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Abstract:

This thesis is an investigation of angles whose sine and cosine are

algebraic conjugates over the field of rational numbers. That is to say,

sin(0) and cos(0) are roots of the same irreducible polynomial with

integer coefficients. These interesting families are explored. First, it

is shown that for n>2, the angles have this property. Second,

all angles which are conjugate in this sense and which have a

quadratic minimum polynomial are identified. The relationship

between these two families is explored, and a family of conjugate

angles with 4^^ degree minimum polynomials is explored as well.

Questions for further investigation are proposed, including an

intriguing connection to chaos theory.
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Introduction

It has been known since the late ig'** century that among real

numbers most are transcendental while only countably many are

algebraic. That is, only countably many are roots of integer

polynomials. Thus algebraic numbers are "rare." One focus of this

thesis will be an examination of angles 6 that are "algebraic",in the

sense that the trigonometric functions of 6 are algebraic numbers.

i

n
For example, ●g is algebraic since its sine, cosine, tangent.

i

2V31  ̂ /3
2' 2 ' 3

, and 2cotangent, secant, and cosecant are

respectively. Further refining the search I will focus especially on

angles whose sine and cosine have the same minimum polynomial, a

very special condition indeed, as will be seen.

Details of definitions and discussion of theorems from abstract

algebra can be found in [2]. Similarly, references to ideas of chaos

theory can be found in [1], and the trigonometric formulas used here

are available in [3].

li i

\f
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Some Definitions

Definition 1: A real number is said to be algebraic if there is a(X

polynomial f (x)=ao+aiX+...+anX" with a^ an integer for every b

and f((x)=0.

Definition 2: If is algebraic then the minimum polynomial of « is«

an integer polynomial f„(x) of smallest degree with:

i.) f„(«)=0

ii.) a positive leading coefficient

iii.) there exists no common divisor bigger than  1 between the

coefficients.

It can be shown that the minimum polynomial of an algebraic

number is unique and cannot be factored.

For example, 1+V2 is algebraic and its minimum polynomial is

x^-2 X -1. The definition of algebraic number is standard but the

following, to the best of my knowledge, is my own.

3
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nefinition 3: An angle G is said to be algebraic if the six

trigonometric functions all exist at G and are all algebraic in the

sense defined above.

~ is an algebraic angle but it is not an algebraic

number. The search for algebraic angles is somewhat facilitated by

the following theorem.

For example.

Theorem 4: If sin(0) is an algebraic number other than 0 or 1 then

e  is an algebraic angle.

Proof: The set of algebraic numbers is closed under the arithmetic

operations and the taking of roots. Hence ±Vl-sin^(0)=cos(0) is

algebraic if sin(0) is algebraic. Since the other  4 trigonometric

functions are quotients involving 1, sin(0), cos(0), they too are

algebraic. ■

7T
toIt is now an easy matter to see that as G varies from say 2

^ (or some comparable interval) sin(0) varies from -1 to 1, taking

on every value in between. Countably many of these values are

4
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algebraic, so countably many of the angles in are algebraic2'2

angles.

Of more compelling interest is the following strengthening of the

idea of an algebraic angle.

Definition 5: If Q is an algebraic angle and sin(0) and cos(0)

have the same minimum polynomial, we say that 0 is a conjugate

angle.

The terminology "conjugate" is based on the algebra notion of

conjugate numbers: algebraic numbers with the same minimum

polynomial.

TT

As an easy example of a conjugate angle consider

“=cos(0), and these algebraic numbers certainly have the

same minimum polynomial since they are the same number. In fact,

the minimum polynomial is 2x^-1. A more substantial example is

sin(0)

5



algebraic, so countably many of the angles in algebraic

angles.

Of more compelling interest is the following strengthening of the

idea of an algebraic angle.

Definition 5: If Q is an algebraic angle and sin(0) and cos(0)

have the same minimum polynomial, we say that 0 is a conjugate

angle.

The terminology "conjugate" is based on the algebra notion of

conjugate numbers: algebraic numbers with the same minimum

polynomial.

TT

As an easy example of a conjugate angle consider

42
sin(0)=-^=cos(0), and these algebraic numbers certainly have the

same minimum polynomial since they are the same number. In fact,

the minimum polynomial is 2x^-1. A more substantial example is

5

I



F

j  f ̂  V2 + y[2
and cos{e)=—-—sin(i9)=—^

2

TTe=~ . These have the
8 *

common minimum polynomial 8x^-8x^+l, as may be verified by

hand.

Definition 6: We say that a nonconstant polynomial fix) in Q[x] is

irreducible over Q if whenever fix) is factored f(x)=a(x)b(x) with

a(x),b(x)GQ[x then either a(x) or b(x) is constant.

Theorem 7? if algebraic number and f«(x) is its minimum« IS an

polynomial, then f„(x) is irreducible over Q.

Proof;. Suppose f,(x) = a(x)b(x) with a(x),b(x)eQ. Then

f«(«)=0 = a(£x)b(o(). So, either a(cx)=0

But, since a(x) has rational coefficients it may be multiplied by an

integer k to get c(x)=kcx(x)GZ

^a(x) has the smallest degree among polynomials with « as a root,

it follows that degree c(x) = degree a(x) = degree f«(x). But. Since

a(x)b(x) = f Jx), it follows that b(x) has degree 0, so b(x) is constant.

Hence f„(x) is irreducible. ■

b(a)=0. Say a(a)=0.or

.  But now c(a)=0 and, sinceX

6



We now know that minimum polynomials are irreducible. The

following is a short converse theorem to this.

Theorem 8: Let « be an algebraic number. Let f(x) be a polynomial

such that f («)=0 . Suppose the coefficients of f have no

common divisor greater than 1 and that the leading coefficient of f is

positive. If f(x) is irreducible over Q, then f(x) is the minimum

in Zfx

polynomial of a.

Proof: Let f„(x) be the minimum polynomial of a. We wish to show

that f(x)=f^^(x). Use the division algorithm in Q[x] to get

f (x) = q(x)f^(x)+r(x) where either r(x) = 0 or

degree(r(x))<degree(f„(x)). Hence f(cx)=q(o()f„(of)+r(o(). so

r(cx) = 0.

If r(x) has degree smaller than degree(f„(x)) we have a

contradiction. Hence r(x)=0, so f (x)=q(x)f„(x). But f(x) is

irreducible so either q(x) is constant or is constant. But f„(x)

is not constant, so q(x)=c for some c. Hence f(x)=cf„(x). Since both

polynomials have positive leading coefficients and since the

coefficients of f(x) have no common divisor, c=l and f(x)=f„(x). ■

7
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The following theorem is a convenient way, when it applies, to show

polynomials in Q[x] to be irreducible.

Theorem 9: (Eisenstein's Criteria)

n- 1
Let c„x" + c + ... + CiX + Co=f(x) be a polynomial in Z[x]. Ifn-lX

p is a prime so that

1.) P|c,;

2.) p|Cj for 0<i<n-l;

3.) p^^Cq;

Then f(x) is irreducible over Q.

A Family of Irreducible Polynomials

The polynomial 2x^-1 is irreducible over Q because, aside from

shifting constants, its only factorization in IR[x] is

(\/2x-1)(V2x4-1), which is not a valid factorization in Q. I define a

family of polynomials as follows:

f2(x)=2x"-l

8



p

The following theorem is a convenient way, when it applies, to show

polynomials in Q[x] to be irreducible.

Theorem 9: (Eisenstein's Criteria)

Let c„x''+Cn_ix'' ̂  + ... + CiX+Co=f(x) be a polynomial in Z[x]. If

p is a prime so that

1.) Ptc,;

2.) p|Cj for 0<i<n-l;

3.) p^jCo;

Then f(x) is irreducible over Q.

A Family of Irreducible Polynomials

The polynomial 2x^-1 is irreducible over Q because, aside from

shifting constants, its only factorization in IR[x] is

(\/2x-l)(V2x + l), which is not a valid factorization in Q. I define a

family of polynomials as follows:

f2(x)-2x'-l

8



f„,,(x)=2(f„(x))Vl

The first few polynomials f^lx) are displayed in table 1.

2x^-l=0fzlx)

8x^8x^+l=0f3(x)

64x®+128z'+80x''+16x"+l=0f4(x)

fs(x)

My next purpose is to show that these iterated compositions of

2x^-1 are irreducible over Q.

Definition 10: For n>2, using the above definitions for f„(x) I

define gn(x) :as follows:

g2(x)=x^-2

(x)={g„(x))"-2gn+i(x)=g(g„{x)) or gn + 1

It will be important to investigate the irreducibility of the f^lx)

polynomials. For this purpose we will relate the fn(x) polynomials to

the Pnix) polynomials.

9



g„(x)=2f„(ix).Theorem 11: For n>2,

2{2(|x)"-l)

2(^-1)

Proof: For n=2.

x"-2

= g2(x).

Suppose g„(x)=2fj|-x).

Then g^.Jx) = (gJx))^-2

= (2f,(|x))'-2

= 4(f,(|x))'-2

= 2[2(f,(ix))'-l)

= 2f,,.(|).

The result follows by the principle of mathematical induction. ■

gn(x) is irreducible over Q.Theorem 12: For n>2.

10



Since g2(x) = x^-2 has integer coefficients it is clear that aU

g„(x) l^ave integer coefficients. Now, QiM is irreducible by

Eisenstein with p=2. I claim that

Eisenstein with p=2. For the induction step assume g^Cx) is

irreducible by Eisenstein with p=2 and that, more specifically, g^ix)

is monic and the constant coefficient of gk(x) is ±2. I claim all the

same properties for

Now, gk*i(x) = (g„(x))2_2

= x^"+4(h(x))^+4x"h(x)±4x"±8h(x)+2

= x'"+2[2(h{x)f+2x"h(x)±2x"±4h(x)]+2

and we see that:

1-) 9k+i(x) is monic;

2.) the constant coefficient is ±2;

gk+i(x) is irreducible by Eisenstein with p=2. ■

g„{x) is irreducible byevery

2(h(x))±2 where h(0)=0.9k+i(x). gk(x)=x +

3.)

sin(^) and cos{^) are roots2  ̂
Now it will be shown that for 2>n

mathematical induction and a smallof fn(x). For this we use

knowledge of trigonometric identities.

11



Theorem 13: For n^2 and for (x^G(sm(—),cos{—)) we have
2  2

fn(«n)=0.

/Tt, ^^2
cos(-)=- sin(-)=(X2 and f„(x)=2x^-l. SinceProof: If n=2.

2( —) -1 = 0, the statement holds forn=2. Now suppose that

fk(«k)-0 and consider f ) = fj,(f2((xJ). Now, since is(«k + l k+1

7T 7T
either cos( —

2
)  or sin(-

2
), we must consider both cases.k+1 k + 1

TT
). SinceWe first examine the case when «k+i=cos(-

)~fk(f2(“k))' we can write fic+i{«k+i)“fk(2«k~l) since

k+1

fk*i(«k+1

)-2cx^-1 ● But this is the same as fk(^k) which, by our

induction hypothesis, is 0.

f2(ak + 1

rrTT
)). Using theIf cx )=fk+i(sin(-= sin(—

2

double-angle formula for sin, we get:

)/ then fk+i(«k+1 k+1 k + 1 k+1

TTTT

l-cos(^)
1-cos

)̂=fk(f(l
TTTT

))=fk.,(|
fk.i{sin(-

))=f„(-cos(^))k + 1 2

12



2

l-COS(;^) l-cos(^) l-cos(^)since

f(| ) = 2(|

= l-COS(^)-l = -COS(^). So fk.,(«k.i) = fk(-cos(^)) = fk(cos(^))

since the f^'s involve only even powers. But is the same

)-l = 2( )-l2 22

as which is 0.

Thus, by the principle of mathematical induction, ■

So we have established that fn(x) is the minimum polynomial of

cos(—) and sin(—). The values of these sines and cosines will
2  2

now be determined. First note that for n=2 the sines and cosines of

+ . Using the identity2
odd multiples of

2
are

cos(0)=2 cos^(|-)-1, it follows that the cosines of odd multiples of

7T

p are roots of the equation

I

I13
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^/2 2±x/2 V2+7I. Hence r=±
2 2

As expected, the fourth degree polynomial fslx) has four distinct

roots. For convenience, I focus on the positive roots.

cos(l|=;S±2.siii(
3tt

8

cos( 8

It is easy to match the angles with the sines and cosines since the

cosine function is decreasing and the sine function is increasing on

2 G

Repeated use of the identity cos(0)=2cos (-2)“1the range [0/^ ●

a/2±V2±V2±..1 for the cosines (and hence theyields the values ±
2

sines as well) of odd multiples of There are n-1 occurrences of2

distinct roots of the polynomial

fn(x), as expected. Each of these occurs twice as the sine and twice

n-1the sign, so there are 2

as the cosine of an odd multiple of ●2

14
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An Algorithm

Now that we know so much about odd multiples of what if

krrkrr
we wanted to know the exact value of cos(—^) or sin(—)? For2  2

simplicity I will consider the cosine function first and then move to

TT

the sine function. For example, consider cos(—).  A tedious8

computation will show that cos(~)=^^'^- —. However, a simple8  2

algorithm will make this an easy transformation.

kn
Algorithm: For cos(— where k is an odd integer and

2

^|2±^^2±^l .,.±42 where theren-l0<k<2 ,  ̂ will be of the form
2

will be (n -1) radicals and the ± signs will be determined by the

binary representation of k. Since the numerator must be odd its

binary equivalent will end in a one. Remove this last 1. Starting from

the right in the radical sequence, that is, starting with the sign

adjacent to the last ^/2, and starting from the right of the binary

equivalent, each 0 will denote a plus sign and each 1 will denote a

15
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minus sign.

3tt
Example: Consider cos( ). Since 8=2^, we know the solution8

will have 3-1=2 radicals. In binary, 3 = 11, so erasing the last 1 will

3jt, V2->/2
leave 1, denoting a minus sign. So, cos( 28

In the same manner we can transform a solution back to its angle

by working the algorithm in reverse. ■

Then theExample: Consider the value
2

=2^ while the numerator will bedenominator of the angle will be 2

- + - =101. Attaching a 1 to the right-hand side we get 1011, or 11.

4+1

h-^2 + yl2-42IItt
So cos( )=

i

32 2

Using a slightly different process we can move between angles

kjT
and values for sin(—-).

2"

k 7T
Algorithm: For sin(—-)=^ where k is an odd integer, /i will be of

2

V2 ±>/2±V...±V2 where there will be n-1 radicals and thethe form
2

16
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numerator will be defined by converting k into binary and then

changing each 0 to a 1 and vice versa. Adding a 1 from the end will

give us the number we want. The plus and minus signs of the

numerator are then defined by reading the number, left to right,

where each 0 stands for a plus sign and each 1 stands for a minus

sign. ■

)/2-->/2+V2-V2Example: Again consider the value Applying the
2

algorithm for sine we find the denominator to be 2'^'^^=2^. k then will

be the equivalent of 0101 = 5. (after changing I's to O's and vice

versa and then attaching a 1 to the right-hand side) So

^2 — '^2 + V2 — >127T
sin (5 )=32 2

It is a simple process to go in the other direction, that is, obtain a

value from an angle.

7tt
Example: Consider ). Our value will have 5-1 =4 radicalssin(32

while the + and - signs will be defined by 7 = 0111. Removing a 1

^2-V2+V2+V2
and swapping O's and I's we get 100, or 2

kir krr
Thus, for sin(—) and cos(-

^  2
) we can easily move between the

17
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angles and the numeric values.

A Second Infinite set?

So far we have discovered an easily identifiable and predictable

kTT
set of conjugate angles, namely those of the form --

odd integer and neZ. Surely these cannot be the only instances of

where k is an

— posed a logical starting point since it is

itself a conjugate angle. However, no other commonly known angles

conjugate angles. Above,

are readily recognizable as conjugates, and certainly ^ is the only

first quadrant angle whose sine equals its cosine. So the question

turns from, "Do conjugate angles exist?" to "Do any angles

krr
k is an odd integer, neZ} exist where e is a conjugate?

Surprisingly, the question can be answered by first examining a

familiar non-conjugate angle, This common angle has6

18



43 1
cos=-y and sin=-, clearly marking this as an algebraic, non¬

conjugate angle. However, a little closer inspection is required. As

before, the double angle formulas for sin0 and cos0 will be used. As

>/3
seen above, cos —o

1 + COS— 1-f
6

2

rr2

So,
 ■

43

12 2 ■

7T
2  2+43 hence cos
2  " 4 '

COS 12 2

Renaming cos(0)=x, we find that, with a little work

V2 + V3
16x^-16x^-fl=0. So this is a polynomial for the cosine.

Similarly, for sin(-^) we have:12

i_V|
2

l-cos- V2-V37T
 2-Vs hence sin RenamingTT

sin^ 12
4  '12 2 2

V2±Vs7T
4x^=2±VS-^sin we can see that x=

12=^'

(4x^-2)'‘=3^16x^-16x^ + 4=3-*16x'‘-16x^+l=0. Thus

2

TT 7T
are roots of the same polynomial. Settingand sincos

12 12

19



2+1
—^) and using Eisenstein, we can see that this is an irreducible

polynomial. Thus 16 x"*-16 +1=0 is the minimum polynomial for

x=(

7T TT TV
) and cos(sin( )  so we can see that is a conjugate angle. A12 12 12

little work with the double angle formulas will show that.

^2 + ̂2 + ̂ . V2-)/2-V3TT TT
surprisingly, cos ,  clearlyand sin

24 2 24 2

TT

making a conjugate angle.24

The Search for Others■ ● ●

So it seems that we have discovered another set of conjugate

angles that are easily identifiable and predictable. However, at this

point we should note one important similarity that will lead to a

startling revelation. Recall that the minimum polynomials for

TT TT

are 8x^+8x^+l and 16x^+16x^+l, respectively. Byand
8 12

rewriting 8x^+8x^+l as 16xVl6x^+2 a striking similarity can be

seen. It seems that fourth-degree polynomials may be a good place to

start looking for other conjugate angles. But is there a way to discern

20
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Which angles are conjugates and which are non-conjugates?

^®fore we can begin an in-depth examination of these fourth-

7T
is a conjugatepolynomials, we should remember that

^r^gle

sense,

there

^^gles.

^o far the conjugate angles we have located have all arisen from

With a degree two polynomicil, namely 2x^-l=0. It makes

then, to first examine second-degree polynomials to see if

^re others that may be the minimum polynomicils for conjugate

rr

4 ' repeated halving, and odd multiples. Are there other conjugate

^rigles with quadratic minimum polynomials? In this search, it makes

sense then to consider x = cos{6) = a+Vb and x = sin(0) = a-Vb

where a,beQ. Note that sin^(0)+cos^(0) = 1 = (a+Vbf 4-(a~Vbf,

so a^-f-b = —
2

1  9

^-a . So we can rewrite
or b =

 '

1  7
--a and sin(0) = a-

With all these specifications we are

COS(0) = a+

 still looking for second-degree

rciinimum polynomials for conjugate angles. With  a little work we

21



ii,

V2
-2ax+(2a^--|-)=0. Since ^

arrive at -a^>0
, we have 0<a<-^

(since a has to be rational) as Q ranges from 0 Interestingly,

when a=0, we have x^--|-=0, or 2x^-l = 0, which is the minimum

polynomial for ^.

The quadratic formula is a well known method for solving second-

degree polynomials. We can apply it to our polynomial in order to find

values for a.

For second-degree (or quadratic) polynomials ax^+bx+c=0 we

can find roots by the quadratic formula:

-b±Vb^-4ac
X

2a

2
Applying this formula to x^-2ax+(2a^-—)=0 we get

2a±^4a^-(4)(2a^-|) 2a±V2-4a^
x =

22

Since x=cos(0) or x=sin(0) it seems reasonable to assign

22
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2a+V2-4a'^ 2a-^l2-4a^
= cos(0) and sin(0). However, this2 2

should have been a more intuitive solution. By separating the two, we

2  1
get 2a ̂ V2-4a^ (1 2 which just happens to be

= a±^2-^ '
= a±

2 2 2

a±>/b, and we have returned to our starting point.

This process was not in vain, however. We see that if

is to be the minimum polynomial for a conjugatex^ —2 ax + (2 a^-

angle, then a must be chosen so that V2-4a^ is irrational. This

1

ensures that the roots of x^-2ax+(2a^-—) are really quadratic.

Hence 2 - 4 a^ cannot be a "perfect square," for if it is, then the

2 a±V2-4a^
would be rational. So 2-4a^?^r^ where re(Q.roots

2

Using bounds on a we see that 0<r<V2.
-I

This means

Thus we know exactly what values of a lead to conjugate angles. Just

compute 2 - 4 and check to see whether or not it is a perfect

square. To illustrate:

23
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Ifa=.7wehave 2-4a^=2-4(.49)=(.04)=(.2f Hence a=.7 will

yield a polynomial with roots that are rational, in particular

x^—1.4X + .48 with roots .8 and .6 . These are the sine and cosine of

an algebraic angle since (.6)^+(.8)^=1, but the minimum polynomials

of .8 is 5x-4 while the minimum polynomial of .6 is 5x-3. So this

angle is not a conjugate.

142-4a''=.56 which is not a "perfect square.Now try a=.6. 25'

so a=.6 should yield a conjugate angle. Indeed, the minimum

polynomial is x^-1.2x+.22. or, multiplying by 50 to get integer

yfU
coefficients, 50x^-60x-i-ll. Now cos(0)=,6-f and

25

yfli
,  and 0 is a conjugate angle with a quadraticsin(0)=.6 25

minimum polynomial.

Can all Conjugates be Halved?

With the discovery of a countably infinite conjugate family of

angles with degree-two polynomials its logical to wonder if these new

angles can be halved repeatedly and still produce conjugate angles.

24



Above we saw that cos(0)=a+^~a^. So, again using the double

e
angle formulas, we can find a formula for cos(-):

l+a+J|-a^
1  9

2 + 2 a+2^ '2~^26cos^-

SO cos{-|)

Similarly, sin(|-)

V 29

2 4

 + 2 a+V2—4 a^
2

>/2-V2a-V2-4a" Setting
2

V2+2a+V2—4a^
cos(—) and doing the arithmetic we obtain2

X
2

4x^=2 + 2a + V2-4a"'-*{4x"-2-2af=2-4a", so

16x^-8(2-2a)x^+(2-2a)^=8-4a^ and

16x'‘-16(l + a)x^+(8a^+8a+2)=0.

This polynomial, multiplied by the appropriate constant, is the

6  9
minimum polynomial of cos(—). For sin(-), we proceed as above.2  ̂

V2-2a-V2-4a^ 9
sin(-)

4x^=2-2a-V2-4a^^(4x"-2+2a)'=2-4a^ so

16x^-8{2-2a)x^+(2-2a)^=8-4a^, and

X
2

25
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16x'^-16(l + a)x^ + {8a^ + 8a+2)=0.

This polynomial, multiplied by an appropriate constant, is the

e eminimum polynomial of sin(—). But, if - is to be a conjugate angle,

the sine and cosine must have the same minimum polynomial. It is

easy to see that this can happen only in the case where a=0, in which

case we have the polynomial 16x'^-16x^+2=0, or 8x^-8x^+l=0,

———
2“ 8' ^ ~ ̂  effort spent generating conjugate angles

and

with repeated halving of ̂  was well spent, as this is the only

instance of a miadratir. angle for which this can be done.

We now turn our attention back to fourth-degree polynomials.

From our previous examples, ~ with minimum polynomial8

TT
8x^-8x^+l = 0 and with minimum polynomial12

16x^-16x^+ 1= 0, it seems reasonable to consider the form

x^+px^+q where p and q are rational numbers. Solutions x then

represent values for sin0 and cos0. So an equation involving sine

would be sin^0+psin^0+q=O and an equation involving cosine would
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be cos'* e + pcos^ 0 + q = 0 By subtracting the two equations, we get:

cos'* 0 + pcos^0+q-(sin** 0+psin^0+q)=O

cos'* 0-sin** 0 + pcos^£?-psin^0=O

(cos^6? + sin“O)(cos“0-sin^0)+p(cos^0-sin^0)=O

Here we should note that sin“0+cos^0 = l is a well known

trigonometric identity, of which we will make use here.

(cos^0-sin^0)(l)+p(cos^0-sin^0)=O

(cos^0-sin^0){l+p) = O

Here we use another trigonometric identity, cos^0-sin^0=cos20, to

proceed:

(cos20)(l + p)=O,

in which case or p--l. Our fourthso either cos(20)=O,

degree polynomial has become x**-x^+q=0.

Using this new value for p, we solve for q by adding the equations

together:

(cos^0-cos^0+q)+(sin'*0-sin^0+q)=O

cos^0+sin^0-(cos^0+sin^0)=-2q

XT ● ● . , 2 1+COS20

Here it is important to note that cos 0= ^
and

1-COS20
sin^0 =

2
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(cos^0)2 + (sin^0)^-(l) = -2q

l-cos20,^1+ COS 2 0
■) =l-2q2  ■’ 2

2 + 2cos^20
+ 2q=l4

l-cos^202-2cos^20
2q = , and q 44

Using another simple trigonometric substitution, we arrive at

  sin^2 0
^  4 . This result gives 0<q<-|- since sin^20 ranges from 0

to 1.

However, we can restrict this bound a little further. If q=0, then

x^~x^+q=x^-x^ + 0=x^-x^. This clearly is reducible to x^(x^-l)

1
and so cannot be a minimum polynomial. Similarly, if q=-j ,  then

1  1 *1

+  is reducible to (x^-^)(x^--^) and so cannot be a

1
minimum polynomial. So we have restricted our bound to 0<q<~.

Using q = we find that 0=^arcsin(2Vq).

Could there be other values that create reducible polynomials and

28



m

thus must be excluded? Lets consider some familiar values in our

y
search for an answer. First we should consider values ^ where y is8

any integer. What values of y should we examine? q>0. So we

^  . 2 1
y=2 gives -=-. But q<T4

,  so we havemust consider y>0.

0<y<2 for this case. Since y must be an integer, is the onlyo

value we should be concerned with. q=-^ will lead us to a familiar8

polynomial:

x^-x^ + 4 = 8x^-8x" + 1.8

or the minimum polynomial for ^. The next logical range of values8

to consider is In this instance we should consider y=l/ 3 since
io

1  1
y=4 gives —, and y=2 gives —4  o

, which we havey = 0 gives 0,

1
previously studied. So y = l gives —16

which clearly leads to the
'
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equation 16x''-16x“4-l, the minimum polynomial for . For
12

3
y = 3 we have ^^is value leads to the equation

3  3 1 3
— = (x^-—)(x^- —), which is reducible, so q^:^.
lb 4 4 ib

y
— we should examine y={l,3,5,7}. y=l,3,5 will64

x"^-x^+

Moving to

give us pleasant fourth-degree polynomials, but y=7 produces a

2  7 2 1
reducible polynomial, namely (x --^)=0. I conjecture that, foro  o

^-T-l
/  that is, one less than a number divided by the numberr^

squared will produce a reducible polynomial.

So we have again found a collection of values to exclude. It also

seems that we may well be on our way to completely describing and

classifying conjugate angles with fourth-degree minimum

polynomials.

Conclusion

In this essay we found at least two infinite families of angles

whose sine and cosine are roots are the same polynomial. We have

also had an in-depth examination of second-degree polynomials.
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However, many questions (with few answers) have been raised. The

following is a sample of these questions:

Connections to the Complex Plane

So far we have restricted our search to values that lie of the real

number plane. If instead we expanded our search to the complex

plane would similar patterns of conjugacy emerge, and what, if

anything, could they tell us about conjugates in the real number

plane?

Connections to Chaos Theory

The polynomial 2 x^-1 is an extremely important function in the

context of this thesis. In particular, we saw that we could define the

krr
by plugging 2x^-1 into itself aminimum polynomials of —

specific number of times. This is known as iterating a function. A

branch of mathematics that takes an interest in functions and their

iterations is chaos theory. A particular concern is with cycles.

Definition:

Cycles of 1 are known as fixed points. These are easy to find,

namely by solving f(x)=x. In our case, 2x^-l=x. A little work will

1
— are fixed points of 2x^-l=0.show that 1 and
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Cycles of 2, while slightly more difficult to find, tell us a little

about the chaotic properties of a function. We find these through

solving the following system of equations: for a, heR, 2a^-l=b and

-1±n/5
2 b^ -1 = 0. Again, a little work will show that ^  is the only 2-

cycle of 2x^-l = 0.

While more difficult yet, the existence of one 3-cycle will tell us

much about our function with respect to its chaotic properties. Quite

a bit of work (to solve a system of equations in  3 variables) will reveal

6rr 2jt 4tt

^ 7 }  to be one of two 3-cycles of 2x^-l=0. This result7  7

tells us that 2 x^ -1 = 0 contains at least one k-cycle for every k that is

an integer.

What do these cycles tell us, and how do these chaotic properties

relate to conjugacy?

Connections to other Trigonometric Functions

sin(0)
tan(0), but whatFrom basic trigonometry we know that

cos(0)

can we say about the tangent of an angle whose sine and cosine are

both roots of the same minimum polynomial? Lets consider our
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favorite conjugate angle, We immediately notice that

sm(-)

tan{^) = 1. So the minimum polynomial for tan(^) isTT
cos( —)

x-l = 0. As before, this tells us very little, but perhaps moving to

half of ^, namely ^, and comparing the two will shed some light4  o

V2-v'2
8' 42 + 42

TT

V2-1. So x^+2x-l=0 is theon an answer. tan(—)

TT

minimum polynomial for tan(—). Halving the angle once more we8

V2-V2-V2TT

Quite a bit of work will give us a) isarrive at tan(
V2 + V2 + >/2 ’16

TT

)=x^+4x^-6x^-4x+l. We nowminimum polynomial for tan (16

notice, surprisingly, that the absolute values of the coefficients of

these minimum polynomials are exactly following Pascal's Triangle! A

33

L



bit of algebra will give us the solution v'4-2 V2-\/2-l for tan(:^).16

I

Is there a way to predict the polynomial for tan(—)? And can we

krr
)  like we could with the sinepredict the numeric values of tan( —

and cosine?

For every tangent there is a cotangent. Do these behave anything

like the tangents do? Lets again consider our favorite conjugate

angle, Like tan(^), cot(^)=l and so has the same minimum

polynomial, namely x-l = 0. Moving to cot(-^)=-^^^
S  V2-V2

TT

we find that

cot(~) = \/2 + l leading us to a minimum polynomial of8

V2 + V2 + >/2
16' V2-V2-V2

IT

) =
TT

x^-2x~l = 0. For cos( / which gives us a16'

minimum polynomial of x"^-4x^-5x^+4x+l = 0. Some startling

similarities between the tangent and cotangent can now be observed

1.) Both follow Pascal's Triangle.
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2.)Vox: mmimwm P^Sti V
2

travel in opposite directions but always in groups of two.

3.) While 0 is a conjugate because its sine and cosine are roots of

the same minimum polynomial, its tangent and cotangent have

different minimum polynomials. So a conjugate with respect to the

sine and cosine is not necessarily a conjugate with respect to the

tangent and cotangent.

With respect to the tangent and cotangent, I can show conjugate

angles exist, but it would be interesting to characterize them. And

what about the secant and cosecant? It is interesting to note that if

0  is a conjugate angle, then sec(0) and csc(0) are algebraic

conjugates. To see this suppose that the minimum polynomial of

sin(0) and cos(0) is

n+1
+ ...aiX^ + aoa„x +sl^_^xn

sin*^-'(0) + ... + aiSin(0)+ao=O.

or, equivalently, multiplying by csc''(0) yields

csc^(0)+an=O

n-l

n-l
(0)+.. + an-l

Then aj^sin^(0)+a

Dividing by sin^(0).

aocsc^(0) + + aicsc

and the polynomial

n-l x+a =0+... + aagX H-a^x n-l

has csc(0) as a root. Similarly, it has sec(0) as  a root.
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Do angles exist for which the sine and cosine have the same

minimum polynomial, the tangent and cotangent have the same

minimum polynomial, and the secant and cosecant have the same

minimum polynomial? Do very special angles exist for which cdl six

trigonometric functions are roots of the same polynomial?

I consider this work to be the beginning of a larger enterprise. I

have settled completely the classifying of conjugate angles with

quadratic minimum polynomials and have learned that exactly one of

these sits at the top of a huge family. I have begun the investigation

of conjugate angles with 4^^ degree minimum pol50iomials and I have

noted a possible connection between conjugate angles and chaos

theory. It is my hope that my graduate studies will leave time for

pursuing this project.
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