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Polymer gel dosimeters in conjunction with the nuclear magnetic resonance imaging 

(MRI) are potentially useful for verification of complex dose distributions in three 

dimensions (3D) applied in radiotherapy treatment planning. The radiation-induced 

normoxic polymer gels of polyhydroxyethylacrylate (PHEAG) and 

polyhydroxyethylmethacrylate (PHEMAG) have been studied using Raman 

spectroscopy and MRI scanner. The studies are focused on PHEAG and PHEMAG 

because these monomers belong to acrylic group. Most of the monomer in the acrylic 

group will indicate physical changes dramatically due to radiation given. The PHEAG 



 iv

and PHEMAG were synthesized from 2-hdroxyethylacrylate (HEA) and 

hydroxyethylmethacrylate (HEMA) monomer (2 to 5% w/w) respectively and 

together with methylene-bis-acrylamide (BIS) crosslinker (1 to 4% w/w), gelatine 

(3% w/w), ascorbic acid (5 mM to 15 mM) and completed with de-ionized water. The 

dosimeters were irradiated with 60Co teletherapy γ-rays source at a constant dose rate 

of 0.177 Gy/min, receiving doses up 20 Gy for the single point dose measurement and 

the 3D dose distributions scanning.  

 

The polymerization intended for PHEMAG was followed by the change of Raman 

intensity at Raman shift of 812 cm-1, 1978 cm-1 and 2885 cm-1 assigned for C-C 

stretching, C=O stretching and CH3 stretching respectively and at 812 cm-1 assigned 

for C-C stretching in favour of PHEAG. The Raman intensity y corresponding to the 

amount of polymer formed in both PHEAG and PHEMAG increases with increasing 

dose D and follows a mono-exponential equation given as ( )0/
0 1 DDeAyy −−+= . The 

dose sensitivity 0D  derived from the equation and k factor derived from a linear 

relationship between 0D  and co-monomer concentration were found increasing with 

the increase of initial concentrations of monomer, cross-linker and anti-oxidant. The 

consumptions of co-monomers in PHEAG were studied by a decrease intensity of 

C=C stretching at 2887 cm-1 and 2602 cm-1 of HEA and BIS respectively and at 2602 

cm-1 and 2369 cm-1 of HEMA and BIS respectively in favour of PHEMAG. The 

intensity decreases with increasing dose and follows mono-exponential equation 

given as ( )0/
0 1 DDeAyy −−−= . The dose sensitivity 0D  and k factor were also found 
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to increase with the increase of monomer, cross-linker and anti-oxidant 

concentrations. 

 

The PHEMAG phantoms synthesized from HEMA monomer (3% w/w), BIS 

crosslinker (2 to 4% w/w), gelatine (3%), anti-oxygen ascorbic acid (15 mM to 55 

mM) and completed with de-ionized water were exposed with single and crossed 

beams to simulate radiotherapy treatment. Magnetic resonance imaging (MRI) 

scanner was used to scan dose distribution of the phantoms and the 3D images were 

evaluated using a digital densitometer. It was found that the absorbed dose decreases 

with the increase of depth dose inside the phantom and the consequently two crossed 

beams of 20 Gy each produced less than 35 Gy beyond 3 cm depth dose. There is a 

slightly increase in dose with the increase of ascorbic acid concentration for all the 

radiation beams tested, indicating the use of ascorbic acid alone as anti-oxidant agent 

in PHEMAG was able to produce normoxic polymer gel dosimeters. Referring to the 

results of dose correlation factor k, it can be concluded that kHEMA is more significant 

than kHEA.  
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Perhubungan antara dosimeter polimer gel dengan MRI berpotensi digunakan untuk 

verifikasi penyerakan dos kompleks dalam bentuk tiga dimensi untuk rawatan 

radioterapi. Radiasi aruhan polimer gel “normoxic” polihidroksietilakrilat (PHEAG) 

dan polihidroksietilmetakrilat (PHEMAG) telah dikaji dengan menggunakan 

spektroskopi Raman and pengimbas MRI. Kajian tertumpu terhadap PHEAG dan 

PHEMAG kerana monomer-monomer ini berada di dalam kumpulan akrilik. 

Kebanyakkan monomer daripada kumpulan akrilik akan menunjukkan perubahan 

fizikal yang ketara akibat sinaran yang diberikan. PHEAG and PHEMAG telah 
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disintesiskan daripada 2-hidroksietilakrilat (HEA) dan 2-hidroksietilmetakrilat 

(HEMA) (2 hingga 5% w/w) masing-masing dan bersama-sama dengan methylene-

bis-acrylamide (BIS) taut-silang (1 hingga 4% w/w), gelatin (3%), asid askorbik (5 

mM hingga 15 mM) dan disudahi dengan air ternyah ion. Dosimeter tersebut telah 

diradiasikan dengan sumber teleterapi sinar-γ 60Co pada kadar tetap 0.177 Gy/min, 

menerima dos sehingga 20 Gy untuk pengukuran dos titik tunggal dan pengimbasan 

taburan dos 3D.  

  

Pempolimeran PHEMAG yang disasarkan telah diikuti dengan perubahan regangan 

anjakan keamatan Raman pada 812 cm-1, 1978 cm-1 dan 2885 cm-1 diwakili untuk 

regangan C-C, regangan C=O dan juga regangan CH3 masing-masing dan pada 812 

cm-1 diwakili untuk regangan C-C terhadap PHEAG. Keamatan Raman y mempunyai 

kesamaan bilangan polimer yang terbentuk di dalam kedua-dua PHEAG dan 

PHEMAG meningkat dengan peningkatan dos D dan mengikut persamaan mono-

eksponen yang dinyatakan sebagai ( )0/
0 1 DDeAyy −−+= . Kepekaan dos Do yang 

diperolehi daripada persamaan dan faktor k  yang diperolehi daripada hubungan linear 

antara Do dan kepekatan monomer bersama telah didapati meningkat dengan 

peningkatan  kepekatan pemulaan monomer, taut-silang dan anti-oksida. Penggunaan 

monomer di dalam PHEAG telah dikaji dengan pengurangan keamatan regangan 

C=C pada 2887 cm-1 dan 2602 cm-1 daripada HEA dan BIS masing-masing dan pada 

2602 cm-1 dan  2369 cm-1 daripada HEMA dan BIS masing-masing terhadap 

PHEMAG. Keamatan berkurangan dengan peningkatan dos dan mematuhi persamaan 

mono-eksponen yang diberi sebagai ( )0/
0 1 DDeAyy −−−= . Kepekaan dos Do dan 
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faktor k juga didapati meningkat dengan peningkatan monomer, tautan-silang dan 

kepekatan anti-oksida. 

Fentom PHEMAG yang telah disintesis daripada monomer HEMA (3% w/w),  BIS (2 

hingga 4% w/w), gelatin (3%), anti-oksida asid askorbik (15 mM hingga 55 mM) dan 

disudahi dengan air ternyah ion telah didedahkan dengan pancaran tunggal dan silang 

untuk merangsang rawatan radiotherapi. Pengimbas Pengimejan Resonan Magnet 

(MRI) telah digunakan untuk mengimbas taburan dos oleh fentom dan imej 3D telah  

dinilai dengan densitometer digital. Didapati penyerapan dos berkurangan dengan 

peningkatan kedalaman dos di dalam fentom dan menyebabkan dua pancaran silang 

20 Gy setiap satu menghasilkan kurang daripada 35 Gy melangkaui 3 cm kedalaman 

dos. Terdapat sedikit peningkatan di dalam dos dengan peningkatan kepekatan asid 

askorbik untuk semua pancaran radiasi yang telah diuji, menunjukkan penggunaan 

asid askorbik sendirian sebagai agen anti-oksida di dalam PHEMAG boleh 

menghasilkan meter dos polimer gel “normoxic”. Berdasarkan kepada keputusan 

yang diperolehi untuk faktor dos korelasi k, dapt dirumuskan bahawa kHEMA adalah 

lebih menonjol daripada  kHEA.  
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Biomedical Imaging, University Malaya Medical Centre 
(UMMC), Kuala Lumpur.   
 

4.24 

Figure 4.12 A custom made polystyrene container to hold the samples. 
 

4.24 

Figure 4.13 Radiological film obtained from MRI slice scans. 
 

4.25 

Figure 4.14 Digital densitometer (Victoreen, model 07-440, USA), 
Biophysics Lab, Department of Physics, Universiti Putra 
Malaysia. 
 

4.25 

Figure 5.1 Chemical structures of (a) 2-hydroxyethyl acrylate (HEA); 
(b) N, N’-methylene-bisacrylamide (BIS); (c) 
Polyhydroxyethylacrylate (PHEA). The circles indicate the 
affected stretching double bonds of co-monomers likely to 
be broken down into stretching single bonds during 
polymerization. 
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Figure 5.2 Chemical structures of (a) 2-Hydroxyethyl Methacrylate 
(HEMA); (b) N, N’-methylene-bisacrylamide (BIS); (c) 
Polyhydroxyethylmethacrylate (PHEMA). The circles 
indicate the affected stretching double bonds of co-
monomers likely to be broken down into stretching single 
bonds during polymerization. 
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Figure 5.3 Initiation of chemical structure (a) HEA; (b) HEMA; (c) N, 
N’-methylene-bisacrylamide (BIS); (d) propagation of 
PHEAG; (e) propagation of PHEMAG. 
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Figure 5.4 Normalised Raman intensity of C-C stretching showing the 
formation of PHEAG at (a) 2%, (b) 3%, (c) 4%, and (4) 
5% HEA and for different BIS concentrations at 5 mM 
ascorbic acid. 
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Figure 5.5 Normalised Raman intensity of C-C stretching showing the 
formation of PHEAG at (a) 2%, (b) 3%, (c) 4%, and (4) 
5% HEA and for different BIS concentrations at 10 mM 
ascorbic acid. 
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Figure 5.6 Normalised Raman intensity of C-C stretching showing the 
formation of PHEAG at (a) 2%, (b) 3%, (c) 4%, and (4) 
5% HEA and for different BIS concentrations at 15 mM 
ascorbic acid. 
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Figure 5.7 Correlation between Do and the initial concentration of 
HEA for different BIS concentration at (a) 5 mM, (b) 10 
mM and (c) 15 mM ascorbic acid for the formation of 
PHEAG due to C-C stretching at 812 cm-1. 
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Figure 5.8 Normalised Raman intensity of C-C stretching showing the 
formation of PHEAG at (a) 1%, (b) 2%, (c) 3%, and (4) 
4% BIS and for different HEA concentrations at 5 mM 
ascorbic acid. 
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Figure 5.9 Normalised Raman intensity of C-C stretching showing the 
formation of PHEAG at (a) 1%, (b) 2%, (c) 3%, and (4) 
4% BIS and for different HEA concentrations at 10 mM 
ascorbic acid. 
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Figure 5.10 Normalised Raman intensity of C-C stretching showing the 
formation of PHEAG at (a) 1%, (b) 2%, (c) 3%, and (4) 
4% BIS and for different HEA concentrations at 15 mM 
ascorbic acid. 
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Figure 5.11 Dose correlation factor kBIS of C-C stretching at 812 cm-1 

of PHEAG due to BIS crosslinking at (a) 5 mM, (b) 10 
mM and (c) 15 mM ascorbic acid.  
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Figure 5.12 Normalised Raman intensity of C-C stretching (812 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 1% BIS, 
(b) 3% HEA 1% BIS, (c) 4% HEA 1% BIS and (d) 5% 
HEA 1% BIS for different ascorbic acid concentration. 
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Figure 5.13 Normalised Raman intensity of C-C stretching (812 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 2% BIS, 
(b) 3% HEA 2% BIS, (c) 4% HEA 2% BIS and (d) 5% 
HEA 2% BIS for different ascorbic acid concentration. 
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Figure 5.14 Normalised Raman intensity of C-C stretching (812 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 3% BIS, 
(b) 3% HEA 3% BIS, (c) 4% HEA 3% BIS and (d) 5% 
HEA 3% BIS for different ascorbic acid concentration. 
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Figure 5.15 Normalised Raman intensity of C-C stretching (812 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 4% BIS, 
(b) 3% HEA 4% BIS, (c) 4% HEA 4% BIS and (d) 5% 
HEA 4% BIS for different ascorbic acid concentration. 
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Figure 5.16 Normalised Raman intensity of C=C stretching of HEA 
showing the consumption of HEA at (a) 1%, (b) 2%, (c) 
3%, and (4) 4% BIS and for different HEA concentrations 
at 5 mM ascorbic acid. 
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Figure 5.17 Normalised Raman intensity of C=C stretching of HEA 
showing the consumption of HEA at (a) 1%, (b) 2%, (c) 
3%, and (4) 4% BIS and for different HEA concentrations 
at 10 mM ascorbic acid. 
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Figure 5.18 Normalised Raman intensity of C=C stretching of HEA 
showing the consumption of HEA at (a) 1%, (b) 2%, (c) 
3%, and (4) 4% BIS and for different HEA concentrations 
at 15 mM ascorbic acid. 
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Figure 5.19 Correlation between Do and the initial concentration of 
HEA for different BIS composition at (a) 5 mM, (b) 10 
mM and (c) 15 mM ascorbic acid for the consumption of 
monomer at C=C stretching (2887 cm-1). 
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Figure 5.20 Normalised Raman intensity of C=C stretching (2887 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 1% BIS, 
(b) 3% HEA 1% BIS, (c) 4% HEA 1% BIS and (d) 5% 
HEA 1% BIS for different ascorbic acid concentration. 
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Figure 5.21 Normalised Raman intensity of C=C stretching (2887 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 2% BIS, 
(b) 3% HEA 2% BIS, (c) 4% HEA 2% BIS and (d) 5% 
HEA 2% BIS for different ascorbic acid concentration. 
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Figure 5.22 Normalised Raman intensity of C=C stretching (2887 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 3% BIS, 
(b) 3% HEA 3% BIS, (c) 4% HEA 3% BIS and (d) 5% 
HEA 3% BIS for different ascorbic acid concentration. 
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Figure 5.23 Normalised Raman intensity of C=C stretching (2887 cm-1) 
showing the formation of PHEAG at (a) 2% HEA 4% BIS, 
(b) 3% HEA 4% BIS, (c) 4% HEA 4% BIS and (d) 5% 
HEA 4% BIS for different ascorbic acid concentration. 
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Figure 5.24 Normalised Raman intensity of C=C stretching of BIS 
showing the consumption of BIS at (a) 2%, (b) 3%, (c) 4%, 
and (4) 5% HEA and for different BIS concentrations at 5 
mM ascorbic acid. 
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Figure 5.25 Normalised Raman intensity of C=C stretching of BIS 

showing the consumption of BIS at (a) 2%, (b) 3%, (c) 4%, 
and (4) 5% HEA and for different BIS concentrations at 10 
mM ascorbic acid. 
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Figure 5.26 Normalised Raman intensity of C=C stretching of BIS 
showing the consumption of BIS at (a) 2%, (b) 3%, (c) 4%, 
and (4) 5% HEA and for different BIS concentrations at 15 
mM ascorbic acid. 
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Figure 5.27 Correlation between Do and the initial concentration of BIS 
for different HEA composition at (a) 5 mM, (b) 10 mM 
and 15 mM ascorbic acid for the consumption of 
crosslinker at C=C stretching (2377 cm-1). 
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Figure 5.28 Normalised Raman intensity of C=C stretching (2377 cm-1) 
showing the formation of PHEAG at (a) 1% BIS 2% HEA, 
(b) 2% BIS 2% HEA, (c) 3% BIS 2% HEA and (d) 4% BIS 
2% HEA for different ascorbic acid concentration. 
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Figure 5.29 Normalised Raman intensity of C=C stretching (2377 cm-1) 
showing the formation of PHEAG at (a) 1% BIS 3% HEA, 
(b) 2% BIS 3% HEA, (c) 3% BIS 3% HEA and (d) 4% BIS 
3% HEA for different ascorbic acid concentration. 
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Figure 5.30 Normalised Raman intensity of C=C stretching (2377 cm-1) 
showing the formation of PHEAG at (a) 1% BIS 4% HEA, 
(b) 2% BIS 4% HEA, (c) 3% BIS 4% HEA and (d) 4% BIS 
4% HEA for different ascorbic acid concentration. 
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Figure 5.31 Normalised Raman intensity of C=C stretching (2377 cm-1) 
showing the formation of PHEAG at (a) 1% BIS 5% HEA, 
(b) 2% BIS 5% HEA, (c) 3% BIS 5% HEA and (d) 4% 
BIS 5% HEA for different ascorbic acid concentration. 
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Figure 5.32 Normalised Raman intensity of C-C stretching showing the 
formation of PHEMAG at (a) 2%, (b) 3%, (c) 4%, and (4) 
5% HEMA and for different BIS concentrations at 5 mM 
ascorbic acid. 
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Figure 5.33 Normalised Raman intensity of C-C stretching showing the 
formation of PHEMAG at (a) 2%, (b) 3%, (c) 4%, and (4) 
5% HEMA and for different BIS concentrations at 10 mM 
ascorbic acid. 
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Figure 5.34 Normalised Raman intensity of C-C stretching showing the 

formation of PHEMAG at (a) 2%, (b) 3%, (c) 4%, and (4) 
5% HEMA and for different BIS concentrations at 15 mM 
ascorbic acid. 
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Figure 5.35 Correlation between Do and the initial concentration of 
HEMA for different BIS concentration at (a) 5 mM, (b) 10 
mM and (c) 15 mM ascorbic acid for the formation of 
PHEMAG due to C-C stretching at 812 cm-1. 
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Figure 5.36 Normalised Raman intensity of C-C stretching showing the 
formation of PHEMAG at (a) 1%, (b) 2%, (c) 3%, and (4) 
4% BIS and for different HEMA concentrations at 5 mM 
ascorbic acid. 
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Figure 5.37 Normalised Raman intensity of C-C stretching showing the 
formation of PHEMAG at (a) 1%, (b) 2%, (c) 3%, and (4) 
4% BIS and for different HEMA concentrations at 10 mM 
ascorbic acid. 
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