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ABSTRACT

Intraoperative diagnosis of brain tumors remains a challenging problem of modern neurosurgery. A complete
resection of tumor is the most important factor, determining an efficiency of its treatment, while an incomplete
resection, caused by inaccurate detection of tumor margins, increases a probability of the tumor recurrence.
The existing methods of the intraoperative neurodiagnosis of tumors are plagued with limited sensitivity and
specificity; they remain laborious, time-consuming and/or rather expensive. Therefore, the development of novel
methods for the intraoperative diagnosis of gliomas relying on modern instruments of medical imaging is a topical
problem of medicine, physics, and engineering. In our research, we studied the ability of dual-modality imaging
that combines such methods as optical coherence tomography (OCT) and terahertz (THz) pulsed spectroscopy,
for intraoperative diagnosis of brain tumors with a strong emphasize on a human brain gliomas. We performed
experimental studies of the frequency-dependent THz dielectric properties and OCT imaging of healthy (in-
tact) and pathological brain tissues ex vivo in order to analyze the prospect for differentiation between tissue
classes. The observed results highlight a potential of the considered instruments in the label-free intraoperative
neurodiagnostics.

Keywords: terahertz radiation, terahertz pulsed spectroscopy, optical coherence tomography, human brain
tumor, malignant glioma, intraoperative diagnosis, gelatin embedding

1. INTRODUCTION

One of the principal problems of the present-day neurosurgery is intraoperative diagnosis of brain gliomas.1

Efficiency of the therapy strongly depends on the gross total resection of the tumor, and thus it is impor-
tant to accurately reveal glioma margins.2 Several methods have already been applied to differentiate healthy
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brain tissues and gliomas, among them magnetic resonance imaging (MRI),3 Raman spectroscopy,4 and fluo-
rescent imaging based on fluorescence of protoporphyrin IX (PpIX) accumulated in gliomas under the action
of 5-aminolevulinic acid (5-ALA).5,6 Nevertheless, existing tools are rather expensive, massive, time consuming
and/or do not provide satisfactory sensitivity and specificity. Combining diagnostic information from several
cutting-edge modalities of medical imaging could become a good solution of this problem. Terahertz (THz)
pulsed spectroscopy (TPS)7 and optical coherence tomography (OCT)8–10 are prospective tools to differentiate
healthy brain tissues and malignant glioma. One of the major advantages of these techniques is an ability to
reveal endogenous contrast between healthy and pathological tissues, which means that such methods do not
require any labels. These two methods are based on different principles of electromagnetic wave interaction with
matter (in particular with biological tissues); thus potentially lead to obtaining more features of malignancies.

THz radiation interacts with vibrational and rotational modes of molecules, which allows one to observe
”ingerprints” in THz spectra of numerous biomolecules.7,11–13 The contrast in THz properties of healthy and
pathological tissues is considered to be primarily determined by higher water content in tumors,14–16 which results
in higher refractive index and absorption coefficient of tumors comparing to healthy tissues. But reportedly it
also can be affected by lower lipid content17,18 and higher cell nuclei density per volume unit in cancerous
tissues.19 It was shown that methods of THz imaging and spectroscopy are viable tools for diagnosis of different
types of tissue tumors: skin,20–22 breast,23,24 colon tissue,25,26 etc. One of the most dynamical branches of THz
biomedical applications today is diagnosis of brain gliomas possessing different grades according to WHO (World
Health Organization) classification.27–31 Previously an ability to differentiate healthy brain tissues and gliomas
was demonstrated for paraffin-embedded mouse model tissues,28 for rat model of brain glioma in vivo and in vitro
and for human brain tissues in vitro.31 Now the most important challenges of THz neurodiagnosis are collecting
the database of THz characteristics of human brain gliomas possessing different grades and development of
instruments for intraoperative diagnosis including design of effective THz waveguides.32–34

OCT systems usually operate in visible or near-infrared (IR) ranges and are based on interferometric detec-
tion of backscattered light in medium. This method is sensitive to micrometer-scale tissue inhomogeneities, due
to high spatial resolution, and can be used for measuring tissue scattering properties. It is known that scattering
coefficient varies for healthy and pathological tissues which results from different cell density.35,36 Some modal-
ities of OCT were applied for diagnosis of skin,37,38 prostate,39 liver40 tissue diseases, etc. Nowadays methods
of OCT are widely applied in clinics for diagnosis of eye corneal and retinal diseases.41,42 Recently, OCT was
applied for studying in vivo and ex vivo brain diseases43–46 and particularly for diagnosis of brain glioma.47–50

Abovementioned shows that combining TPS and OCT would provide a significant amount of information on
endogenous contrast of brain gliomas and healthy brain tissues and would allow to emphasize prominent principal
components during further processing. In our study we suggest combining the benefits of TPS and OCT for
diagnosis of human brain gliomas. In this pilot research, we study several samples of freshly excised human
brain gliomas and healthy (intact) brain tissues using TPS setup operating in reflection mode and OCT system
operating in near-IR range during first four hours after surgery. We applied embedding of freshly excised brain
tissues in gelatin slabs in order to prevent tissue hydration/dehydration and thus to conserve THz properties
of tissues unaltered for several hours after resection. We reconstructed THz refractive indexes and absorption
coefficients of healthy (intact) brain tissues and gliomas. After that we obtained OCT images of brain gliomas
possessing different grades (I to IV) and intact brain tissue samples and statistically analyzed scattering profiles
of OCT scans. Thus, in the present paper, we considered an ability for development intraoperative label-free
tool for brain glioma diagnosis based on TPS and OCT.

2. TERAHERTZ DIELECTRIC SPECTROSCOPY OF BRAIN GLIOMAS

2.1 Sample preparation

In the present research, we considered more than 20 samples of human brain tissues, namely: 19 glioma samples
possessing different WHO grades (3 samples for grade I, 5 grade II, 3 grade III and 8 grade IV glioma) and 4
healthy (perifocal) brain tissue samples. Brain tissue samples were provided by Burdenko Neurosurgery Institute.
Resections were implemented using fluorescence of PpIX induced by 5-ALA. In our study, we applied TPS
to differentiate high-grade gliomas and intact tissues, and OCT to distinguish intact tissue, low-grade and
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high-grade gliomas. Low-grade (I-II) and high-grade (III-IV) brain gliomas demonstrate low contrast of THz
dielectric properties. In order to prevent tissue hydration/dehydration16 all samples were embedded using gelatin
slabs51 right after the resection. After that brain tissues were fixed in formalin and transported to hystological
examination, where preliminary diagnoses were approved using hematoxylin and eosin (H&E) stained microscopy.

2.2 Measurement of THz dielectric properties

THz dielectric properties of brain tissue samples were measured using TPS setup based on LT-GaAs photo-
conductive antennas applied both for generating and for detecting of broadband THz pulses. THz pulses were
focused by off-axis parabolic mirror on the sample placed on the reference quartz window. The sample was
covered by the gelatin slab in order to isolate brain tissue from atmosphere. The TPS setup was covered by a
cube and the atmosphere inside was purged by nitrogen preventing THz wave absorption by water vapors of the
air.
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Figure 1. Results for THz pulsed spectroscopy of human brain tissues embedded in gelatin: (a) refractive indexes and (b)
absorption coefficients of healthy (intact) brain tissues and high grade gliomas.

We used a method for THz absorption coefficient and refractive index reconstruction described in Refs.22,52

To solve this inverse ill-posed problem, three signals need to be detected: reflected from reference window ER,
from reference window and golden mirror behind it EM, and from reference window and tissue sample behind it
ES. THz complex refractive index ñ = n− i c

2πνα was reconstructed by minimizing the error functional, defined

as the difference between the experimentally obtained transfer function H̃exp and the model one H̃th:

Φ =
∣∣∣|H̃exp − H̃th|2 + |φ[H̃exp]− φ[H̃th]|2

∣∣∣. (1)

here |...| and φ[...] stand for modulus and phase of the function. Fig. 1 demonstrates the average reconstructed
refractive indexes (a) and absorption coefficients (b) of intact brain tissues and high grade brain gliomas. Efficient
frequency range from 0.1 to 1.1 THz is limited by the diffraction limit of focusing system. We considered possible
spatial inhomogeneity of tissue samples by making measurements in several points of tissue surface. Standard
deviation of dielectric properties of each sample is depicted by error bars on the graphs. The obtained curves
are in a good agreement with the previously reported ones.30 We can note the contrast of refractive index and
absorption coefficient of intact tissue and brain glioma, caused by higher water content and structural changes
in pathological tissue. The most significant differences are observed in the frequency range from 0.3 to 0.7 THz.
This could become an advantage for THz intraoperative neurodiagnosis of human brain gliomas using endogenous
contrast of healthy and pathological tissues.

Proc. of SPIE Vol. 10864  1086406-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 08 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3. OPTICAL COHERENCE TOMOGRAPHY OF BRAIN GLIOMAS

For the OCT measurements we apply OCT1300Y system, developed by Institute of Applied Physics RAS, Nizny
Novgorod, Russia.53,54 This setup operates at central wavelength of the source equal to 1300 nm and average
power of radiation 0.75 mW. A single scan contains 256× 400 pixels, corresponding to lateral scanning region of
2 mm. Theoretically achievable spatial resolution in lateral and depth dimensions (in air) is 50 µm and 30 µm,
respectively. The measurement process implied registering of OCT images of intact brain tissues and glioma
samples, and statistical processing of obtained OCT scans.
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Figure 2. OCT data analysis: histogram depicts distribution of slope-parameter for intact brain tissues, low and high
grade gliomas.

It was shown that glioma and intact brain tissue possess different scattering properties, which can be sensed
by OCT. In present study, we obtained 22 B-scans of intact brain tissues, 66 scans of low grade (I-II) glioma
samples and 125 scans of high grade (III-IV) glioma samples. The measurement of scattering characteristics was
based on the analysis of OCT-signal slopes within each A-scan in log-scale and its averaging for each B-scan. The
obtained statistics for the considered tissue classes is demonstrated in Fig. 2. A good separability was obtained
between low-grade glioma and intact tissue classes as well as between low-grade and high-grade gliomas, while
high-grade gliomas and intact tissues could be hardly separated. This means that methods of TPS can be
applied to distinguish intact tissues and high grade gliomas, and OCT can be used for differentiating low- and
high-grades.

4. DISCUSSIONS

The observed results show a potential of combining OCT and TPS methods for intraoperative diagnosis of
malignant brain gliomas relying on detecting of endogenous contrast. The combination of modalities based on
different mechanisms of light-matter interactions should improve accuracy of neurodiagnosis. Data complexing
and correlation analysis of TPS and OCT characteristics should be studied in a further research.

One of the essential drawbacks of TPS and OCT in medical diagnosis is a limited penetration depth of
electromagnetic waves into biological tissues, caused by strong absorption of THz waves by water molecules and
by scattering of visible and near-IR light on cell structures of tissues. Immersion optical clearing agents can
be used for penetration depth enhancement by matching refractive indexes of tissue scatterers and surrounding
media (interstitial field), which is essential in near-IR region55–58 and by reduction of water content in tissues,
essential for THz frequency range.59–62
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5. CONCLUSIONS

We applied the methods of TPS and OCT ex vivo to study their possibility of differentiating intact human
brain tissues and gliomas possessing low and high grades of malignancy. We detected THz signals of brain
tissues using pulsed spectrometer operating in reflection mode, and reconstructed THz refractive indexes and
absorption coefficients using the algorithm for solving the inverse ill-posed problem. After that, we obtained OCT
images of the brain tissue samples and applied statistical approach to emphasize contrast in scattering properties
of intact brain tissues and different grades of brain gliomas. Both TPS and OCT demonstrated an ability to
differentiate intact brain tissues and gliomas, relying only on endogenous contrast of optical characteristics.
Thereby, this work yields preliminary analysis (feasibility test), which aims to objectively uncover strengths and
weaknesses of TPS and OCT from the purpose of their use in intraoperative diagnosis of human brain tumors
before committing to a full-blown study involving measurements and analysis of a large amount of tissue samples,
both ex vivo and in vivo.
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