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ABSTRACT 

Akhil Reddy Alasandagutti 

Using Deep Learning To Automate The Diagnosis Of Skin Melanoma 

 (Under the direction of Dr. Dawn Wilkins) 

 

Machine learning and image processing techniques have been widely implemented in the field of 

medicine to help accurately diagnose a multitude of medical conditions. The automated diagnosis 

of skin melanoma is one such instance. However, a majority of the successful machine learning 

models that have been implemented in the past have used deep learning approaches where only 

raw image data has been utilized to train machine learning models, such as neural networks. While 

they have been quite effective at predicting the condition of these lesions, they lack key 

information about the images, such as clinical data, and features that medical professionals 

consistently rely on for diagnosis. This research project will explore methods to enhance machine 

learning models with three drastically different skin melanoma datasets, each with their own set 

of unique challenges. Various preprocessing techniques, machine learning models, and feature 

extraction methods will be compared to determine the most optimal approach for each dataset. In 

addition, time and space complexities of the approaches will also be analyzed in order to minimize 

resource consumption without causing major performance degradation to the models 
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CHAPTER 1

INTRODUCTION

Machine learning and image processing techniques have been widely implemented in

the field of medicine to help accurately diagnose a multitude of medical conditions. The

automated diagnosis of skin melanoma is one such instance. However, a majority of the

successful machine learning models that have been implemented in the past have used deep

learning approaches where only raw image data has been utilized to train machine learning

models, such as neural networks. While they have been quite e↵ective at predicting the

condition of these lesions, they lack key information about the images, such as clinical data,

and features that medical professionals consistently rely on for diagnosis.

This research project will explore methods to enhance machine learning models with

three drastically di↵erent skin melanoma datasets, each with their own set of unique chal-

lenges. Various preprocessing techniques, machine learning models, and feature extraction

methods will be compared to determine the most optimal approach for each dataset. In addi-

tion, time and space complexities of the approaches will also be analyzed in order to minimize

resource consumption without causing major performance degradation to the models.
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CHAPTER 2

BACKGROUND

2.1 SKIN MELANOMA

2.1.1 GENERAL BACKGROUND AND DESCRIPTION

Melanoma is a type of skin cancer that causes pigment producing cells, called melanocytes

to mutate and divide uncontrollably (Niederhuber JE, 2019). Melanoma can also manifest

itself inside the eyes, and sometimes inside the nose and throat. While being much less com-

mon than other types of malignant skin conditions, melanoma still contributes to the most

deaths caused by any skin condition. The American Cancer Society estimates that 106,110

new cases of melanoma will be diagnosed in the year 2021, and 7,180 people are expected to

die of it (Howlader N, 2019).

2.1.2 DETECTION TECHNIQUES

There are several techniques that can be utilized to diagnose skin melanoma. These

techniques are generally divided into two categories - invasive and non-invasive. Invasive

techniques are typically performed by extracting a sample of the tissue in question, while

non-invasive techniques do not involve any alteration of tissue. Invasive techniques are

generally avoided as they can often destroy the lesions and make it impossible to carry out

further inspections on it. Furthermore, any error in sampling the tissue could cause the lesion

to rupture and spread the melanoma to neighboring cells prematurely (Maarouf M, 2019).

Non-invasive, or visual detection techniques are not only safer, but they’re also relatively very

inexpensive. The ABCDE criteria - which looks at asymmetry, irregular borders, variation
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Figure 2.1: A Cross-Sectional Diagram of Skin Melanoma

in color, diameter greater than 6mm. and evolving size has been proven to be very e↵ective

at detecting skin melanoma early (Mitchell TC, 2020).

2.2 MACHINE LEARNING AND DEEP LEARNING

Machine Learning is a branch of Artificial Intelligence that tries to learn from data

by detecting patterns in it (Hao, 2018). This data can be encompassed in any format - num-

bers, text, images, etc. Machine learning algorithms typically belong to one of three classes -

supervised, unsupervised, and reinforcement. Supervised machine learning algorithms learn

from past data that has definite outcomes, also known as labelled data, and attempts to

learn from it and predict future events. This project utilizes supervised machine learning

algorithms to classify skin lesions after being trained using labelled skin lesion data. Unsu-

pervised machine learning models train using unlabelled data, and simply attempt to look for

patterns that could help group subsets of this data. Reinforcement learning algorithms use

a trial and error method to reach a specific goal. Actions that help the algorithm reach the
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objective are rewarded, and the ones that hinder its progress are penalized. Reinforcement

learning algorithms are often used to implement autonomous players in games like Chess,

Go, and a many other video games. This project utilizes a Generative Adversarial Network,

which is a Reinforcement Learning model. Deep Learning algorithms are highly complex

machine learning algorithms that can amplify and identify minute details in data that shal-

low machine learning models cannot identify. These models are also often attributed with

neural networks that consist of multiple deep hidden layers.

2.2.1 DECISION TREE CLASSIFIERS

A Decision Tree Classifier is a supervised machine learning algorithm that generates

a hierarchical structure of questions and their possible answers from a dataset, called a

decision tree. This decision tree can then be used to predict the labels from data. Decision

Tree Classifiers are typically quick learners and are also readable in most cases (Hao, 2018).

Humans can understand its predictions by simply looking at the generated decision tree.

However, in cases where the number of attributes in a dataset is large, very complex decision

trees are generated which makes it extremely di�cult for humans to visualize and understand.

Image data is one such example.

Below is an example of a decision tree that classifies data using X and Y coordinates

into two possible classes - C1 and C2.

2.2.2 NEURAL NETWORKS

2.2.2.1 ARTIFICIAL NEURAL NETWORKS

Neural Networks have been inspired by the human brain. An Artificial Neural Net-

work consists of multiple processing units, called nodes, that are connected to each other

through weighted direct links. These nodes correspond to the neurons in a human brain,

the links correspond to the connections between the neurons, and the weights of the links

correspond to the strength of the connection between neurons. A large number of artificial
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Figure 2.2: Example Decision Tree

neurons connected together as pools of multiple layers form deep neural networks. While

deep neural networks perform significantly better than other shallow machine learning mod-

els, it is very expensive to train them as they require a significant amount of compute time

and memory (Hao, 2018).

2.2.2.2 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks, or CNNs are a type of Artificial Neural Networks

that contain a convolutional layer. A convolutional layer can take a multidimensional layer

as an input, filter it based on the set hyperparameters, and pass it on to the neural network

layer. It replicates the response of the visual cortex in the human eye to a stimulus (Hao,

2018). CNNs are very e↵ective in image classification tasks as spatial relations between

separate features are registered in convolutional layers, unlike in traditional artificial neural

networks.
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Figure 2.3: Example Deep Neural Network with 16 inputs and 1 output

2.2.3 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks, or GANs are a type of Reinforcement Learning

models that can synthetically generate images. A GAN typically consists of two components -
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a generator, and a discriminator. The generator attempts to generate an image that is similar

to an image in the provided dataset, and the discriminator attempts to distinguish between

the original images and the images generated by the generator. The generator is rewarded

if it is able to successfully trick the discriminator, and is penalized if it is unsuccessful. The

discriminator is rewarded if it is able to successfully distinguish between the synthetic images

and original images, and is penalized if it is unsuccessful. These adversarial networks play

against each other for multiple generations of training until the generator learns to produce

images that are indistinguishable from the original images (Goodfellow, 2014). GANs can

be very expensive to train, especially with higher resolution images.

2.3 SUPER COMPUTING

Training deep learning models can be time and resource intensive, and it is often

not practical to train these models on a personal computer. The Mississippi Center for

Supercomputing Research (MCSR) currently has 3 supercomputers, all three of which have

been utilized for this project.

2.3.1 SEQUOIA

The Sequoia cluster consists of a total of 1304 CPU cores, and has a memory capacity

of 35GB per node. This cluster has been utilized to run non-memory intensive tasks, like

feature extraction, and training smaller neural networks and other machine learning models.

2.3.2 MAPLE

The Maple cluster is a Cray cluster, and it comprises of 3,726 CPU cores along with

29 Nvidia Kepler K20 GPUs for regular GPU intensive tasks, and 4 Nvidia Tesla P100 GPUs

for large memory GPU intensive tasks. This cluster has been utilized to train most of the

CNN models on a regular GPU queue as neural networks train much more e�ciently on

GPUs than on CPUs.
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2.3.3 CATALPA

Catalpa is a single-image shared-memory system, and is only reserved for tasks that

require a very large amount of memory. Catalpa has been utilized to train the GANs as

neither Maple, nor Sequoia could handle its memory requirements.
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CHAPTER 3

ISIC ARCHIVE DATASET

3.1 DATASET DESCRIPTION

This dataset contains a total of 3,297 224x224pi images that were extracted from the

International Skin Imaging Collaboration Archive (Fanconi, 2019). These images have been

labelled as either ”benign” or ”malignant”, and are well balanced - 1,800 images belong

to the former class, and 1,497 belong to the latter. These images have further been split

into training and testing subsets - with 1,440 benign and 1,197 malignant belonging to the

training set, and 360 benign and 300 malignant images belonging to the testing set.

Figure 3.1: Sampled Benign Images
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Figure 3.2: Sampled Malignant Images

3.2 PREPROCESSING

All the images in the training subset were read using Python Imaging Library abbre-

viated as PIL, which is an open source image processing library. The pixel RGB values of

each image were extracted, and were linearly appended to form a row of RGB values. Each

row of this file consists of a total of 150,528 values, that represent 50,176 RGB triplets, and

these values were later written to a CSV (Comma Separated Value) file.

3.3 RAW IMAGE TRAINING

Scikit Learn’s Decision Tree Classifier was utilized as the machine learning model for

this dataset. Gini impurity was the criterion used to measure the quality of the splits, and

the max depth of the tree was set to 4. After training, the model was tested on the test

dataset, and it yielded an accuracy of 77.8%.
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3.4 SUSPECTED BIAS

The Decision Trees are not ideal for pattern recognition and complex feature recog-

nition extraction within images, yet the classifier had performed relatively very well. This

could be due to an apparent bias in the dataset. A majority of the benign images have a

pinkish undertone on the skin, while the malignant images are much paler. This could’ve

led the Decision Tree to simply classify all the images with a pink undertone as benign, and

as malignant otherwise. To combat this issue, several techniques were experimented with in

order to eliminate the bias by replacing all the non-lesion skin with white space.

Figure 3.3: Benign images vs Malignant images

3.5 ELIMINATING THE BIAS

Multiple approaches were utilized to try and eliminate the dataset’s color bias. The

most successful approach entailed detecting contours in images and determining if they

formed blobs, and then replacing all the non-blob area with whitespace. This process resulted

in the following set of images.

The most significant downside of this process was that it was very computationally

expensive. It initially took a little over 2 weeks to finish masking all the images when run

on MCSR’s Sequoia cluster. However, after parallelizing the tasks by utilizing Python’s

multiprocessing module, the total run time was cut down to 3 days. While the run time for

the masking process was reasonably low on this dataset, it would not however be feasible

11



Figure 3.4: Masked benign images vs masked Malignant

to run it on datasets that have a much higher number of images due to the high computing

requirements.

3.6 TRAINING USING MASKED IMAGES

Scikit Learn’s Decision Tree Classifier was utilized as the machine learning model

for this dataset. Gini impurity was the criterion used to measure the quality of the splits,

and the max depth of the tree was set to 4. After training, the model was tested on the

test dataset, and it yielded an accuracy of 72.99%, which was an accuracy drop of 4.81%

compared to the model trained using non-masked images.

3.7 FEATURE EXTRACTION

Manual feature extraction can be used as a much more e�cient alternative to training

using only the raw image data. By reducing the number of attributes being passed on to

the machine learning model, the time consumed to train it can be reduced significantly

(Brownlee, 2020). For this particular dataset, these were the features that were extracted

from the images:

• Mean of RGB values.
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• Median of RGB values.

• Standard Deviation of RGB values.

• Circularity of the lesion.

• Number of blobs.

• Mean circularity of blobs.

• Edge data using Canny edge detector.

• Roughness of lesion calculated using fractal dimensional analysis.

Similar to masking the images, extracting features was a very computationally expen-

sive task. Even after parallelizing the tasks and utilizing multiple processing nodes, it took

68 hours to extract all the features. After analyzing the algorithms later, it was discovered

that the box counting algorithm that was used to compute the fractal dimension score had

a time complexity of O(n3).

3.8 TRAINING USING ONLY FEATURES

Scikit Learn’s Decision Tree Classifier was used as the machine learning model for

this dataset. Gini impurity was used as the splitting criterion, and the max depth was set

to 4. The best accuracy achieved was 69.1%, which was an accuracy drop of 3.89% when

compared to the model that was trained using masked images only.

3.9 TRAINING FEATURES + MASKED IMAGE DATA

For this trial, the extracted features were appended as columns to the end of the files

containing the RGB images. The previously used model was then trained using this data,

and yielded an accuracy of 67.7%, which was a 1.4% drop from the previous result.

13



3.10 ISSUES WITH METHODOLOGIES

3.10.1 CONFUSION MATRIX

A confusion matrix is a table that is used to determine the performance of a classifier.

When the model is tested on a validation dataset, a confusion matrix generates an ordered

table of true values and predicted values. These values can further be processed to calculate

useful metrics like Recall, Precision, and F-Value (Mishra, 2018). A confusion matrix was

never used during training, and it could have helped provide more information about the

performance of the model.

3.10.2 NORMALIZATION

The image pixel values were not normalized. Normalization helps prevent the over-

shadowing of certain features (Shalabi, 2006). For example, the range of the RGB values 0

to 255, but the range of some of the extracted features is 0 to 1, and some have an infinite

range. This causes the smaller values like circularity score and fractal dimension to be not

weighed enough during training.
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CHAPTER 4

HAM10000 DATASET

4.1 DATASET DESCRIPTION

This dataset contains a total of 10,015 650pi x 400pi images. These images belong

to 7 distinct classes - Actinic keratoses and intraepithelial carcinoma / Bowen’s disease

(akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (bkl), dermatofibroma (df),

melanoma (mel), melanocytic nevi (nv) and vascular lesions (vasc) (Tschandl, 2018). All of

the images had been consolidated into a single folder, and a comma separated value file that

contained diagnosis and patient information pertaining to these images had been provided.

In addition, two comma separated files that contained labelled RGB triplets pertaining to

downsized 28x28 and 8x8 images had been provided as well.

Figure 4.1: Sampled Images and Count
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4.2 ISSUES WITH DATASET

The high resolution of the images from the original dataset would make it very di�cult

to train. The data set contains 10,015 images, with 810,000 parameters in every image. It

is not practical to use this unprocessed dataset for training as that would require several

hundred gigabytes of memory, and it would also take several days, if not weeks to finish

training.

4.3 PREPROCESSING

This dataset has been randomly split into a training set and a testing set - with

8,015 images belonging to the training set, and 2,000 images belonging to the testing set.

The patient diagnosis information had been utilized to separate both, the training data, and

testing data into 7 di↵erent folders, each representing the images’ diagnosis. The images

were also cropped and downsized into 224x224pi to reduce training time and memory load.

4.4 TRAINING

4.4.1 28X28 IMAGES

4.4.1.1 DECISION TREE CLASSIFIER

The 28x28 RGB dataset was utilized to train Scikit Learn’s Decision Tree Classifier.

The training and testing subsets comprised of 8,015, and 2000 images respectively. The best

accuracy achieved with this model was 61.35%, when the max depth was set to 8, and Gini

was used as the splitting criterion.

4.4.1.2 ARTIFICIAL NEURAL NETWORK

Keras was used as the framework along with Tensorflow as the back-end engine to

construct the following neural networks. An Artificial Neural Network with 6 layers - 2,352

neuron input layer, 8x16x16x8 hidden layers, and a 7 neuron output layer, was trained with

the same data for 20 epochs. It achieved a testing accuracy of 66.95%.

16



4.4.1.3 CONVOLUTIONAL NEURAL NETWORK

A Convolutional Neural Network with 2 convolutional layers, 2 max pooling layers,

and 128x50 hidden layers, was trained using the same data for a varying number of epochs.

The best testing accuracy that was achieved was 72.3% after the model was trained for 20

epochs.

4.4.2 224X224 IMAGES

4.4.2.1 VGG16

VGG16, a pre-trained competitive model was trained using the cropped and down-

sized 224x224 dataset. After training for 20 epochs, it achieved a testing accuracy of 66.92%.

This task took 15 hours and 34 minutes of wall time to train on a GPU on MCSR’s Maple

cluster.

4.4.2.2 InceptionV3

InceptionV3, a pre-trained competitive model that is mainly used for computer vision

in medicine was further trained using the cropped and downsized 224x224 images (Szegedy

et al., 2016). After training for 20 epochs, it achieved a testing accuracy of 73.7%, which was

a 1.4% increase when compared to the highest accuracy achieved by a CNN on the 28x28

dataset. This task took 19 hours of wall time to finish training.

4.5 FEATURE EXTRACTION

The ABCDE rule for early melanoma detection (Weigert et al., 2012) was used to

extract relevant features from the images. The ABCDE rule states that asymmetry of the

lesions, uneven and jagged borders, variation in lesion color, diameter and darkness, and the

evolving of any of the above parameters could indicate skin melanoma.

Based on this rule, the following features have been extracted from the image:

• Mean of RGB values.

17



Figure 4.2: ABCDE Rule for Early Melanoma Detection

• Median of RGB values.

• Standard Deviation of RGB values.

• Symmetry of the lesion

• Circularity of the lesion

18



• Roughness of the edges and color variation within the lesion calculated using fractal

dimensional analysis.

4.5.1 ALGORITHM OPTIMIZATION

Algorithm optimization was a very crucial aspect during feature extraction using this

dataset. Without necessary revisions to the original feature extraction code that was used

for the ISIC archive dataset, this could have taken multiple weeks, if not months to finish

executing due to the sheer size of this dataset. Below is a comprehensive list of revisions

made to the original code:

1. Ignoring edge data:

Removing the edge data while training and testing using the ISIC archive features

made no di↵erence to the testing accuracy. The number of features that comprised of

the edge data were equal to the total number of pixels in the image - 50,176. Including

this feature did not just add up to the feature extraction time, but it also significantly

increased the training time.

2. Using OpenCV functions:

An image masking experiment performed in lieu of the ”Caravana Image Masking

Challenge” on Kaggle demonstrated that OpenCV’s edge detection function was 3.6

times faster than the Python Imaging Library counterpart (vfdev, 2017). As the fea-

tures ”Symmetry”, ”Circularity”, and ”Fractal Dimension” rely on edge detection, all

PIL functions were replaced with that of OpenCV.

3. Storing repeating attributes:

Contours, that were extracted from the edge data were used to calculate symmetry,

circularity, and fractal dimension of the images. When extracting features from the

ISIC archive images, contours were redundantly extracted for each of the above fea-

tures. Contours have now been extracted only once and reused for all the features that

19



depend on it.

4.5.1.1 SPEEDUP

Dataset Image Resolution Number of images Extraction Time (hours)

ISIC Archive 224x224 3,297 68

HAM10000 224x224 10,015 0.467

Even though there were 203.761% more images in the HAM10000 dataset, the extraction

time went dropped by 99.31%.

4.6 TRAINING USING FEATURES

Artificial Neural Networks, Decision Tree Classifiers, and Random Forest Classifiers

were trained using the extracted features, and the highest accuracy obtained by each of them

has been listed below.

Model Hyperparameters Testing Accuracy

ANN layers=8x16x32x64x32x16x7,

50 epochs

69.55%

Random Forest gini, max depth=4 69.72%

Decision Tree gini, max depth=None 70.1%

4.7 TRAINING USING FEATURES + IMAGES

A Hybrid Neural Networks that comprised of a CNN and an ANN, Decision Tree

Classifiers, and Random Forest Classifiers were trained using the extracted features concate-

nated with the 28x28 image pixel data. Image data and extracted features were passed in

as separate streams of input layers in the Hybrid Neural Network. The accuracies obtained

by them have been listed below.
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Model Hyperparameters Testing Accuracy

Hybrid Neural Net CNN=Input(28,28,3)xMP2d(2x2)x

Conv2d(15,3,3)xMP2d(2x2)x128x50x7,

ANN=12x8x16x32x64x64x32x16x7, 50

epochs

66.67%

Decision Tree gini, max depth=None 72.72%

Random Forest gini, max depth=None 73.9%

4.8 ISSUES WITH METHODOLOGIES

4.8.1 UNINFORMATIVE PERFORMANCE METRICS

Accuracy was not a very informative metric for this dataset. Given that it contained

7 distinct classes with an uneven distribution of images across the classes, accuracy was not

helpful in determining the actual performance of the model. Other metrics like precision

and recall would have been more robust in evaluating the models.

4.8.2 NORMALIZATION AND STANDARDIZATION

The concatenated image and feature data was neither normalized nor standardized

before training. This might have caused the models to overlook some of the features that

were exclusively floating point numbers between 0 and 1 - like circularity and symmetry.

4.8.3 SAVING TRAINED MODELS

Training neural networks using this dataset took multiple days. If the models had

been saved, they could have been used to generate more performance metrics like precision

and recall, and could have also been trained further with more data.
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CHAPTER 5

SIIM-ISIC MELANOMA 2020 DATASET

5.1 DATASET DESCRIPTION

This dataset contains a total of 33,126 6000x4000pi images that were extracted from

Society for Imaging Informatics in Medicine’s 2020 classification challenge (SIIM-ISIC, 2020).

This dataset is heavily imbalanced, with 32,542 images belonging to the benign class, and

only 584 images belonging to the malignant class. The test labels hadn’t been made public

yet due to the competition still being active. The training data has been split into a training

subset and a testing subset as shown below.

Subset Benign Count Malignant Count Total

Training 27,635 491 28,126

Testing 4,907 93 5,000

5.2 PREPROCESSING

It would have been impossible to train any model with the unprocessed images due

to their very high resolution and count. To tackle this issue, they were downsized to the

following resolutions, and their 3:2 aspect ratio was maintained.

• 30x20

• 75x50

• 120x80
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Figure 5.1: Sampled Benign Images

Figure 5.2: Sampled Malignant Images
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• 180x120

• 240x160

• 510x340

5.3 TRAINING

5.3.1 ISSUES WITH TRAINING

Due to the heavily imbalanced nature of the dataset, all the CNNs that were trained

with any resolution of this data defaulted to predicting every image as ”benign”. To tackle

this issue, several techniques were experimented with in an attempt to enhance the minority

class.

5.3.2 UNDERSAMPLING THE MAJORITY CLASS

Undersampling the majority class was used as a strategy to reduce the bias in the

dataset. The benign class in the training and testing subsets were undersampled to match

the size of the malignant class.

Subset Benign Count Malignant Count Total

Training 2,700 491 3,191

Testing 93 93 186
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Subset Resolution Hyperparameters Train Accuracy Test Accuracy

30x20 Input(30,20,3)xMP2d(2,2)

xConv2d(15,3,3)x

Mp2d(2,2)x4x8x16x8x2,

40 epochs

85.11% 61.83%

75x50 Input(30,20,3)xMP2d(2,2)

xConv2d(15,3,3)x

Mp2d(2,2)x8x16x32x32x16

x8x2, 40 epochs

74.16% 61.22%

120x80 Input(30,20,3)xMP2d(2,2)

xConv2d(15,3,3)x

Mp2d(2,2)x32x64x128x128

x64x32x2, 40 epochs

71.12% 58.19%

180x120 Input(30,20,3)xMP2d(2,2)

xConv2d(15,3,3)x

Mp2d(2,2)x32x64x128x128

x64x32x2, 40 epochs

70.33% 57.76%

As the resolution of the images kept increasing, the performance of the models kept

worsening.

5.3.3 TRANSFORMING IMAGES

To implement this and all the subsequent strategies, the original image dataset has

been reshaped on a square grid of resolution 120x120, and all the empty pixels have been

filled with RGB(0, 0, 0).
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Figure 5.3: Sample Reshaped Benign Images

Every reshaped image in the malignant class was then flipped once, randomly rotated 6

times, and randomly scaled 3 times.
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Figure 5.4: Sample Reshaped Malignant Images

Transformed Hyperparameters Accuracy Precision

No Input(120,120,3)xMP2d(2x2)xConv2d(15,3,3)

xMP2d(2x2)x16x32x64x32x16x2, 40 epochs

0.9825 0

No Input(120,120,3)xMP2d(2x2)xConv2d(15,3,3)

xMP2d(2x2)x32x64x128x64x32x2, 40 epochs

0.9825 0

Yes Input(120,120,3)xMP2d(2x2)xConv2d(15,3,3)

xMP2d(2x2)x16x32x64x32x16x2, 40 epochs

0.97 0.075

Yes Input(120,120,3)xMP2d(2x2)xConv2d(15,3,3)

xMP2d(2x2)x32x64x128x64x32x2, 40 epochs

0.97 0.075

Transforming the minority class did not make a significant impact on the performance of

the models, but it did however prevent them from simply guessing all the images to be benign.
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Figure 5.5: Sample Transformed Malignant Images

5.3.4 GENERATIVE ADVERSARIAL NETWORKS AND TRANSFER MODELS

To further enhance the dataset, a generative adversarial network (GAN) has been

used to create more replicates of the transformed malignant images. Below is the architec-

ture of the GAN.
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Type Hyperparameters

Generator Input(120,120,3)xReshape(4,4,256)xUpSampling2d()Conv2d(256)x

BatchNorm(0.8)xActiv(relu)xConv2d(256)xBatchNorm(0.8)x

Activ(relu)xUpsampling2d()xConv3d(128)xBatchNorm(0.8)x Ac-

tiv(relu)xUpSampling2d(2,2)xConv2d(128)xBatchNorm(0.8)x

Activ(relu)xConv2d(3)xActiv(tanh), Output = RGB image

Discriminator Input(120,120,3)xConv2d(32)xLeakyReLU(0.2)xDropout(0.25)x

Conv2d(64)xZeroPadding2d((0,1),(0,1))xBatchNorm(0.8)x

LeakyReLU(0.2)xDropout(0.25)xConv2d(128)xBatchNorm(0.8)x

LeakyReLU(0.2)xDropout(0.25)xConv2d(512)xBatchNorm(0.8)x

LeakyReLU(0.2)xDropout(0.25)xFlatten()xDense(1)xActiv(sigmoid)

, Output = Boolean value

The GAN was trained for 50 epochs on MCSR’s Catalpa cluster. Catalpa is a cluster

reserved for very large memory jobs. Maple’s GPUs could not be utilized due to memory

restrictions. The total training time was approximately 11 days and 17 hours.

Below is the new composition of the enhanced dataset.

Subset Benign Count Malignant Count Total

Training 27,635 25,850 53,485

Testing 4,907 93 5000
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Figure 5.6: Sample GAN output

Hyperparameters Accuracy Precision

Input(120,120,3)xMP2d(2x2)xConv2d(15,3,3)

xMP2d(2x2)x8x16x32x16x8x2, 20 epochs

0.2285 0.5286

Input(120,120,3)xMP2d(2x2)xConv2d(15,3,3)

xMP2d(2x2)x32x64x128x64x32x2, 20 epochs

0.0186 1.0

E�cientNet Transfer Model, 20 epochs 0.1932 0.7312

E�cientNet Transfer Model, 40 epochs 0.2718 0.6667

While the images generated by the GAN reduced the bias of the earlier models, they did not

make any significant improvement to the performance of the models.

30



CHAPTER 6

DISCUSSION AND FUTURE WORK

6.1 OVERVIEW

The goal of this project has been to use deep learning to detect skin melanoma in

three vastly di↵erent datasets - the ISIC Archive dataset, HAM1000, and SIIM-ISIC 2020.

Each dataset entailed its own unique challenges, and required a tremendous amount of

preprocessing in order to work with.

6.2 PREPROCESSING AND COMMON CHALLENGES

One common challenge among all three datasets was optimizing the code to minimize

compute time. This challenge was successfully overcome in all 3 cases by parallelizing the

tasks, implementing dimensionality reduction by downsizing the images, and carefully tweak-

ing the algorithms to minimize time complexity. While the resolution and size of the ISIC

Archive dataset was relatively low when compared to the other two, this dataset consisted

of a bias in the skin color of the images that needed to be eliminated. The masking of these

images required a large amount of compute time, and took a little over 2 weeks during the

first run. Parallelizing the tasks by employing multiple nodes on the Sequoia cluster to work

asynchronously reduced the total run time to a approximately 3 days. The feature extraction

process of the ISIC Archive dataset was also very computationally expensive, and it took a

total of 68 hours to finish even after the job was parallelized. Eliminating redundancies in

code, switching to OpenCV functions, ignoring unnecessary edge data, and employing more

number of nodes dropped the runtime of this section from 68 hours to 0.1556 hours. Using

this revised feature extraction algorithm on the much larger HAM10000 dataset resulted in
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a runtime of 0.467 hours. Image resolutions were drastically downsized in the HAM10000

and SIIM-ISIC 2020 datasets as the original data was too large to train a model with in

a practical amount of time. In addition, the Maple GPU cluster was utilized to train the

images in these two datasets in order to increase e�ciency.

6.3 ISIC ARCHIVE DATASET

Scikit Learn’s Decision Tree Classifier was the only model used for this dataset. The

performance of this model when trained using the unmasked images was higher than its

performance when trained using masked images. This was probably the case because the

classifier simply picked up the pink undertones in the benign images and classified the images

appropriately. Training the model with only the extracted features negatively e↵ected the

performance, and training the model with the image data and appended feature data made

it even worse. This might have been the case because ”edge data” was one of the features

that was extracted from the images, and it represented a 224x224 image filled with a black

(0, 0, 0) background, and with the edges being outlined with white pixels (255, 255, 255)

in the foreground. This feature defeated the purpose of the feature extraction process -

dimensionality reduction. It instead ended up adding more attributes to the data, which led

to a decrease in performance.

6.4 HAM10000 DATASET

The Decision Tree Classifier performed the worst on this dataset - with a peak accu-

racy of 61.35% on the 28x28 RGB downsized dataset. Artificial Neural Networks performed

slightly better on the same dataset with a peak accuracy of 66.95%. A Convolutional Neural

Network with hidden layers of dimensions 128x50 achieved the highest accuracy on the 28x28

dataset - 72.3%. The 224x224 versions of the datasets were trained using transfer models

VGG16 and InceptionV3. InceptionV3 achieved the highest accuracy on this version of the

dataset - 73.7%. A Decision Tree Classifier with max depth=None and gini as the splitting
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criterion achieved 70.1% accuracy and performed slightly better than the ANN and Random

Forest models. When trained using features and image data, a Random Forest Classifier

with gini as the splitting criterion and max depth=None achieved the highest accuracy of

73.9% on the 28x28 dataset.

6.5 SIIM-ISIC 2020 DATASET

Due to the imbalanced nature of the dataset, all the CNNs that were trained ended up

defaulting to predicting ”benign”. Undersampling the benign class to approximately 10% of

its original size resulted in a maximum accuracy of 61.3% on the 30x20 downsized dataset.

Interestingly, the accuracies of the models went down consistently as the the resolutions

of the images were increased. Transforming the malignant class and creating additional

replicates of them did not make a significant impact on the performance of the models, but

it did prevent the model from solely predicting the benign class. The GAN was trained for

50 epochs for approximately 12 days. While most of the images that were generated aren’t

very representative for the actual malignant class, very few of them did look very convincing.

With more time and more computing power, the GAN could have generated sharper and

more realistic images. While the GAN images did completely eliminate the older bias of the

models, they did little to improve their performance, and counterproductively caused some

of the models to default their prediction to the malignant class.

6.6 FUTURE WORK

One major recurring issue with this project has been the lack of detailed performance

reports for the models. Additional metrics like precision and recall would have helped better

understand the performance of the models, but rerunning the training computations would

take several hundreds of hours. This issue could have been avoided by simply saving the

trained models to non-volatile storage for later access or evaluation. The SIIM-ISIC dataset

can be enhanced by appending malignant images to it from the previous years’ competitions.
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Transforming the dataset after adding the previous years’ images will result in a much larger

number of malignant images, which could help the models perform better. While the GAN

did not perform very well on the existing data, it can be trained again using this enhanced

dataset to try and produce higher quality images. Time and resources permitting, the

models could also try to be trained with the original full resolution datasets, as downsizing

the images could have contributed to a loss of features.
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