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This research is mainly in the Rough Set theory based knowledge reduction for data 

classification within the data mining framework. To facilitate the Rough Set based 

classification, two main knowledge reduction models are proposed. The first model 

is an approximate approach for object reducts computation used particularly for the 

data classification purposes. This approach emphasizes on assigning weights for each 

attribute in the attributes set. The weights give indication for the importance of an 

attribute to be considered in the reduct. This proposed approach is named Object 

Reduct by Attribute Weighting (ORAW). A variation of this approach is proposed to 

compute full reduct and named Full Reduct by Attribute Weighting (FRAW). 

The second proposed approach deals with large datasets particularly with large 

number of attributes. This approach utilizes the principle of incremental attribute set 

decomposition to generate an approximate reduct to represent the entire dataset. This 

proposed approach is termed for Reduct by Attribute Set Decomposition (RASD). 



The proposed reduct computation approaches are extensively experimented and 

evaluated. The evaluation is mainly in two folds: first is to evaluate the proposed 

approaches as Rough Set based methods where the classification accuracy is used as 

an evaluation measure. The well known IO-fold cross validation method is used to 

estimate the classification accuracy. The second fold is to evaluate the approaches as 

knowledge reduction methods where the size of the reduct is used as a reduction 

measure. 

The approaches are compared to other reduct computation methods and to other none 

Rough Set based classification methods. The proposed approaches are applied to 

various standard domains datasets from the UCI repository. The results of the 

experiments showed a very good performance for the proposed approaches as 

classification methods and as knowledge reduction methods. The accuracy of the 

ORAW approach outperformed the Johnson approach over all the datasets. It also 

produces better accuracy over the Exhaustive and the Standard Integer Programming 

(SIP) approaches for the majority of the datasets used in the experiments. For the 

RASD approach, it is compared to other classification methods and it shows very 

competitive results in term of classification accuracy and reducts size. 

As a conclusion, the proposed approaches have shown competitive and even better 

accuracy in most tested domains. The experiment results indicate that the proposed 

approaches as Rough classifiers give good performance across different classification 

problems and they can be promising methods in solving classification problems. 

Moreover, the experiments proved that the incremental vertical decomposition 

framework is an appealing method for knowledge reduction over large datasets 

within the framework of Rough Set based classification. 
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Penyelidikan ini adalah mengenai pengurangan pengetahuan berasaskan Set Kasar 

dan pengklasifikasian data dalam kerangka kerja perlombongan data. Bagi 

memudahkan pengklasifikasian berdasarkan Set Kasar, dua model utama bagi 

pengurang pengetahuan telah dicadang. Model pertama yang dicadangkan adalah 

pendekatan anggaran dalam pengiraan objek pengurang yang digunakan khusus 

untuk tujuan pengklasifrkasian data. Pendekatan ini menekankan kepada penggunaan 

pemberat kepada setiap atribut di dalam set atribut. Pemberat-pemberat ini memberi 

petunjuk kepada kepentingan sesuatu atribut yang bakal dipertimbangkan di dalam 

pengurang. Pendekatan h i  dinamakan POAB iaitu Pengurang Objek dengan Atribut 

Berpemberat. Satu variasi kepada pendekatan ini turut dicadangkan bagi mengira 

pengurang penuh. Variasi ini dinamakan sebagai PPAB bermaksud Pengurang Penuh 

dengan Atribut Berpemberat. 



Model kedua yang dicadangkan melibatkan set data yang besar terutamanya dengan 

kuantiti atribut yang besar. Pendekatan ini menggunakan prinsip pemecahan set 

atribut secara berperingkat untuk menjana anggaran pengurang yang mewakili 

keseluruhan set data. Pendekatan yang dicadangkan ini dinamakan PPST bermaksud 

Pengurang dengan Pemecahan Set Atribut. 

Pendekatan-pendekatan pengiraan pengurang yang dicadangkan dieksperimen dan 

dinilai secara menyeluruh. Proses penilaian adalah dalam dua aras: pertama adalah 

penilaian ke atas pendekatan yang dicadangkan berdasarkan Set Kasar di mana 

ketepatan pengklasifikasian digunakan sebagai ukuran penilaian. Kaedah penilaian 

bersilang 10-aras yang terkenal juga digunakan bagi menganggar ketepatan 

pengklasifikasian. Aras kedua penilaian digunakan untuk menilai pendekatan yang 

dikenali sebagai kaedah pengurang pengetahuan di mana saiz pengurang digunakan 

sebagai ukuran pengurangan. 

Pendekatan-pendekatan ini dibandingkan dengan kaedah pengiraan pengurang yang 

lain dan termasuk lain-lain ka edah yang tidak berasaskan Set Kasar. Di dalam 

eksperimen, kami menggunakan pendekatan yang dicadangkan ke atas beberapa set 

data domain piawai daripada simpanan UCI. Keputusan eksperimen menunjukkan 

pencapaian yang sangat baik oleh pendekatan yang dicadangkan dalam proses 

pengklasifikasian dan pengurangan pengetahuan. Ketepatan pendekatan POAB 

melebihi pendekatan Johnson dalam kesemua set data. Ia juga menghasilkan 

ketepatan yang lebih baik jika dibandingkan dengan pendekatan Exhaustive dan SIP 



dalam majoriti set data yang digunakan di dalam eksperimen. Bagi pendekatan 

PPSA, ianya juga telah dibandingkan dengan kaedah pengklasifikasian yang lain dan 

telah menunjukkan hasil keputusan yang kompetetif dari segi ketepatan 

pengklasifikasian dan saiz pengurang yang dijana. 

Kesimpulannya, pendekatan-pendekatan yang dicadangkan telah menunjukkan 

ketepatan yang kompetetif, malah lebih baik apabila diuji menggunakan domain- 

domain ujian yang utama. Keputusan eksperimen menunjukkan pendekatan 

pengklasifikasi kasar yang dicadangkan berupaya memberi pencapaian yang baik dan 

menjanjikan hasil ke atas masalah-masalah pengklasifikasian. Tambahan pula, 

ekperimen telah membuktikan bahawa kerangkan pemecahan menegak secara 

berperingkat adalah satu pendekatan yang menarik bagi pengurangan pengetahuan 

sekiranya menggunakan set data yang besar, dan ianya bernilai untuk digunakan di 

dalam kerangka pengklasifikasian berasaskan Set Kasar. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Due to the explosion of data in our modem society, most organizations have large 

databases that contain a wealth of undiscovered, yet valuable information. To gain 

benefits from the collected information and to discover the valuable knowledge, it 

needs to be analyzed. This leads to a need for methods and ways to aid or substitute 

humans in the process of knowledge discovery from large datasets. Knowledge 

discovery and data mining methodologies have been introduced as methods for 

bridging the knowledge gap between information gathered and information analyzed 

(Han & Kamber, 2001 ; Cios et al., 1998; Fayyad et al., 1996b, 1996~). Analogous to 

the mining in the real world, data mining is that, with the computer, we can 

automatically find the "information gold nuggets" or "diamonds" by sifting out 

enormous quantities of data-debris from our database. 

Data mining is a promising and an interdisciplinary research area spanning several 

disciplines such as database, machine learning, artificial intelligence, intelligent 

information systems, statistics, data warehousing and knowledge acquisition in 

expert systems. Data mining has evolved into an important and active area of 

research because of theoretical challenges and practical application associated with 

the problem of discovering interested or previously unknown knowledge from very 



large real-world databases. With data mining we can simply let data "speak for 

itself '. 

There are several tasks in data mining and the most common in the literature is 

classification, which is a form of data analysis that can be used to extract models 

describing important data classes. The classification task concentrates on predicting 

the value of the decision class for an object among a predefined set of classes' values 

given the values of some given attributes for the object. 

In the literature many classification approaches have been proposed and 

implemented by researchers, such as, decision tree based classification, statistical 

classification, neural network based classification, genetic algorithms classifiers and 

Rough Set based classification (Cios et al., 1998; Bazan et al., 2000). Classification 

has a wide range of applications, including scientific experiments, medical diagnosis, 

credit approval, etc. 

Rough Set theory is a mathematical tool developed as a formal method to turn data 

into knowledge (Pawlak, 1991). The two main applications of the classical Rough 

Sets theory are in attribute reduction and classification. Rough Set based 

classification is inspired by the concepts of the Rough Set theory with a primary goal 

to extract rules from data represented in a decision system. According to Pawlak 

(1991), the notion of classification is central to the theory. 

A very important issue in data mining is the data redundancy where not all 

knowledge presented to the data mining task in an information system is necessary to 



describe it (Pawlak, 1991; Kohavi & Frasca, 1994; Zhang & Yao, 2004; Zhang et al., 

2003; Lin & Yin, 2004; Hu et al., 2000; Boussouf & Quafafou, 2001). It is often the 

case where some of attributes or some of attributes values are superfluous. Rough 

Sets theory provides the reduct concept for data reduction as preprocessing step of 

data analysis. A reduct is defined as the minimal attribute set preserving 

classification power of the original information system with the full set of attributes. 

The reduct concept of the theory is a fundamental concept towards rule extraction. 

The concept enables us to discard functionally the redundant information and 

guarantees that the attributes that do not contribute to the classification are removed. 

The process of finding reduct is a fundamental step in applying the Rough Set theory 

for the data classification task. Based on the reduct concept, the rules generated by 

the classifiers are expected to be more concise than if generated over the original 

dataset (Pawlak, 1998; Komorowski et al., 1999). 

1.2 Problem Statement 

Data classification problem is a well known problem in the area of knowledge 

discovery. In applying Rough Set theory as a classification framework, the problem 

of computing reducts as a knowledge reduction method, is without doubt the most 

complex and computer-intensive step in Rough Set data analysis (Pawlak, 1998). The 

problem of computing all reducts is known to belong to a theoretical class of 

problems that, informally, requires an amount of computation that grows 

exponentially with the size of the problem. The problem size is dominated by the 

number of attributes and objects involved. 



Several approximation and heuristic methods have been proposed but there are no 

universal solutions and no accredited best heuristic method (Kuo & Yajima, 2003). 

According to Lin & Yin (2004), Kuo & Yajima (2003), and Wang & Chen (2004), so 

far, the problem of reduct computation stills an open research area in Rough Set 

theory particularly for large datasets with large number of attributes. 

Generally, most of the available heuristic approaches use the discernibility matrix 

concept and a weighting mechanism to evaluate the significance of the attributes to 

be considered in the reduct Zhang et al. (2003). The available weighting mechanisms 

may lead to consider some attributes with less importance which eventually lead to 

low classification accuracy. In addition, some of the available approaches have 

limitations in handling large amount of datasets particularly with large number of 

attributes (Bakar et al, 2002; Zhengren et al., 2004). 

In the available approaches, the most used weight for attributes is the number of 

occurrences in the discernibility matrix and when several attributes have the same 

weight a random choice is used. This may allow less significant attributes to be a 

member of the reduct which lead to low classification accuracy. 

Johnson reducer (Nguyen & Nguyen, 1996, Ohm, 1998) uses the attribute frequency 

in the discernibility matrix to measure the significance of attributes to be considers in 

the reduct. A random choice is made when several attributes have the same 

significance. Hu et al. (2000) use the attribute frequency and entry length in 

discernibility matrix as measures for the significance of attributes. The same 


