on Type III Colored Soil Surface	73
4.5	The DEM Model of the Egg Pad	75
4.6	The Actual Surface Profile of Egg Pad	75
4.7	Bar Chart of Average Elevation Height, Degree of Tilth, and	

	Random Roughness Index for Different Tillage Operations	80
4.8	DEM Model of Soil Surface Profile Produced by Disk Plow	85
4.9	DEM Model of Soil Surface Profile Produced by Moldboard Plow	85
4.10	DEM Model of Soil Surface Profile Produced by Disk Harrow After Disk Plow	86
4.11	DEM Model of Soil Surface Profile Produced by Rotary Tiller After Moldboard Plow	86
4.12	DEM Model of Soil Surface Profile Produced by Disk Harrow After Moldboard Plow	87
4.13	DEM Model of Soil Surface Profile Produced by Rotary Tiller After Disk Plow	87
4.14	Three-Dimensional Plot of Random Roughness Index with Different Tractor Travel Speed and Rotary Tiller Speed	96
4.15	Three-Dimensional Plot of Random Roughness Index with Different Tractor Travel Speed and Bite Length	97

CHAPTER I

INTRODUCTION

1.1 Justification

Soil as one of the most important natural resources, has been damaged by erosion and agricultural practices. Tillage as one of the important and delicate phases in seedbed preparation, has contributed a significant effect to the soil physical properties. Excessive tillage, which is an unfortunate habit of Malaysian farmers, causes considerable damage to the soil structure. To sustain a productive and profitable agriculture, the present conventional soil management system need to be re-evaluated, and a precise and scientifically proven method has to be applied in modern soil management system. Therefore, it is important to identify an optimal tillage conditions in accordance to the crop growth requirements, soil conservation's level, and the machine operation economics. To achieve the above objective, it is necessary to identify one or more precise parameters describing the degree of roughness, that can be utilized not only within experimental boundaries, but also to check with the work quality and correctly regulated implements in the field (Sandry et al.,1998).

Various concepts of quantifying soil surface roughness has been proposed and tested by the agricultural researchers all around the world in the efforts of searching the most appropriate, precise, consistent, reliable, time saving, and user friendly measurement methodology. Various roughness indexes have also been proposed for the study of soil surface roughness. Romkens and Wang (1986)

describe four categories of soil roughness. The first category is the roughness due to individual particles or aggregates in the order of 0 to 2mm in magnitude. The second category is the roughness due to the clod size in the surface variation in the order of 100mm in the magnitude. The third category is the roughness due to plowing effect of the tillage implements on the terrain surface, which is in the order of 100mm to 300mm in magnitude. The forth category is the higher order roughness due to field topography in the order of more than 300-mm in the magnitude. The second and third category of roughness is are those, which change most rapidly due to weathering and tillage and are the importance-measured parameters in this study.

Even though various soil surface roughness indexes have been used and proposed, all these parameters are based on the common principal of measuring soil surface elevations at selected intervals to form a Digital Elevation Model (DEM). DEM is a computer representation of a surface morphology. Basically, this is a grid of points where each point has an altitude. Two types of commonly used DEM is a macro DEM where each point size is greater than 1m, and micro DEM where each point size is less than 100mm. This study will concentrate only on the micro DEM since micro DEM gives a significant effect to soil surface roughness and erosion due to tillage implement.

However, the recent designed and developed measurement apparatus for measuring soil surface roughness are still not perfect and needs some modifications. The sensing device of the recent instrumentation system uses a dedicated pair of laser beam emitter and beam receiver, which is quite complicated to be aligned and need field calibration for each operation. These measurement apparatus also need to

be in-field assembly, which can be a time consuming process. The control and data acquisition system of these measurement apparatus also utilizes a dedicated personal computer (PC), power generator, and signal analyser, which can be quite messy and time consuming cabling process during operation. A large-scale measurement apparatus of this kind also faces transportation problem, which is due to its size and weight.

Thus, there is a need of having a user friendly and reliable measurement apparatus that can be used to measure the soil surface roughness that is mobile, utilize integrated instrumentation system, and faster field setup. The develop measurement apparatus should be able to generate a DEM of soil surface profile and at the same time could be used to quantify soil surface roughness.

1.2 Objectives

The main objective of this study is to design, develop, and test a laser soil surface profile digitizer for the purpose of quantifying soil surface roughness for seedbed preparations.

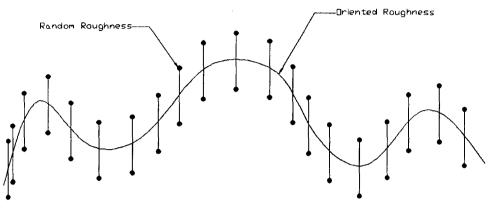
The specific objectives of this study are as follows:

 To design and develop an automated measurement apparatus that is able to digitize soil surface elevations in 2-axis directions.

- 2. To design a special trailer for supporting and carrying the measurement apparatus with a built-in mechanism for uplifting and releasing the measurement apparatus during its operation in the field.
- 3. To design a computer program that can control, calculate, visualize, and perform a real time display of the surface elevations data obtained from the measurement apparatus.
- 4. To calibrate the laser displacement sensor of the measurement apparatus for its output variations due to the color variety of the target surfaces and its output resolutions in accordance to the selected predefined digitizing intervals.
- 5. To quantify and evaluate soil surface profile of seedbeds prepared after a disk plow, a moldboard plow, a disk harrow, and a rotary tiller using the developed digitizer.

CHAPTER II

LITERATURE REVIEW


2.1 Soil Surface Roughness

Various types of soil surface roughness quantification techniques and parameters have been proposed by past researchers in the study of soil science. Among the commonly used parameters include the Random Roughness Index, Micro-relief index, Degree of Tilth Index, Tilth Index, Regionalized Soil Roughness Index, and Coefficient of Manning's Roughness Index. However, Random Roughness Index (RR) has been widely used to describe surface roughness for a range of soils and tillage implements (Chi-hua Huang et al., 1992). It represents a scale equivalent to the standard deviation of soil surface elevations heights (Kuipers, 1957; Allmaras et al., 1966; Currence and Lovely, 1970). The employed technique implicitly assumed that soil surfaces have a Random Roughness with no spatial correlation. Various equations have been proposed and used to describe the Random Roughness index. Gupta et al., (1991) describes the measurement of Random Roughness index in the following equation:

$$RR = \left(\sum (Z_i - Z)^2 / (n - 1)\right)^{1/2}$$
(2.1)

where RR is a Random Roughness index, Z_i is the standard deviation of the elevation heights, Z is a mean value of elevation heights after slope and tillage Oriented Roughness in both directions has been removed, and n is a number of measured points. The schematic representation of Random Roughness measurement is illustrated in Figure 2.1.

Sectional View Perpendicular to Tillage direction

Figure 2.1: Random Roughness Measurement

Allmaras et al., (1967) suggested that since the elevation heights in logarithm values were normally distributed, the Random Roughness index could be defined as the natural logarithm of standard deviation for the correlated elevation heights after multiplication with a constant value of 100 as in equation 2.1.

$$RR = 100 \times \log \sigma \tag{2.2}$$

where RR is the Random Roughness index and σ is the standard deviation of the elevation heights. The computation for σ were to be made based on the elevation heights after corrected from slope and tillage orientation in both directions with the exclusion of 10% upper and lower extreme values of the elevation heights data set.

