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of the requirement for the degree of Master of Science 

 
THERMAL DIFFUSIVITY AND DIELECTRIC PROPERTIES  

OF STRONTIUM- DOPED BARIUM TITANATE AND CALSIUM 
TITANATE SYSTEMS 

 
By 

 
NOOR JAWAD RIDHA 

 
April 2009 

 
 
Chairman: W. Mahmood Mat Yunus, PhD 
 
Faculty:  Science 
 
 
In this thesis, the structure, thermal diffusivity and dielectric constant of Ba1-xSrxTiO3 

and Ca1-xSrxTiO3 (0 ≤ x ≤ 1) ceramics were investigated. The samples were prepared 

using solid-state reaction technique with a sintering temperature at 1200 °C. From 

XRD analysis, the BaTiO3 structure obtained was tetragonal and then transformed to 

cubic; whilst, CaTiO3 structure changed from orthorhombic to cubic with an 

intermediate tetragonal phase as the amount of Sr ions increased. Surface 

morphology studies showed that the grain size decreased with increasing Sr ions in 

both Ba1-xSrxTiO3 and Ca1-xSrxTiO3 systems. 

 

Photoflash technique was used to determine the thermal diffusivity of BaTiO3, 

CaTiO3 and SrTiO3 at room temperature. The effect of substitution Sr ions on the    

thermal diffusivity of Ba1-xSrxTiO3 and Ca1-xSrxTiO3 was also investigated. It was 

found that increasing Sr ions in Ba1-xSrxTiO3 samples reduced the thermal diffusivity 

value from 11.302 × 10-3 cm2/s to 6.467 × 10-3 cm2/s and accompanying by a 

decrease in density. Similarly, the thermal diffusivity values of Ca1-xSrxTiO3 system 

decreased from 13.11 × 10-3 cm2/s to 6.467 × 10-3 cm2/s as its density increased.  
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For thermal diffusivity measurement at higher temperature, laser flash technique was 

used. It was noticed that the thermal diffusivity of Ba1-xSrxTiO3 and Ca1-xSrxTiO3 

decreased with increasing temperature from room temperature to 150 °C.  

 

The dielectric properties of BaTiO3, CaTiO3 and SrTiO3 were investigated at various 

temperatures from 25 to 150 °C using AC impedance analyzer. Increasing Sr ions in 

BaTiO3 reduced the dielectric constant from 709 to 246 at frequency 106 Hz at room 

temperature. On the other hand, increasing Sr ions in CaTiO3 raised the dielectric 

constant from 106 to 246, and the highest value was found at x = 0.2. The dielectric 

constant of Ba1-xSrxTiO3 decreased with increasing temperature. The highest 

dielectric constant value was recorded for Ba1-xSrxTiO3 system where x = 0 and 0.1 

at phase change temperatures, 125 °C and 100 °C respectively. 
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Dalam tesis ini, struktur, resapan terma dan pemalar dielektrik bagi seramik Ba1-

xSrxTiO3 dan Ca1-xSrxTiO3 (0 ≤ x ≤ 1) telah dikaji. Sampel telah disediakan dengan 

menggunakan teknik tindak balas pepejal dan disinter pada suhu 1200 °C. Daripada 

analisis XRD, struktur BaTiO3 didapati berubah dari tetragonal kepada struktur 

kubus, manakala bagi struktur CaTiO3, didapati berubah dari ortorombik kepada 

struktur kubus dengan pertengahan fasa tetragonal apabila ion Sr bertambah. Kajian 

morfologi permukaan menunjukkan bahwa saiz butiran mengecil dengan 

meningkatnya Sr ions di dalam kedua- dua sistem Ba1-xSrxTiO3 dan Ca1-xSrxTiO3. 

 

Teknik fotokilat telah digunakan untuk menentukan resapan terma BaTiO3, CaTiO3 

dan SrTiO3 pada suhu bilik. Kesan penggantian ion Sr terhadap respon terma dalam 

BaTiO3 dan CaTiO3 juga telah dikaji. Didepeti bahawa pertambahan ion Sr di dalam 

sampel BaTiO3 mengurangkan nilai kadar resapan terma dari 11.302 × 10-3 cm2/s 

kepada 9 6.467 × 10-3 cm2/s, dan diikuti dengan penurunan dalam ketumpatan. 
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Serupa juga, nilai resapan terma sistem Ca1-xSrxTiO3 berkurangan dari 13.11 × 10-3 

cm2/s kepada 6.467 × 10-3 cm2/s, sebaliknya nilai ketumpatan bertambah.   

 

Untuk pengukuran resapan terma pada suhu yang lebih tinggi, teknik kilatan laser 

telah digunakan. Didapati bahawa resapan terma bagi Ba1-xSrxTiO3 dan Ca1-xSrxTiO3 

menurun dengan kenaikan suhu dari 25 °C hingga 150 °C.   

 

Sifat dielektrik BaTiO3, CaTiO3 dan SrTiO3 diukur pada belbagai suhu dalam julat 

25 °C hingga 150 °C dengan menggunakan penganalisis impedans. Pertambahan ion 

Sr dalam BaTiO3 telah mengurangkan pemalar dielektrik (pada 106 Hz) dari 709 

kepada 246. Sementara itu, pertambahan ion Sr dalam CaTiO3 meningkatkan 

pemalar dielektrik dari 106 kepada 246, dan nilai tertinggi dicapai pada x = 0.2. 

disamping itu, pemalar dielektrik bagi sistem Ba1-xSrxTiO3 dengan x= 0 dan 0.1 

didapati pada suhu perubahan fasa 100 °C dan 125 °C.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Introduction to the Ceramics and its Applications 

 

The term "ceramic" referred to clay-based materials. However, new generations of 

ceramic materials have expanded the scope and number of possible applications. 

Ceramic materials are inorganic compounds, usually oxides, nitrides, or carbides. 

The bonding is very strong either ionic or network covalent. Many adopt crystalline 

structures, but some form glasses. The properties of the materials are a result of the 

bonding and structure.  

 

The most important thermal properties of ceramic materials are heat 

capacity, thermal diffusivity, and thermal conductivity. Many applications of 

ceramics, such as their use as insulating materials, are related to these properties. 

Ceramics can withstand high temperature, are good thermal insulators and do not 

expand greatly when heated. This makes them excellent thermal barriers, for 

applications such as lining industrial furnaces, thermal paint and covering the space 

shuttle to conserve it from high temperatures. The last generation of gas turbines hot 

path components (typically combustion chamber, transition pieces, rotating blades 

and vanes) are protected against the hot gases (>1300°C) by a ceramic thermal 

barrier coating (TBC) with a thickness ranging from 300 μm up to 1 or more 

millimeters (Cernuschi et al., 2004). 

http://matse1.mse.uiuc.edu/ceramics/glos.html#tecl
http://matse1.mse.uiuc.edu/ceramics/glos.html#cond


Ceramics are strong, hard, and durable and have low densities and high melting 

points. This makes them attractive structural materials. One significant drawback is 

their brittleness, but this problem was overcome by the development of new 

materials as example composites.  

 

Ceramics vary in electrical properties from excellent insulators to superconductors. 

Thus, they are used in a wide range of applications. Some are capacitors or 

semiconductors in electronic devices. For example, piezoelectric materials can 

convert mechanical pressure into an electrical signal and are especially useful for 

sensors. 

 

In recent years, much attention was devoted to the development of dielectric materials 

for voltage controlled, frequency-fast phase shifters and filters operating. The 

development in electronic and related industries on dielectric materials has created the 

interest to synthesize new materials with suitable properties for industrial 

requirements (Zhaow, 2006). 

 

One of the electronics which attracted tremendous research interest is BaTiO3 (barium 

titanate) this material has two crystallographic site, i.e. A and B site and the 

modification can lead to new materials with different properties (Walter, 2005). 

Ferroelectrics such as Ba1−xSrxTiO3 (barium strontium titanate) have emerged as 

leading candidates for electronic applications due to their highly nonlinear dielectric 
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