

UNIVERSITI PUTRA MALAYSIA

TOTAL MERCURY AND METHYLMERCURY CONCENTRATION IN FISH AND THEIR REDUCTION THROUGH PROCESSING

PARVANEH HAJEB

FSTM 2009 15

TOTAL MERCURY AND METHYLMERCURY CONCENTRATION IN FISH AND THEIR REDUCTION THROUGH PROCESSING

By

PARVANEH HAJEB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2009

DEDICTED TO MY BELOVED FAMILY

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

TOTAL MERCURY AND METHYLMERCURY CONCENTRATION IN FISH AND THEIR REDUCTION THROUGH PROCESSING

By

PARVANEH HAJEB

June 2008

Chairman : Jinap Selamat, PhD

Faculty : Food Science and Technology

This research has been conducted to study the levels of total mercury and methylmercury, and their correlation in different marine fish species available for consumption in Peninsular Malaysia. Artificial methods have been used to remove mercury from fish. Method for methylmercury determination in fish samples was optimized using response surface methodology (RSM). Total mercury and methylmercury levels were determined using Cold vapor atomic absorption spectrophotometry (CV-AAS) and Gas chromatography-micro electron capture detector (GC-µECD), respectively. Samples of twelve species of common marine fish consumed by Malaysians were collected from local wholesale market in Malaysia. On the basis of total mercury and methylmercury levels measured in commonly

consumed fish, two species, long tail tuna and short-bodied mackerel identified with high mercury contents were sampled from east and west coast of Peninsular Malaysia. Methods for elimination of mercury in raw fish fillet has been developed using acidic solutions containing mercury chelating agents. The optimum conditions for methylmercury extraction were found by using acid concentration of 12.118 M, cysteine concentration of 2.375%, solvent volume of 1.5 ml, and extraction time of 35 min. Total mercury and methylmercury levels in fish samples studied were in the range of not detected to 1.010 and not detected to 0.914 µg/g wet wt, respectively. The methylmercury to total mercury ratio ranged from 49.1% to 87.5%, with the highest ratio was in predatory fishes. All of the fish species showed strong positive correlation between methylmercury and total mercury levels (R²>0.86). High levels of total mercury and methylmercury were detected in short-bodied mackerel and long tail tuna. Samples of these two species from east coast of Peninsular Malaysia showed higher levels of mercury compared to those from west coast. In all of the locations, significant positive correlations were found between fish body weight and mercury content. The industrial optimized method produced a solution which can remove mercury from raw fish fillet up to 91%. The optimum conditions for mercury reduction was achieved using cysteine concentration of 1.25 %, EDTA of 275 (mg/L), NaCl of 0.5 (%), pH of 3.75 and exposure time of 18 min. The home-used optimized protocol produced a solution which can remove mercury from raw fish fillet up to 81%. The overall optimal condition resulting to the maximum mercury removal in fish fillet was obtained at combined level of pH of 2.79, 0.5% NaCl, and 13.5 (min) of exposure time.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagi memenuhi keperluan untuk ijazah Doktor Falsafah

PENCEMARAN JUMLAH MERKURI DAN METILMERKURI DI DALAM IKAN DAN PENGURANGAN NYA SEWAKTU PEMPROSESAN

Oleh

PARVANEH HAJEB

Jun 2008

Pengerusi: Jinap Selamat, PhD

Fakulti: Sains Makanan dan Teknologi

Penyelidikan ini telah dijalankan bagi mengkaji tahap jumlah merkuri dan

metilmerkuri serta kaitannya dengan pengambilan pelbagai spesis ikan laut yang

didapati di Semenunjung Malaysia. Satu kaedah yang diubahsuai telah digunakan

bagi membuang merkuri dari ikan. Pemoptimuman keadah bagi pengesanan

metilmerkuri di dalam ikan telah dijalankan dengan menggunakan keadah 'Response

surface methodology' (RSM). Manakala tahap jumlah merkuri dan metilmerkuri

masing-masing dikesan dengan menggunakan spektrofotometri serapan atom wap

sejuk dan kuromatografi gas-penangkapan elektron. Dalam kajian ini sebanyak 12

spesis ikan laut yang biasa dimakan oleh penduduk Malaysia telah diambil dari pasar

borong tempatan. Tahap jumlah merkuri dan metilmerkuri, nisbah metilmerkuri

dengan total merkuri (%MeHg) dan kaitannya dengan isi ikan serta jantungnya telah dikesan. Berdasarkan kepada keputusan yang diperolehi, didapati 2 spesis ikan yang biasa dimakan iaitu tongkol dan kembong telah dikenalpasti mengandungi kandungan merkuri yang tertinggi, dimana sampel tersebut telah diambil dari pantai timur dan barat Semenunjung Malaysia. Kaedah bagi menyingkirkan merkuri dari filet ikan mentah telah dibangunkan dengan menggunakan larutan berasid yang mengandungi agen pengkelat merkuri. Keadaan optimum bagi pengekstrakan metilmerkuri adalah kepekatan asid 12.118M, kepekatan cysteine 2.375, isipadu pelarut 1.5 ml dan masa pengekstrakan 35 min. Tahap jumlah merkuri dan metilmerkuri dalam ikan yang masing-masing dikaji adalah di antara julat tidak dikesan-1.010 μg/g dan tidak dikesan-0.914 μg/g berat basah. Manakala julat nisbah metilmerkuri dengan jumlah merkuri (%MeHg) adalah di antara 49.1% dan 87.5%, yang mana nisbah yang tertinggi adalah dari ikan-ikan pemangsa. Semua spesis ikan menunjukkan korelasi yang kuat secara positif di antara metilmerkuri dan tahap jumlah merkuri (R²>0.86). Tahap jumlah merkuri dan metilmerkuri dikesan paling tinggi di dalam ikan tongkol dan ikan kembong. Berdasarkan kepada kedua-dua spesis ikan tersebut didapati spesis ikan dari pantai timur Semenunjung Malaysia mempunyai merkuri lebih tinggi berbandingkan dari pantai barat. Data dari semua lokasi pensampelan menunjukan terdapat korelasi positif di antara berat badan ikan dan kandungan merkuri. Untuk penggunaan peringkat industri, larutan yang digarakan pada keadah optimum bagi depadat menyingkirkan merkuri dari filet ikan sehingga 91%. Keadaan optimum bagi penyingkiran merkuri adalah mentah kepekatan cysteine (1.25%), kepekatan EDTA (275 (mg/L)), kepekatan NaCl (0.5

%), pH (3.75) dan tempuh pendedahan (18 min). Manakala untuk penggunaan di rumah, lamtan yang digunakan pada keadaan optimum dapat mengeluarkan merkuri dari filet ikan mentah sebanyak 81%. Keadaan optimum bagi penyingkiran merkuri secara maksima dari fillet ikan diperolehi dengan menggabungkan tahap pH (2.79), kepekatan NaCl (0.5%) dan masa pendedahan (13.5min).

AKNOWLEDGEMENTS

My full praise to our God for enabling me to complete my study.

My sincere appreciation to my supervisor and chair person of the supervisory committee, Professor Dr. Jinap Selamat, who was a great source of motivation, encouragement and scientific guidance throughout the period of my study. I am also deeply indebted to her for arranging of the necessary funding.

I would like to express my deep thanks to my supervisory committee members, Professor Dr. Jamilah Bakar, Associate Professor Dr. Fatimah Abu Bakar and Associate Professor Dr. Ahmad Ismail, for their valuable contribution and suggestions. Special gratitude to Associate Professor Dr. Ahmad Ismail who provided me with an opportunity to use his well-equipped laboratory.

Thanks to The Ministry of Science, Technology and Innovation of Malaysia for sponsoring this research under EScience Fund project No. UPM0002449.

My thankfulness to Mr. Zulkifli from LKIM for his kind helps to collect fish samples from fish landings, Mr. Halim, Mr. Hamizan, Ms. Liza (Faculty of Food Science and Technology) for their helps during laboratory experiments.

I am also very much indebted to my dear friends Gisia, Elham, Maimunah, Afidah, Khairulnisak, Fatimah, Safzan, Farzad, Shahram, Dr. Yazdan and Dr. Hamed, for their support and being my friend.

My deepest appreciation and gratitude to my dear family members for their spiritual, financial and moral support. All of you are respected and loved for being there for me.

I certify that an Examination Committee met on 19 / 06 / 2009 to conduct the final examination of Parvaneh Hajeb on his PhD degree of Food Science thesis entitled "Concentration of mercury in fish muscle and its reduction through washing treatment" in accordance with Universiti Pertanian Malaysia (higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

AZIZAH ABDUL-HAMID, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

SON RADO, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

MD JELAS HARON, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

SUKIMAN SARMANI, PhD

Professor Faculty Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, Ph.D.

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jinap Selamat, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Jamilah Bakar, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Fatimah Abu Bakar, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Ahmad Ismail, PhD

Associate Professor Faculty Science Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 July 2009

DECLARATION

I declare that the thesis is my original work except for quotations and citations, which
have been duly acknowledged. I also declare that it has not been previously and is not
concurrently submitted for any other degree at UPM or at any other institutions.
j č

PARVANEH HAJEB

Date:

TABLE OF CONTENTS

		Page
ABSTRA	CT	ii iii V
		viii
APPROV	AL	xii
		xii
		xvii
		xix
	APPROVAL DECLARATION JIST OF TABLES JIST OF FIGURES JIST OF APPENDICES LIST OF ABBREVIATIONS CHAPTER 1 INTRODUCTION Background of study Importance of study Objectives 2 LITERATURE REVIEW Consumption of seafood in Malaysia The nutritional considerations of fish Fish proteins and its metal binding properties Heavy metal in foods/ fish Mercury and methylmercury Physical and chemical properties of mercury Mercury exposure and risk evaluation for humans Mercury poisoning Mercury species and their transformation in aquatic environment Mercury studies on seafood in Malaysia Methods of mercury removal in food Mercury chelating agents and their mechanisms Cysteine Acids	XXI
LIST OF	ABBREVIATIONS	XXII
СНАРТЕ	R	
1	INTRODUCTION	1
	· · · · · · · · · · · · · · · · · · ·	1
	± •	3
	Objectives	4
2	LITERATURE REVIEW	5
		5
		8
	· · · · · · · · · · · · · · · · · · ·	10
	· · · · · · · · · · · · · · · · · · ·	14
		17
		18
		20
	7.2	22 27
		21
		29
		34
	· · · · · · · · · · · · · · · · · · ·	35
	Cysteine	39
	Acids	42
	Citric acid	44
	Ethylenediaminetetraacetic acid (EDTA)	47
	Methods of chemical analysis of mercury in food/ fish	50
	Speciation of mercury	51
	Chromatographic separation of mercury species	55
	High performance liquid chromatography (HPLC)	55
	Gas chromatography (GC)	58
	Capillary electrophoresis (CE)	60

	Spectrometric detection	61
	Cold vapor atomic absorption spectrophotometry	61
	(CV-AAS)	
	Cold vapor atomic Fluorescence	62
	spectrophotometry (CV-AFS)	
	Atomic Emission Spectrometry (AES)	63
	Microwave induced plasma-atomic emission	63
	spectrometry (MIP-AES)	
	Inductively coupled plasma-mass spectrometry	63
	(ICP-MS)	
	Other detectors used for mercury determination	65
	UV	65
	Mass spectrometry (MS)	65
	Electron capture detector (ECD)	66
	Response surface methodology (RSM) and product optimization	67
3	METHOD OPTIMIZATION FOR METHYLMERCURY	70
	DETERMINATION IN FISH SAMPLES USING GC-µECD	
	Introduction	70
	Materials and methods	72
	Chemicals and materials	72
	Instrumentation	73
	Calibration	75
	Experimental design	75
	Methylmercury extraction in fish samples	77
	Limit of detection (LOD) and limit of quantification	78
	(LOQ)	
	Statistical analysis	78
	Model validation	80
	Results and discussion	80
	Fitting the models	80
	Interpretation of response surface model	84
	Validation of the procedure and application to real	89
	samples	
	Conclusions	90
	CORDEL A MION RETWEEN TOTAL MERCURY AND	0.1
4	CORRELATION BETWEEN TOTAL MERCURY AND	91
	METHYLMERCURY CONCENTRATIONS IN	
	COMMONLY CONSUMED MARINE FISH SPECIES IN	
	MALAYSIA Introduction	91
	Materials and methods	91 94
	Chemicals and materials	94 94
		94 95
	Fish samples Instrumentation	95 96
	Calibration	96 97
	Total mercury extraction in fish samples	97

	Methylmercury extraction in fish samples	98
	Recovery of total mercury and methylmercury in fish	98
	samples	
	Limit of detection (LOD) and limit of quantification	99
	(LOQ)	
	Estimated weekly intake of total mercury and	99
	methylmercury	
	Statistical analysis	100
	Results and discussion	100
	Recovery, Limit of detection (LOD) and limit of	100
	quantification (LOQ)	
	Total mercury and methylmercury concentration in muscle	101
	and liver of fish species	
	Correlation between total mercury and methylmercury in	107
	fish species	
	Total mercury and methylmercury concentration in muscle	112
	and liver of short-bodied mackerel and long tail tuna from	
	the east and west coasts of Peninsular Malaysia	
	Correlation between total mercury and methylmercury in	120
	two fish species from the east and west coasts of	
	Peninsular Malaysia	
	Correlation between total mercury level and fishes weight	124
	Assessment of total mercury and methylmercury exposure	127
	in Malaysians	120
	Conclusions	129
5	EFFECTS OF WASHING PRETREATMENTS ON THE	131
	MERCURY CONCENTRATION (INDUSTRIAL	101
	PROTOCOL)	
	Introduction	131
	Materials and methods	134
	Chemicals and materials	134
	Instrumentation	135
	Calibration	135
	Experimental design	136
	Sample preparation	137
	Mercury extraction in fish samples	139
	EDTA extraction in fish samples	139
	Verification of the model	139
	Limit of detection (LOD) and limit of quantification	140
	(LOQ)	
	Recovery of total mercury in fish samples	140
	Statistical analysis	140
	Results and discussion	142
	Recovery, Limit of detection (LOD) and limit of	142

	quantification (LOQ)	
	Fitting the response surface models	142
	Interpretation of response surface model	146
	The main effect of independent variables	148
	The interaction effect of independent variables	152
	Optimization of mercury reduction in fish samples	152
	Conclusions	153
6	EFFECTS OF WASHING PRETREATMENTS ON THE	155
	MERCURY CONCENTRATION (HOME-USED	
	PROTOCOL)	
	Introduction	155
	Materials and methods	156
	Chemicals and materials	156
	Instrumentation	156
	Calibration	157
	Experimental design	157
	Sample preparation	158
	Mercury extraction in fish samples	159
	Verification of the model	159
	Limit of detection (LOD) and limit of quantification (LOQ)	160
	Recovery of total mercury in fish samples	160
	Statistical analysis	160
	Results and discussion	162
	Recovery, Limit of detection (LOD) and limit of quantification (LOQ)	162
	Fitting the response surface models	162
	Interpretation of response surface model	164
	Optimization of mercury reduction in fish samples	168
	Conclusions	168
7	SUMMARY, GENERAL CONCLUSION AND	170
	RECOMMENDATION FOR FUTURE RESEARCH	
	REFERNCES	176
	APPENDICES	210
	BIODATA OF THE STUDENT	220
	LIST OF PUBLICATIONS	221

LIST OF TABLES

Table		Page
2.1	Fish Consumption and Trade, 2000.	5
2.2	Top 10 seafood consumption by country.	6
2.3	Mercury level in fish/biota muscle, liver and heart from Malaysia reported by other studies.	32
2.4	Stability constants ($\log k_1 \pmod{l^{-1}}$) at 25 °C) for methylmercury (MeHg ⁺) with inorganic and organic ligands.	38
3.1	GC-micro ECD operating condition for methylmercury determination in fish.	74
3.2	GC-MS operating condition for methylmercury determination in fish.	74
3.3	Uncoded and coded independent variables used in RSM design for recovery of methylmercury in BCR-463.	76
3.4	Experimental points of the Central Composite Design for recovery of methylmercury in BCR-463.	77
3.5	Design matrix, experimental values and predicted values in the screening design for recovery of methylmercury in BCR-463.	81
3.6	Analysis of variance of the regression coefficients of the fitted quadratic equations for recovery of methylmercury in BCR-463.	83
3.7	The calculated optimum points for recovery of methylmercury in BCR-463.	89
3.8	Methylmercury concentration in muscle tissue of different fish sample.	90
4.1	Recovery of total mercury and methylmercury using CRM (BCR-463).	101
4.2	Characteristics of the fish samples collected from local market in Peninsular Malaysia.	103
4.3	Total mercury and methylmercuryconcentrations in liver and muscle of fish species collected from local market in Peninsular Malaysia.	104

4.4	Total mercury and methylmercury level (μ g/g wet wt.) in long tail tuna and short-bodied mackerel from the east and west coast of the Peninsular Malaysia.	113
4.5	Total mercury and methylmercury levels ($\mu g/g$ wet wt) in tuna and mackerel species from other studies.	118
5.1	Operating condition for HPLC-PDA for EDTA determination.	135
5.2	Uncoded and coded independent variables used in RSM design for mecury reduction.	137
5.3	Experimental points of the Central Composite Design for mercury reduction.	138
5.4	pH adjustment using different concentration of HCl and NaOH.	138
5.5	Design matrix, experimental values and predicted values in the screening design for mercury reduction.	144
5.6	Analysis of variance of the regression coefficients of the fitted quadratic equations for mercury reduction.	145
5.7	Optimum conditions, predicted and experimental value of mercury removal at that condition.	153
6.1	Uncoded and coded independent variables used in RSM design for mercury removal.	157
6.2	Design matrix, experimental values and predicted values in the screening design for mercury removal.	158
6.3	pH adjustment using different concentration of cirtic acid and NaOH.	159
6.4	Design matrix, experimental values and predicted values in the screening design for mercury removal.	163
6.5	Analysis of variance of the regression coefficients of the fitted quadratic equations for mercury removal	164
6.6	Optimum conditions, predicted and experimental value of mercury removal at that condition.	168

LIST OF FIGURES

Figure		Page
2.1	Domain nature of metallothionein. Four and three atoms of cadmium (Cd) are coordinated in α - and β -domains of metallothionein, respectively.	13
2.2	Chelation of metals by citric acid.	46
2.3	Structural formula of EDTA.	48
2.4	Metal-EDTA chelate.	49
3.1	Calibration curve for methylmercury standard solutions detected by GC- μ ECD.	75
3.2	Three-dimensional response surface showing the effect of the extraction time, sulfuric acid, cysteine concentration and toluene volume on recovery of methylmercury in certified reference material BCR-463.	88
4.1	Map of fish sampling locations in Peninsular Malaysia.	96
4.2	Calibration curve for total mercury standard solutions using CV-AAS.	97
4.3	Correlation between total mercury and methylmercury in different fish species.	109
4.4	Correlation between total mercury and methylmercury levels in the muscle of short-bodied mackerel from (A) Kuantan, (B) Kuala Perlis, (C) Chendring.	122
4.5	Correlation between total mercury and methylmercury levels in the muscle of long tail tuna from (A) Kuantan, (B) Kuala Perlis, (C) Chendring.	123
4.6	Relationship between body weight and mercury level in the muscle of long tail tuna from (A) Kuantan, (B) Kuala Perlis, (C) Chendring. (O) Total mercury and (•) methylmercury levels.	125
4.7	Relationship between body weight and mercury level in the muscle of short-bodied mackerel from (A) Kuantan, (B) Kuala Perlis, (C) Chendring. (O) Total mercury and (•) methylmercury levels.	126

4.8	Estimated weekly intake (EWI) of total mercury and methylmercury (µg/kg body wt.) of different fish species.	129
5.1	Calibration curve for EDTA standard solutions using HPLC-PDA.	136
5.2	Three-dimensional response surface showing the effect of the pH, cysteien concentration, salt concentration, EDTA concentration and exposure time on removal of mercury in fish fillet.	147
6.1	Three-dimensional response surface plots showing the effect of the pH, salt concentration and exposure time on removal of mercury in fish fillet.	166

LIST OF APPENDICES

APPENDIX		Page
A1	A: Typical GC–μECD chromatogram of methylmercury standard calibrant solution (1 ng ml-1); B: GC–μECD chromatogram of methylmercury in BCR-463 (3.04 μg g-1).	210
A2	Total ion chromatogram for methylmercury chloride in BCR-463 (3.04 μg g-1), obtained by GC-MS.	211
A3	Contour plots showing the effect of the extraction time, sulfuric acid and cysteine concentration and toluene volume on recovery of methylmercury in certified reference material BCR-463.	212
B1	A: Typical HPLC-PDA chromatogram of EDTA standard calibrant solution (100 $\mu g/mL$); B: HPLC-PDA chromatogram of EDTA in fish tissue.	213
B2	Fish samples (Short-bodied mackerel) used for mercury reduction treatments in chapter 5 &6.	214
В3	Fish fillets (Short-bodied mackerel) used for mercury reduction treatments in chapter 5 & 6.	215
B4	Mercury reduction treatments (chapter 6& 7)	216
В5	Contour plots showing the effect of the pH, cysteien concentration, salt concentration, EDTA concentration and exposure time on removal of mercury in fish fillet.	217
C1	Contour plots showing the effect of the pH, salt concentration and exposure time on removal of mercury in fish fillet.	219

LIST OF ABBREVIATIONS

Ag Silver

AES Atomic Emission Spectrometry

ANOVA Analysis of variance

AOAC Association of Official Analytical Chemists

Bi Bismuth

Br Bromide

CaNa₂EDTA Calcium disodium ethylenediaminetetraacetate

CH₃Hg+ Methylmercury

CH₃HgCl Methylmercury chloride

(CH₃)₂Hg Dimethylmercury

C₆H₅Hg⁺ Phenylmercury

CCD Central composite design

CCFAC Codex Committee on Foods Additives and

Contaminants

Cd Cadmium

CE Capillary electrophoresis

CP Center point

Cl Calcium

Cr Chromium

CRM Certified reference materials

CV-AAS Cold vapor atomic absorption spectrophotometry
CV-AFS Cold vapor atomic Fluorescence spectrophotometry

DMPS 2,3 dimercaptopropane-1-sulfonate

DMSA Dimercaptosuccinic acid

DPA D-penicillamine

ECD Electron capture detector

EDTA Ethylenediaminetetraacetic acid

EPA Environmental Protection Agency

Eq Equation

EWI Estimated weekly intake

F- Fluoride

FAO Food and Agricultural Organization

FDA Food and drug analysis

g Gram

GC Gas chromatography

GC-AFS Gas chromatography-atomic fluorescence

spectrometry

GC-ICP-MS Gas chromatography-inductively coupled plasma-

mass spectrometry

GC-MS gas chromatography-mass spectrometry

g/s Gram/ second

h Hour

HCl Hydrochloric cid

Hg Mercury

HNO₃ Nitric acid H₂SO₄ Sulfuric acid

HPLC High performance liquid chromatography

HPLC-MS High performance liquid chromatography-mass

spectrometry

I Iodide

ICP-MS Inductively coupled plasma-mass spectrometry

IUPAC International Union for Pure and Applied

Chemistry

JECFA Joint Expert Committee on Food Additives

KBr Potassium bromide

Kg Kilogram

L Liter

LC liquid chromatography

LKIM Lembaga Kemajuan Ikan Malaysia

LOD Limit of detection

LOQ limit of quantification

M Molar

mg Milligram

MeHg methylmercury

MeOH Methanol

min Minute

MIP-AES Microwave induced plasma-atomic emission

spectrometry

mL Milliliter

MOH Ministry of Health Malaysia

MS Mass spectrometry

MT Metallothionein

