

UNIVERSITI PUTRA MALAYSIA

ZINC OXIDE-CATALYSED PHOTO-OXIDATIVE DEGRADATION OF **CHLOROPHENOLS**

UMAR IBRAHIM GAYA

FS 2009 22

ZINC OXIDE-CATALYSED PHOTO-OXIDATIVE DEGRADATION OF CHLOROPHENOLS

By

UMAR IBRAHIM GAYA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Doctor of Philosophy

September 2009

DEDICATION

I dedicate this work to my beloved father Alhaji Ibrahim Abdulkadir Gaya, the memory of my late mother Hajiya Fatima Ibrahim and as service to humanity.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ZINC OXIDE CATALYSED PHOTO-OXIDATIVE DEGRADATION OF **CHLOROPHENOLS**

By

UMAR IBRAHIM GAYA

September 2009

Chairman: Associate Prof. Abdul Halim Abdullah, PhD

Faculty: Science

Chlorophenols are priority pollutants that must be eradicated from the environment

owing to the severity of their toxicity and resistance to traditional treatment.

Photocatalytic oxidation is an advanced oxidation method which has proven

reliability to eliminate persistent pollutants from air and water. The activity of zinc

oxide for pollutant removal by photocatalytic oxidation has been well established. In

this work the photocatalytic transformation of 4-chlorophenol, 2,4-dichlorophenol

and 2,4,6-trichlorophenol in irradiated ZnO suspensions at 299 K was studied. The

effect of operating parameters such as catalyst and concentration doses on the

decomposition rate of these para-chlorinated compounds has been investigated and

optimised. It was discovered that the optimum feed concentration for the phenolic

compounds is 50 mg L⁻¹. The optimum amount of ZnO was determined for the

degradation of 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol which

decreased as with increasing of chlorine substituent. For 4-chlorophenol degradation,

the first clearer description of the effect of doses using response surface was reported.

Kinetic profiles on the decomposition of chlorophenols over ZnO were consistent with pseudo-zeroeth order rate scheme. For 2,4-dichlorophenol and 2,4,6-trichlorophenol the decomposition was slow at the short irradiation time. It was found that the degradability of chlorophenols increased as the number of ring-chlorine increased. The effect of pH on the destruction rate was found to be influenced by chlorophenol adsorption and dissociation equilibrium.

The effect of different anions on the rate of chlorophenol degradation was evaluated by utilising sodium salts as additives. Except for 4-chlorophenol it was found that, inorganic anion additives such as SO_4^{2-} , $S_2O_8^{2-}$ and Cl^- demonstrated inhibition to the decomposition rate of chlorophenol. HPO_4^{2-} was found to show strongest inhibition and could even hamper the degradation of 4-chlorophenol.

The progression of intermediates during the mineralisation of chlorophenols was chromatographed on high performance liquid chromatograph (HPLC). The structure elucidation of pathway products en route to mineralisation of chlorophenols was performed by the combined gas chromatography-mass spectrometry (GC-MS) and HPLC methods. The study disclosed some hitherto unreported intermediates of photocatalytic decomposition of 4-chlorophenol and 2,4-dichlorophenol. Catechol was detected as new intermediate of 4-chlorophenol degradation. Similarly, 4-hydroxybenzaldehyde, benzoquinone and 4-chlorophenol are for the first time reported for 2,4-dichlorophenol degradation. The work also revealed the intermediates of 2,4,6-trichlorophenol which have not been in literature. It is highlighted herein the mechanism of formation of all pathway intermediates.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

ZINK OKSIDA MEMANGKIN PENGURAIAN KLOROFENOL SECARA FOTO-OKSIDAAN

Oleh

UMAR IBRAHIM GAYA

September 2009

Pengerusi: Prof. Madya Abdul Halim Abdullah, PhD

Fakulti: Sains

Sebatian klorofenol merupakan bahan pencemar utama yang perlu disingkirkan

daripada alam sekitar disebabkan oleh kadar toksik yang tinggi dan keampuhan

terhadap rawatan secara konvensional. Pengoksidaan secara pemangkinan foto

merupakan kaedah pengoksidaan termaju yang telah terbukti keberkesanannya bagi

menyingkirkan bahan-bahan pencemar yang terkandung di dalam udara dan air.

Peranan zink oksida dalam penyingkiran bahan pencemar melalui proses

pengoksidaan secara pemangkinan foto adalah diiktiraf umum. Di dalam kajian ini,

4-klorofenol, 2,4-diklorofenol dan 2,4,6-triklorofenol

pemangkinan foto di dalam ampaian ZnO pada suhu 299 K telah pun dikaji. Kesan

daripada parameter seperti dos pemangkin dan kepekatan terhadap kadar penguraian

sebatian paraklorin telah dikaji dan dioptimumkan. Telah terbukti bahawa kepekatan

optimum untuk sebatian fenolik adalah 50 mg L⁻¹. Jumlah optimum ZnO bagi

degradasi 4-klorofenol, 2,4-diklorofenol dan 2,4,6-triklorofenol telah ditentukan

yang mana ianya berkurangan dengan peningkatan kandungan klorin. Bagi degradasi 4-klorofenol, penjelasan yang lebih terperinci mengenai pengaruh kepekatan dengan menggunakan respons permukaan adalah yang pertama dilaporkan.

Profil kinetik penguraian sebatian klorofenol dengan menggunakan ZnO adalah konsisten dengan skema tertib pseudo-kosong. Bagi 2,4-diklorofenol dan 2,4,6-triklorofenol, kadar penguraian adalah perlahan pada masa radiasi yang singkat. Kebolehan degradasi sebatian klorofenol didapati adalah berkadaran dengan peningkatan klorin. Kesan pH terhadap kadar penguraian didapati dipengaruhi oleh penyerapan klorofenol dan keseimbangan penceraian.

Kesan anion yang berlainan terhadap kadar degradasi klorofenol telah diukur dengan menggunakan garam natrium sebagai bahan tambah. Selain daripada 4-klorofenol bahan tambah anion tak organik seperti SO_4^{2-} , $S_2O_8^{2-}$ dan Cl^- telah didapati menunjukkan kesekatlakuan terhadap kadar degradasi klorofenol. Di samping itu, HPO_4^{2-} didapati menunjukkan kesekatlakuan tertinggi dan hampir menyebabkan proses degradasi 4-klorofenol tidak berlaku.

Perkembangan bahan perantara semasa pemineralan klorofenol telah dianalisa dengan menggunakan kromatografi cecair berprestasi tinggi (HPLC). Penentuan struktur bahan perantara sewaktu proses pemineralan klorofenol telah dilaksanakan dengan menggunakan teknik gabungan kromatografi gas-spektroskopi jisim (GC-MS) dan HPLC. Kajian ini telah mendedahkan beberapa bahan perantara hasil daripada proses penguraian secara pemangkinan foto sebatian 4-klorofenol dan 2,4-diklorofenol yang masih belum dilaporkan sehingga kini. Katekol telah dikesan sebagai bahan perantara terbaru dari penguraian 4-klorofenol. Manakala 4-hidroksibenzaldehida, benzokuinon dan 4-klorofenol adalah bahan perantara bagi 2,4-diklorofenol yang pertama dilaporkan. Kajian ini juga mendedahkan bahan

perantara 2,4,6-triklorofenol yang belum pernah dilaporkan sebelum ini. Mekanisma pembentukan kesemua bahan perantara dilaporkan secara terperinci di dalam tesis ini.

ACKNOWLEDGEMENT

If it is really true that 'Charity begins at home' my gratitude would first go to my best friend the last 10 years, the rack of the family Ummi Nasiru Dori for her unyielding support during the period of my PhD study.

I am indebted to my supervisor Associate Professor Dr. Abdul Halim Abdullah, and to my co-supervisors Professor Zulkarnain Zainal and Professor Mohd Zobir Hussein for their immeasurable contribution and patience towards the success of this PhD project. I cherish the knowledge and understanding of this learned supervisory team. The emerging name and credit for sure goes to them.

I gratefully acknowledge the sponsorship offered to me by Kano State Government of Nigeria through the Kano State Scholarship Board (KSSB). I am grateful to my organisation Bayero University Kano for allowing me to study and for securing additional support for me from Mc Arthur foundation. I express immense gratitude to Universiti Putra Malaysia for the position of graduate fellow (GRF) during the second semester of 2007/2008 session. I thank Universiti Putra Malaysia International Students Association (UPMISA) for giving me the opportunity to serve as Nigeria representative, treasurer and now as financial secretary. I extend this message to UPM international office and UPMISA officials from different countries who I worked together with to address the interest of international students. May I accordingly seize this opportunity to thank all postgraduate students whom I have worked with for two years as International Students' Representative, Chemistry Postgraduate Club, Universiti Putra Malaysia.

I thankfully acknowledge all my relatives and friends for keeping in touch while I stay for 3 years thousands of kilometres away from them.

I am grateful to the technicians in the Department of Chemistry, Universiti Putra Malaysia, for their inspiring attitudes. Many thanks to Encik Zainudin Samadi for allowing me to use HPLC, Zainal Abidin Kassim for GC-MS and Choo Chai Syam for ICP-OES. I would like to express gratitude to Ing Yu Seng and Wong Chen Wai of Research Instruments for permission to use Waters Ultra High Performance Liquid Chromatograph (UHPLC). I am thankful to Nor Fairus Aida for running adsorption-desorption measurements. I thank Perkin Elmer Sdn Bhd for the measurement of band gap. I would seize this opportunity to thank my laboratory mates for the brotherly togetherness we had despite differences in complexion and tongue – Haniff Mohd Bin Wahid, Lee Kian Mun, Hudah Abdullah, Khairul Basyar Baharuddin, Appri Beyan, Nurul Haidah Daud, Saliza Asman, Nor Dyana Zakaria, Sook Keng Chang, Lee Ek Giat, Mageswary Manickam, Yadollah Abd. I enjoin the Malaysians among them to keep on the widely known 'Malaysian Hospitality'.

All the grants that served this research are hereby acknowledged. I also seize this opportunity to thank the Faculty of Science, Universiti Putra Malaysia for inviting me to make an academic presentation to new graduates of the 2008/2009 session on publishing. I am thankful to all fellow Nigerians studying in Malaysia. And, moving all the way down to Singapore, I thankfully acknowledge the invitation of the Singapore catalysis society to attend the Suzuki C-C coupling short course in Oct, 2008. Similarly, I owe the organisers of the 17th conference of commonwealth education ministers (17CCEM) a debt of gratitude for their invitation. Finally, to those whom by oversight I have not mentioned their names I am equally very much grateful.

I certify that a Thesis Examination Committee has met on September 11, 2009 to conduct the final examination of Umar Ibrahim Gaya on his thesis entitled "Zinc oxide-catalysed photo-oxidative degradation of chlorophenols" in accordance with the Universities and University Colleges Act 1971 and the constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Md. Jelas Haron, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Taufiq Yap Yun Hin, PhD

Professor Faculty of Science Universiti Putra Malaysia

Irmawati Ramli, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia

Abdul Rahman Bin Mohamed, PhD

Professor School of Chemical Engineering Universiti Sains Malaysia Malaysia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the supervisory committee were as follows:

Abdul Halim Abdullah, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Zulkarnain Zainal, PhD

Professor Faculty of Science Universiti Putra Malaysia

Mohd Zobir Hussein, PhD

Professor Faculty of Science Universiti Putra Malaysia

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10th December 2009

DECLARATION

I declare that the thesis is my original work except for quotations which have been duly acknowledged. I also declare that it has not been previously, or is not concurrently, submitted for any other degree at Universiti Putra Malaysia or any other institution.

UMAR IBRAHIM GAYA

Date:

TABLE OF CONTENTS

DEDICAT ABSTRAC		Page ii iii
ABSTRAK		V
	LEDGEMENT	viii
CERTIFIC		X
APPROVA		xi
DECLARA		xii
LIST OF T LIST OF F		XV1
	ABBREVIATIONS	XVII XVIII
		Aviii
СНАРТЕК	R .	
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Research problem and objectives	2
	1.2.1 Research problem	2 3
	1.2.2 Project objectives	3
	1.3 Fundamentals of photocatalysis	4
	1.3.1 Historical cornerstones	4
	1.3.2 Principles of semiconductor excitation	5
	1.3.3 In-situ generation of oxidising species	7
	1.4 Photophysical processes	9
	1.4.1 Charge carrier trapping	9
	1.4.2 Electron-hole recombination	11
	1.4.3 Charge carrier dynamics	12
	1.4.4 Quantum size effect	14
	1.5 Interfacial transfer reactions	16
	1.5.1 Hole transfer1.5.2 Mineralisation	16 18
	1.3.2 Milleransation	10
2	LITERATURE REVIEW	
	2.1 Usage of ZnO catalyst	22
	2.1.1 Description of ZnO photocatalyst	22
	2.1.2 Photoreactivity of ZnO photocatalyst	22
	2.1.3 ZnO as model semiconductor	
	photocatalyst: An overview	23
	2.2 Methods of utilisation of semiconductor photocatalyst	24
	2.2.1 Dispersed photocatalysts	24
	2.2.2 Immobilised photocatalysts	25
	2.2.3 Protected photocatalysts	25
	2.3 Basic operating parameters in photocatalytic oxidation	26
	2.3.1 Nature and concentration of substrate	26
	2.3.2 Nature of the photocatalyst and concentration	27

	2.3.3	Effect of oxygen	29
	2.3.4	Temperature	30
	2.3.5	Light intensity	30
	2.3.6	pH	32
	2.4 Strategies	for improving photocatalytic oxidation	33
	2.4.1	Addition of electron or hole acceptors	33
	2.4.2	Combined processes	34
		Novel preparations	51
	2.4.4	Sensitised photocatalysis	62
	2.5 Miscellan	eous problems regarding photocatalytic oxidation	64
	2.6 Description	on of the chlorinated phenolic compounds	66
	2.6.1	1	66
	2.6.2	Properties of the target phenolic compounds	68
3	MATERIAL	S AND METHODS	69
	3.1 Apparatus	s and Chemicals	69
	3.1.1	Photoreactor	69
	3.1.2	Chemicals	70
	3.2 Character	isation methods	70
	3.2.1	Particle size analysis by photon	
		correlation spectroscopy	70
	3.2.2	•	
		volumetric method	71
		Band gap determination	71
		Scanning electron microscopy	72
	3.3 Photocata	lytic degradation of chlorophenols	72
	3.3.1	J J	72
		Effect of catalyst loading	73
		Effect of substrate concentration	74
		Kinetics	74
		Effect of pH	74
		Effect of inorganic anions	75
	3.3.7	Background effects	75
	3.3.8	Choice of experimental design	75
	3.4 Analysis		76
	3.4.1	UV-Vis spectrometry	76
	3.4.2	High performance liquid chromatography	78
	3.4.3	Gas chromatography-mass spectrometry	79
	3.4.4	Elemental analysis by inductively-coupled	
		plasma spectrometry	81
4	RESULTS A	ND DISCUSSION	83
	-	s of the ZnO photocatalyst	83
		Band gap	83
	4.1.2		84
	4.1.3		84
		lytic decomposition of 4-chlorophenol	85
	4.2.1	Preliminary analysis	85

		4.2.2	Effect of catalyst loading	88
		4.2.3	Effect of substrate concentration	89
		4.2.4	Multivariate optimisation of 4CP degradation	91
		4.2.5		96
		4.2.6		98
		4.2.7	Effect of inorganic anions	100
		4.2.8		101
		4.2.9	Reaction mechanism	106
		4.2.10	Stability of ZnO	107
		4.3 Photo-oxi	dative removal of 2,4-dichlorophenol	108
		4.3.1	Background effects	108
		4.3.2	Effect of substrate concentration	109
		4.3.3	Effect of solid concentration	110
		4.3.4	pH effects	111
		4.3.5	Kinetic scheme	112
		4.3.6	Effect of anion additives	114
		4.3.7	Photoproducts and mineralisation	116
		4.3.8	Reaction pathways	120
		4.4 Photocatal	lytic degradation of 2,4,6-trichlorophenol	122
		4.4.1	Effect of 2,4,6-TCP concentration	122
		4.4.2	Effect of catalyst concentration	122
			Effect of pH on 2,4,6-TCP removal	123
		4.4.4	Effect of inorganic anions	125
		4.4.5	Kinetic observation	126
		4.4.6	Photoproducts and mineralisation	128
		4.4.7	Proposed mechanism of 2,4,6-TCP	
			decomposition	130
			nation of chlorophenols: a comparison	131
		4.5.1	2	
			oxidative cleavage	131
		4.5.2	Influence of phenolic-OH on	
			product formation	133
		4.5.3	Activity of other commercial ZnO for	
			chlorophenol removal	134
	5	SUMMARY,	CONCLUSION AND	
			NDATION FOR FUTURE	
		RESEARCH		138
REF	REFERENCES		140	
APP	APPENDICES			179
BIO	DATA (OF STUDENT		216
LIST	LIST OF PUBLICATIONS		217	

LIST OF TABLES

		Page
Table		
1.1	Primary processes and time domains in charge carrier trapping	
	and recombination measured for TiO2 as model photocatalyst	14
1.2	The gap energies of chalcogenide semiconductor photocatalysts	
	in aqueous medium at pH 0.	16
2.1	Photocatalytic degradation of organic compounds by	
	irradiated semiconductor photocatalysts	36
2.2	Some novel preparations of UV and Vis light responsive	
	semiconductor photocatalysts	54
2.3	Physical properties of chlorophenols under study	68
3.1	Wavelength maxima used used in chlorophenol detection	77
3.2	Selected parameters used in HPLC elution chromatography	79
4.1	Actual values and coded levels of operating variables	91
4.2	Codified variable levels from the central composite layout	
	and responses for 4CP degradation	93
4.3	ANOVA for response surface model of photocatalytic 4CP treatment	94
4.4	Rate constant and pseudo-zero order curve quality over various	
	catalyst doses	97
4.5	Retention times of detected photoproducts of 4CP	101
4.6	ZnO dissolution figures for 4CP degradation	107
4.7	A listing of 2,4-DCP degradation products resolved	
	by HPLC and GC-MS	118
4.8	Activity of different ZnO powders	135

LIST OF FIGURES

		Page
Figu	re	
1.1	The position of bands in (a) insulator (b) metal (c) semiconductor.	5
1.2	Illustration of the major photoevents in semiconductor	
	photocatalysed oxidation	6
1.3	Scheme showing band-band recombination (a), hole trapping (b),	
	shallowly trapped electron (c), trapped-assisted recombination (d).	11
1.4	Conceptual diagram for the primary processes involved in	
	photomineralisation of organic compounds on TiO2 as	
	model photocatalyst	19
2.1	Pollutant in the vicinity of semiconductor surface (SC) attacked	
	by adsorbed hydroxyl radical b) oxidation of pollutant while	
	at the active sites of semiconductor photocatalyst c) oxidation	
	reaction while both the pollutant and hydroxyl radical are in	
	solution.	28
2.2	Schematic mechanism of photo-oxidation on doped semiconductor	52
2.3	A visual schematic diagram showing photoinduced dye	
	sensitisation of a semiconductor	63
2.4	Band diagram illustrating charge carrier transfer in coupled	
	semiconductors	64
2.5	Photocatalytic system development cycle	65
3.1	Schematic view of the immersion photoreactor	69
3.2	A schematic diagram of HPLC operation	79
3.3	Schematic of GC-MS operation	80

3.4	Schematic diagram of ICP-OES	81
4.1	Diffuse reflectance curve of ZnO	83
4.2	Particle size distribution for the commercial ZnO (Merck)	
	used in the study	84
4.3	Static BET isotherm of ZnO	85
4.4	UV-Vis absorption spectra depicting the degradation profile	
	of 4-chlorophenol	87
4.5	Time-course profile of 50 mg L ⁻¹ 4CP subject to, (A) adsorption	
	on 2 g of ZnO in the dark, (B) photolysis and (C) irradiation in	
	presence of 2 g ZnO	88
4.6	Observed influence of catalyst concentration on degradation rate	89
4.7	Effect of substrate initial concentration at different catalyst	
	loading on initial rate of degradation	90
4.8	Two factors central composite design used in the 4CP study	92
4.9	Fitted surface for 4CP decomposition constructed	
	60 min after illumination	95
4.10	Zero-order rate graph of 4CP degradation	97
4.11	Variation of decomposition rate with pH	98
4.12	UHPLC chromatogram showing the chromatographic	
	peak of 4CP (major) and intermediate products.	102
4.13	Changes in peak area recorded on UHPLC during	
	photomineralisation process.	103
4.14	HPLC chromatograms depicting eluted peaks at different	
	reaction times (a) 0 min (b) 30 min (c) 60 min (d) 90 min	
	(e) 120 min (f) 180 min (g) 240 min	104

4.15	A radical mechanism to account for the pathways of	
	photoproducts in the course of mineralization	106
4.16	Resistance of 2,4-DCP to removal by adsorption and photolysis	108
4.17	Observed effect of concentration on 2,4-DCP photoremoval	
	rate at photocatalyst concentration = 1 g L^{-1}	109
4.18	Influence of catalyst mass on 2,4-DCP removal at	
	50 mg L ⁻¹ 2,4-DCP levels	110
4.19	Spectral changes on photocatalytic 2,4-DCP degradation	111
4.20	Influence of pH about the pzc of ZnO and p K_a of 2,4-DCP	112
4.21	Traditional 2,4-DCP decomposition trend at 50 mg L ⁻¹ levels and	
	1 g and 1.5 g ZnO doses	113
4.22	The pseudo zero order plot of 2,4-DCP in the medium irradiation time	114
4.23	The influence of inorganic anions on photocatalytic removal rate	115
4.24	Mineralisation course plot of 2,4-DCP	117
4.25	2,4-DCP chromatograms (I) 60 min of irradiation	
	(II) 90 min of irradiation	119
4.26	Reaction scheme proposed for the degradation intermediates	
	of 2,4-DCP	121
4.27	Effect of 2,4,6-TCP concentration of removal rate	122
4.28	Influence of catalyst mass on 2,4,6-TCP removal rate	123
4.29	The influence of pH on 2,4,6-TCP degradation	124
4.30	Changes in UV-band at 294 nm on 2,4,6-TCP degradation	125
4.31	Influence of anions on 2,4,6-TCP degradation rate	126
4.32	Pseudo zero-order fit for 2,4,6-TCP degradation	127
4.33	Influence of photolysis and catalyst adsorption	127

4.34	Observed degradation trend of 2,4,6-TCP on 0.25 g	
	and 1.0 g irradiated ZnO	128
4.35	Chromatographic peaks of 2,4,6-TCP and intermediates	
	en route to mineralisation (a) 45 min (b) 60 min (c) 120 min	129
4.36	A tentative formation mechanism of 2,4,6-TCP degradation	
	intermediates	131
4.37	The degradability profile of chlorophenols	132
4.38	A mechanistic scheme to show preferential para-attack	
	during 4-chlorophenol transformation	134
4.39	Scanning electron images of ZnO powders fom (a) Alfa Aesar,	
	(b) Merck, (c) PC lab	136

LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviations

4CP 4-chlorophenol

ANOVA Analysis of variance

CB Conduction band

Continued Continued

DI-MS Direct infusion mass spectrometry

DI-MS Direct insertion mass spectra

DRS Diffuse reflectance spectrometry

EPRC Emergency Planning and Community Right-To-Know

Eq. Equation

Et Ethyl

GC-MS Gas chromatography-mass spectrometry/spectrometer

HPLC High performance liquid chromatography/chromatograph

HPR Hydroxyphenyl radical

ICP-OES Inductively-coupled plasma

LC Liquid chromatography/chromatograph

m Meta

m/z mass-to-charge ratio

N.A. Not applicable

ND Not determined

NDMA N-nitrosodimethylamine

NIR Near infra red

NNLS Non Negative Least Square

OES Optical emission spectrometry/spectrometer

OLEA Oleic acid

OSHA Occupational safety and health administration

PCCS Photon cross correlation spectroscopy

Ph Phenyl

RSD Relative standard deviation

SC Semiconductor

SEM Scanning electron microscope/microscopy

SD Standard deviation

TOPO tri-n-octylphosphine oxide

UHPLC Ultra high performance liquid chromatography/chromatograph

US EPA United States environmental protection agency

UV Ultraviolet

VB Valence band

Vis Visible

VOC Volatile organic compound

2,4,6-TCP 2,4,6-trichlorophenol

1,2-diHPR 1,2-dihydroxyphenyl radical

2,4-DCP 2,4-dichlorophenol

Symbols

 ε Molar extinction coefficient

α Star point coordinate

[]_o Initial concentration of

C Concentration

 C_o Initial concentration

 C_t Concentration at time t

D Diffusion coefficient

e⁻ Electron

e cb Conduction band electron

 E_g Band gap energy

e tr Deeply trapped electron

e_{tr*} Shallowly trapped electron

F-value A measure of distance between individual distributions

h Planks constant

h⁺ Positively charged hole

h⁺_{tr} Deeply trapped hole

h⁺_{tr*} Shallowly trapped hole

h⁺_{vb} Valence band hole

K Adsorption coefficient

k Rate constant

 K_{app} Apparent rate constant

n_{ads} Number of moles adsorbed

p/p⁰ Relative pressure

p⁰ Partial pressure

pK_a Negative logarithm of acid dissociation constant

p-value Probability value for hypothesis testing

r Initial rate

r Radius (e.g. of semiconductor particle)

R² Square of correlation coefficient

T Temperature

t Time

t_{equi} Equilibrium time

v Speed of light

V_{ads} Volume of gas adsorbed

 Y_{exp} Experimental response factor

 $\zeta_{\rm r}$ Relative photonic efficiency

 θ Surface coverage

 λ Wavelength

τ Half-life or transit time

Φ Quantum yield

