

UNIVERSITI PUTRA MALAYSIA

EFFICIENT SEQUENTIAL AND PARALLEL ROUTING ALGORITHMS IN OPTICAL MULTISTAGE INTERCONNECTION NETWORK

MONIR ABDULLAH ABDUH KAID.

FSKTM 2005 4

EFFICIENT SEQUENTIAL AND PARALLEL ROUTING ALGORITHMS IN OPTICAL MULTISTAGE INTERCONNECTION NETWORK

MONIR ABDULLAH ABDUH KAID

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2005

EFFICIENT SEQUENTIAL AND PARALLEL ROUTING ALGORITHMS IN OPTICAL MULTISTAGE INTERCONNECTION NETWORK

By

MONIR ABDULLAH ABDUH KAID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2005

" ڤَلْ إِنَّ صَلاتِي وِنْسَكِي وِمَحْيَايَ وِمَمَاتِي لِلَهِ رَبِّ العَالَمِينِ "

سورة الأنعام آية(162)

Dedicated to my beloved family:

my parents; Abdullah and Neamah, my wife, my kids; Abdurahman and Abdullah, my brothers and my sister

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Science

EFFICIENT SEQUENTIAL AND PARALLEL ROUTING ALGORITHMS IN OPTICAL MULTISTAGE INTERCONNECTION NETWORK

By

MONIR ABDULLAH ABDUH KAID

June 2005

Chairman: Associate Professor Mohamed Othman, PhD

Faculty: Computer Science and Information Technology

As optical technology advances, there is a considerable interest in using this technology to implement interconnection networks and switches. Optical multistage interconnection network is popular in switching and communication applications. It has been used in telecommunication and parallel computing systems for many years. A major problem known as crosstalk is introduced by optical multistage interconnection network, which is caused by coupling two signals within a switching element. It is important to focus on an efficient solution to avoid crosstalk, which is routing traffic through an $N \times N$ optical network to avoid coupling two signals within each switching element.

Under the constraint of avoiding crosstalk, we are interested in realising a permutation that will use the minimum number of passes to send all messages. This routing problem is an NP-hard problem. Many algorithms are designed by many researchers to perform this routing such as window method, sequential algorithm, degree-descending algorithm, simulated annealing algorithm, genetic algorithm and ant colony algorithm.

This thesis explores two approaches, sequential and parallel approaches. The first approach is to develop an efficient sequential algorithm for the window method. Reduction of the execution time of the algorithm in sequential platform, led to a massive improvement of the algorithm speed. Also an improved simulated annealing is proposed to solve the routing problem. The efficient combination of simulated annealing algorithm with the best heuristic algorithms gave much better result in a very minimal time.

Parallelisation is another approach in our research. Three parallel strategies of the window method are developed in this research. The parallel window method with low communication overhead decreased 86% of the time compared to sequential window method. The parallel simulated annealing algorithm is also developed and it reduces 64% of the time compared to sequential simulated annealing.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenhi keperluan untuk ijazah Master Sains

ALGORITMA BERJUJUKAN DAN SELARI YANG BERKESAN RANGKAIAN SALING BERHUBUNG BERBILANG PARAS OPTIK

Oleh

MONIR ABDULLAH ABDUH KAID

Jun 2005

Pengerusi: Profesor Madya Mohamed Othman, PhD

Fakulti: Sains Komputer Dan Teknologi Maklumat

Dengan perkembangan teknologi optikal, terdapat minat yang menggalakkan dalam menggunakan teknologi ini untuk implementasi pelbagai hubungan rangkaian dan suis. Rangkaian saling Behubung berbilang paras optik adalah lebih terkenal dalam aplikasi suis dan komunikasi. Ia telah digunakan dalam sistem pengkomputeran telekomunikasi dan selari sejak bertahun lalu. Masalah utama yang dikenali sebagai 'crosstalk' telah diperkenalkan oleh rangkaian saling Behubung berbilang paras optik, yang mana ia disebabkan oleh dua isyarat berpasangan di dalam unsur suis. Adalah penting untuk mengfokuskan kepada penyelesaian yang efisyen untuk mengelakkan 'crosstalk', dengan trafik dihantar melalui rangkaian optikal $N \times N$ untuk mengelakkan dua isyrat berpasangan dalam setiap unsur suis.

Di bawah syarat dalam mengelakkan 'crosstalk', kami berminat dalam penggunaan pilihaturan yang menggurakan bilangan laluan paling minimum bagi menghantar semua mesej. Masalah penghantaran ini ialah masalah 'NP-hard'. Pelbagai algoritma telah dicipta oleh ramai penyelidik untuk membuat penghantaran seperti kaedah tingkap, algoritma

jujukan, algoritma penurunan darjah, algoritma simulasi 'annealing', algoritma genetik dan algoritma koloni semut.

Tesis ini mendalami dua pendekatan; jujukan dan selari. Pendekatan pertama, kami membangunkan algoritma jujukan yang efisyen untuk kaedah tingkap. Pengurangan masa pelaksanaan oleh algoritma jujukan tersebut membawa perubahan yang ketara kepada kelajuan algoritma tersebut. Kami juga mencadangkan simulasi 'annealing' yang telah diperbaiki ke atas masalah penghantaran. Kombinasi yang baik antara algoritma simulasi 'annealing' dengan algoritma jangkaan terbaik menghasilkan keputusan yang lebih baik dalam waktu yang singkat.

Keselarian adalah satu lagi pendekatan dalam penyelidikan kami. Tiga strategi algoritma selari dari kaedah tingkap telah dibangunkan dalam penyelidikan ini. Kaedah tingkap selari dengan beban komunikasi yang rendah menurun sebanyak 86% dari segi masa jika dibandingkon dengan kaedah tingkap jujukan. Kami turut membangunkan simulasi 'annealing' selari berkenaan masalah ini. Simulasi 'annealing' selari mengurangkan masa sebanyak 64% jika dibandingkan dengan simulasi 'annealing' jujukan.

ACKNOWLEDGEMENTS

First and foremost, Alhamdulillah for giving me the strength, patience, courage, and determination in completing this work. All grace and thanks belongs to Almighty Allah.

Many special thanks go to my supervisor Associate Professor Dr. Mohamed Othman, Head Dept. of Communication Technology and Networks, Faculty of Computer Science and Information Technology, for his invaluable advice, helpful guidance and who always provides valuable recommendations and suggestions to my inquiries tranquilly and accurately.

I would like to take this opportunity to express my sincere appreciation and thanks to the member of the supervisory committee, Dr. Rozita Johari for her advice and comments during the completion of this thesis.

Sincere and heartfelt thanks to the Faculty of Computer Science and Information Technology and the staff of the Postgraduate office, Library and Universiti Putra Malaysia, for providing a studying and research environment.

I am also thankful to the Institute of Mathematical Research INSPEM and Mr. Sazrol Fadzli for providing me the valuable access to the SMP Server Sun Fire V1280 cluster for the experiments

Finally, many thanks to my parents, my wife, my kids, my brothers, my sister, all the family members and friends for their love, constant support and encouragement in all my endeavors.

MONIR ABDULLAH ABDUH KAID

June 2005

I certify that an Examination Committee met on 14th June 2005 to conduct the final examination of Monir Abdullah Abduh Kaid on his Master of Science thesis entitled "Efficient Sequential and Parallel Routing Algorithms in Optical Multistage Interconnection Network" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Azmi Jaafar, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Shamala Subramaniam, PhD

Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Internal Examiner)

Md Yazid Mohd Saman, PhD

Professor Faculty of Science and Technology University College of Science and Technology Malaysia (External Examiner)

Rosni Abdullah, PhD

Associate Professor School of Computer Sciences Universiti Sains Malaysia (External Examiner)

GULAM RUSUL RAHMAT ALI, PhD Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 2 1 JUL 2005

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as Fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Mohamed Othman, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Rozita Johari, Ph.D.

Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

e... 1

AINI IDERIS, Ph.D. Professor /Dean School of Graduate Studies Universiti Putra Malaysia

Date: 11 AUG 2005

DECLARATION

I hereby declare that the thesis is based on my original work for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

MONIR ABDULLAH ABDUH KAID

Date: 19/07/2005

TABLE OF CONTENTS

Page

DEDICATION	iv
ABSTRACT	v
ABSTRAK	vii
ACKNOWLEDGEMENTS	ix
APROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	XX

CHAPTER

1. INTRODUCTION

1.1	Background	1
1.2	Problem Statement	4
1.3	Research Objectives	5
1.4	Research Scope	5
1.5	Research Contributions	6
1.6	Thesis Organisation	6

2. LITERATURE REVIEW

2.1	Introd	luction	8
2.2	Multis	stage Interconnection Network (MIN)	8
	2.2.1	Crosstalk in Optical MIN (OMIN)	9
	2.2.2	Approaches to Avoid Crosstalk	10
2.3	Optica	al Omega Network (OON)	11
	2.3.1	Shuffle-Exchange Connections	12
	2.3.2	Time Domain Approach	14
2.4	Previo	ous Routing Algorithms	16
	2.4.1	Window Method (WM)	16
	2.4.2	Four Heuristic Algorithms	17
	2.4.3	Genetic Algorithm (GA)	18
	2.4.4	Simulated Annealing (SA) Algorithm	19
	2.4.5	Ant Colony (ACO) Algorithm	21
	2.4.6	Performance of Mentioned Algorithms	21

2.5	Parallel Computation and Distributed Systems	23
2.6	Parallel Computer Architectures	24
2.7	Cluster Computer and Workstations	26
2.8	Sun Fire V1280 Architecture	27
2.9	Problem Decomposition	30
	2.9.1 Domain Decomposition	30
	2.9.2 Functional Decomposition	31
2.10	Data Parallel and Message Passing Models	32
2.11	Parallel Programming Issues	34
	2.11.1 Load Balancing	34
	2.11.2 Minimising Communication	34
	2.11.3 Overlapping Communication and Computation	35
2.12	Performance Metrics for Parallel Systems	36
	2.12.1 Parallel Run Time	36
	2.12.2 Speedup and Efficiency	36
2.13	Parallel Simulated Annealing	38
	2.13.1 Move Decomposition	38
	2.13.2 Parallel Moves	40
2.14	Summary	41

.

3. RESEARCH METHODOLOGY

3.1	Introduction	42
3.2	General Description of Research Methodology	42
	3.2.1 Source and Destination Generation	45
	3.2.2 Combination Matrix	45
	3.2.3 Window Method	46
	3.2.4 Conflict Matrix	46
3.3	Simulated Annealing	47
	3.3.1 Reasons for Using Simulated Annealing	48
	3.3.2 Parallel Simulated Annealing	48
3.4	Computer Resources	50
3.5	Data Collection	50
3.6	Data Analysis	51
	3.6.1 Average Number of Passes	51
	3.6.2 Execution Time	51
3.7	Summary	52

4. PROPOSED SEQUENTIAL ROUTING ALGORITHMS

4.1	Introd	uction	53
4.2	Impro	ved Window Method (IWM)	54
	4.2.1	Window method description	54
	4.2.2	Improved Window Method	58
4.3	Impro	ved Simulated Annealing (ISA)	60
	4.3.1	Simulated Annealing Parameters	62
	4.3.2	Simulated Annealing Algorithm	62
	4.3.3	Improved Simulated Annealing Algorithm	64
4.4	Exper	imental Results and Discussions	68
	4.4.1	Improved Window Method	68
	4.4.2	Improved Simulated Annealing	70
4.5	Summ	nary	76

5. PARALLEL IMPLEMENTATION OF THE PROPOSED

ROUTING ALGORITHMS

5.1	Introd	uction	77
5.2	Paralle	el Improved Window Method (PIWM)	77
	5.2.1	Load Unbalancing (LUB)	78
	5.2.2	Load Unbalancing with Broadcast	80
	5.2.3	Load Balancing (LB)	80
	5.2.4	Load Balancing with Low Communication Overhead	84
5.3	Parall	el Improved Simulated Annealing (PISA)	87
	5.3.1	Simulated Annealing Move Sets	87
	5.3.2	Parallel Simulated Annealing	89
	5.3.3	Parallel Improved Simulated Annealing	93
5.4	Experi	mental Results and Discussions	96
	5.4.1	Parallel Improved Window Method	97
	5.4.2	Parallel Improved Simulated Annealing	106
5.5	Summa	ary	110

6. CONCLUSION AND FUTURE WORKS

6.1 6.2	Conclusions Future Works	111 112
BIBLIC	OGRAPHY	113
BIODA	TA OF THE AUTHOR	117
PUBLI	CATIONS	118

LIST OF TABLES

Table		Page
2.1	Number of Passes with Different Algorithms	22
2.2	Hardware Configuration of Sun Fire V1280	30
4.1	Adjacency Conflict Matrix	66
4.2	Differences between SA and ISA	68
4.3	Execution Time of WM and IWM Algorithms	69
4.4	Various Iterations/Temperature Values of SA and ISA Algorithms	72
4.5	Average Number of Passes of Descending Degree,	
	SA and ISA Algorithms	73
4.6	Execution Time of SA and ISA Algorithms	75
5.1	Execution Time vs. Number of Processors of LUB for Different	
	Network Sizes (N=32, 64 and 128)	97
5.2	Execution Time vs. Number of Processors of LUB for Different	
	Network Sizes (<i>N</i> =256, 512, 1024 and 2048)	99
5.3	Execution Time vs. Number of Processors of Two Strategies for	
	Network size (N=2048)	101
5.4	Execution Time vs. Number of Processors of LB and LBLO	
	for Different Network Sizes (N=256, 512, 1024 and 2048)	102
5.5	Speedup vs. Number of Processors of LBLO Algorithm	104
5.6	Efficiency vs. Number of Processors of LBLO Algorithm	105
5.7	Average Number of Passes of PSA and PISA Algorithms	106
5.8	Performance Results vs. Number of Processors of PISA Algorithm	108

LIST OF FIGURES

Figure			Page
2.1	Crosstalk in an Optical SE		9
2.2	Two Types of Switching Connections		10
2.3	Example of a Space Domain Approach 2×2 ON		11
2.4	Legal Passing Ways in a SE at a time	11	
2.5	8×8 Omega Network		12
2.6	Shuffle-Exchange		13
2.7	Source and Destination Addresses in an 8×8 Networks		13
2.8	Permutation in an 8×8 OON		14
2.9	Specific Permutation in an 8×8 OON		15
2.10	Two Passes for a Specific Permutation in an 8×8 OON		15
2.11	Window Method		17
2.12	Basic Routing Algorithm		18
2.13	Low Energy State in SA		20
2.14	Distributed Memory Architecture		25
2.15	Shared Memory Architecture		26
2.16	Sun Fire V1280 Architecture		29
2.17	The Client-Server Paradigm		32
3.1	The General Steps of Sequential Methodology		43
3.2	The General Steps of Parallel Methodology		44
3.3	Combination of Source and Destination		45
3.4	Three Optical Windows in an 8×8 OON		46
3.5	Flowchart of SSA Algorithm		47
3.6	Parallel Simulated Annealing		49
3.7	Permutation of Source and Destination		50
4.1	Source and Destination Addresses		54
4.2	Optical Window, W_0		55
4.3	Optical Window, W_l		56

4.4	Optical Window, W_2	56
4.5	Sequential Window Method Flowchart	57
4.6	SWM algorithm	57
4.7	Improved Window Method Flowchart	58
4.8	IWM Algorithm	59
4.9	SA Flowchart	63
4.10	SA Algorithm	64
4.11	ISA Flowchart	65
4.12	ISA Algorithm	67
4.13	Execution Time of WM and IWM Algorithms	69
4.14	Various Iterations /Temperature Values of SA and ISA Algorithms	72
4.15	Average Number of Passes of Descending Degree,	
	SA and ISA Algorithms	74
4.16	Execution Time of SA and ISA Algorithms	76
5.1	Flowchart for the Proposed LUB PIWM	78
5.2	The Proposed LUB PIWM Algorithm	79
5.3	Assigning Processes to the Windows in the LUB Strategy	80
5.4	Decompose Window in the LB Strategy	81
5.5	Flowchart for Proposed LB PIWM	82
5.6	The Proposed LB PIWM Algorithm	83
5.7	Allocating Subwindow Algorithm	84
5.8	Flowchart for LBLO PIWM	85
5.9	The Proposed LBLO Algorithm	86
5.10	Simulated Annealing Steps	87
5.11	Sorted Vertice	88
5.12	Inversion	88
5.13	Translation	88
5.14	Switching	89
5.15	Flowchart of PSA	90
5.16	The Proposed PSA algorithm	92
5.17	Flowchart of PISA	94

5.18	The Proposed PISA algorithm	95
5.19	Execution Time vs. Number of Processors of LUB for Different	
	Network Sizes (N=32, 64 and 128)	98
5.20	Execution Time vs. Number of Processors of LUB for Different	
	Network Sizes (N=256, 512, 1024 and 2048)	99
5.21	Speedup vs. Number of Processors of LUB PIWM Algorithm	100
5.22	Execution Time vs. Number of Processors of Two Strategies	
	for Network Size (N=2048)	101
5.23	Execution Time vs. Number of Processors of LB for Different	
	Network Sizes (N=256, 512, 1024 and 2048)	102
5.24	Execution Time vs. Number of Processors of LBLO for	
	Different Network Sizes (N=256, 512, 1024 and 2048)	103
5.25	Speedup vs. Number of Processors of LBLO PIWM	104
5.26	Efficiency vs. Number of Processors of LBLO PIWM	105
5.27	Average Number of Passes of PSA and PISA Algorithms	107
5.28	Execution Time vs. Number of Processors of PISA for	
	Different Network Sizes (N=64, 128 and 256)	108
5.29	Speedup vs. Number of Processors of PISA Algorithm	109
5.30	Efficiency vs. Number of Processors of PISA Algorithm	109

LIST OF ABBREVIATIONS

COW	Cluster Of Workstations
GUI	Graphic Unit Interface
ISA	Improved Simulated Annealing
IWM	Improved Window Method
LOM	Lights Out Management
LB	Load Balancing
LBLO	Load Balancing with Low Communication Overhead
LUB	Load UnBalancing
MIMD	Multiple Instruction Multiple Data
MIN	Multistage Interconnection Network
NP	Non Polynomial
OMIN	Optical Multistage Interconnection Network
ON	Omega Network
OON	Optical Omega Network
PISA	Parallel Improved Simulated Annealing
PSA	Parallel Simulated Annealing
PVM	Parallel Virtual Machine
PIWM	Parallel Improved Window Method
SA	Simulated Annealing
SE	Switching Element
SSA	Sequential Simulated Annealing
SMP	Shared Memory Protocol
SPMD	Single Program Multiple Data
SWM	Sequential Window Method
WM	Window Method

CHAPTER 1

INTRODUCTION

1.1 Background

Communication among processors in a parallel computing system is always the main design issue when a parallel system is built or a parallel algorithm is designed. With advances in silicon technology, processor speed will soon reach the Gigahertz (GHz) range. Traditional metal based communication technology used in parallel computing systems is becoming a potential bottleneck. This requires either that significant progress needs to be made in the traditional interconnects, or that new interconnects technologies, such as optics, be introduced in parallel computing systems.

Multistage Interconnection Network (MIN) is very popular in switching and communication applications. It has been used in telecommunication and parallel computing systems for many years. This network consists of N inputs, N outputs, and S stages ($S = \log_2 N$). Each stage has N/2 Switching Elements (SEs), each SE has two inputs and two outputs connected in a certain pattern.

As optical technology advances, there is a considerable interest in using this technology to implement interconnection networks and switches. Fiber optic communications offer a combination of high speed, low error probability and gigabit translation capacity. When Optical MIN (OMIN) is used, there are common problems such as path loss, conversion of the signal at the switch and crosstalk.

The crosstalk problem is introduced by OMIN, which is caused by coupling two signals within a SE. To avoid the crosstalk problem, various approaches have been proposed by many researchers. In this research we are interested in a network called Omega Network (ON), which has the shuffle-exchange connection pattern. Since many other topologies are equivalent to omega topology, performance results obtained for ON are also applicable to other MINs (Wu and Feng, 1980). In the following, we will use ON and MIN interchangeably.

To transfer messages from a source address to a destination address in Optical ON (OON) without crosstalk, we need to divide the messages into several groups. Then, deliver the messages using one time slot (pass) for each group. In each group, the paths of the messages going through the network are crosstalk free. So, from the performance aspect, we want to separate the messages without any conflicts with other messages in the same group as well as to reduce the total number of the groups.

Many approaches have been proposed to avoid crosstalk in routing traffic through an $N \times N$ optical network by many researchers. Optical Window Method (WM) was proposed for finding conflicts among messages to be sent to the network to avoid crosstalk in OMIN (Shen *et al.*, 1999). When four heuristic algorithms sequential, sequential down, ascending degree and descending degree are used to simulate the performances in real time, the degree-descending algorithm gets the best performance (Miao, 2000). Genetic Algorithm (GA) is also used to improve the performance (Chunyan, 2001). The GA had much improvement in terms of average number of

passes, but it was time consuming. Also, the Simulated Annealing (SA) algorithm is used to optimise the solution (Katangur *et al.*, 2002). Finally, the ant Colony (ACO) algorithm is proposed to optimise the solution (Katangur *et al.*, 2004a).

SA is an optimisation method used for combinatorial optimisation problems (Kirkpatrick, 1983). The SA method starts with a non-optimal initial configuration and works on improving it by selecting a new configuration and calculating the differential cost.

This thesis is planned to develop sequential and parallel algorithms for WM. Reduction of the execution time of the algorithm, in sequential and parallel platforms, led to a massive improvement of the algorithm speed. An Improved Simulated Annealing (ISA) is also proposed in this thesis. The efficient combination of SA algorithm with the best two heuristic algorithms, descending degree and sequential down will give much better results in a minimal time. The Parallel ISA (PISA) algorithm should improve the performance and reduce the time compared to the ISA.

1.2 Problem Statement

A major problem called crosstalk is introduced by OMIN which is caused by coupling two signals within a SE. When a crosstalk happens, a small fraction of the input signal power may be detected at another output although the main signal is injected at the right output. For this reason, when a signal passes many SEs, the input signal will be distorted at the output due to the loss and crosstalk introduced on the path.

To avoid crosstalk, time domain approach has been proposed, which is to route the traffic through an $N \times N$ optical network to avoid coupling two signals within each SE. The more efficient algorithm is the algorithm that generates less time slots (passes). Our goal is to design efficient routing algorithms to minimise the number of time slots (passes) for sending all the messages. That means the messages will be sent out in less time.

Our goal is to design efficient routing algorithms to reduce the execution time of WM that used to find the conflicts among messages. Also the SA approach still need to improve to minimize the number of time slots (passes) for sending all the messages. One way to speed up these routing algorithms is by implementing them in parallel platforms. Our investigations should provide a significant performance.

