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This paper addresses testing of nondeterministic FSMs. An implementation FSM
is allowed to be less nondeterministic than its specification, so the reduction
relation between machines is the conformance relation. Execution of a given test
needs to be adaptive to avoid application of unneeded input sequences, since the
test can have different inputs depending on output produced by the
implementation under test in response to previous input. To further reduce testing
efforts during test execution, the paper suggests performing refinement of the
specification FSM by removing traces absent in the implementation, which has
already passed some subtest of a given complete (sound and exhaustive) test. The
test execution process can be terminated as soon as the executed so far subtest is
complete for the current refined version of the specification. The sufficient
conditions formulated in the paper can be used for this purpose.
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The need for adaptive tests for nondeterministic machines has widely been discussed
in various work, see, e.g., [1 – 10], [13, 14], [17 – 21]. When testing a nondeterministic
implementation FSM each input sequence used in a given test needs to be repeatedly
executed to make sure that all the implemented traces with this input sequence are
observed. The number of repetitive applications of a sequence of input stimuli to satisfy
the all-the-weather, aka complete testing assumption [11], is application dependent;
however, it is even unknown when it is sufficient to terminate this process in a general
case. To the best of our knowledge, the work of Hwang et al. [8] is the only attempt in
determining the repetition numbers of test sequences in a probabilistic setting. However,
there has been little work done on minimizing the number of input stimuli of a given
test that need to be executed against a given possibly nondeterministic implementation
FSM.

In this paper, we consider the offline testing of nondeterministic FSMs. As opposed
to online testing, where test generation and execution are merged into a single process,
see, e.g., [3], [14], in offline testing, tests are first generated from a given specification
and then executed against a given implementation. This type of testing avoids repetitive
test generation especially when several implementations (or its versions) have to be
tested against a given specification. In this setting, the overall testing efforts can be
reduced by minimizing a part of given tests that needs to be executed against a
particular implementation.

If both, a specification and its implementations are allowed to be nondeterministic
then the reduction relation between FSMs is a natural choice for a conformance relation,
since an Implementation Under Test (IUT) is allowed to be less nondeterministic than
its specification. Several publications in the area use the notion of a test from the case of
deterministic specification FSMs; where tests are simply input sequences. This creates a
number of problems in defining an adaptive test and formalizing its adaptive execution.
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For this reason, an adaptive test case is presented as a tree in [2, 4 – 7, 9, 17], where in
each node only a single input triggers outgoing transitions.

Hierons in [4, 5], derives an adaptive test assuming that implementation FSMs are
deterministic. The idea is to use candidate machines which may model the behavior of
an implementation FSM, in other words, to refine the fault domain which contains all
possible implementation machines. As a result, the algorithm terminates when an
implementation FSM fails the test or is recognized up to distinguishable states. Thus,
this approach deals with the problem of identification of an implementation FSM, while
the initial problem statement concerns just checking of the implementation which is
usually less expensive than machine identification. Hierons and Ural [7] also address
the problem of adaptive execution of test sequences against a deterministic
implementation. The proposed approach consists in finding such an ordering of input
sequences that minimizes the total number of input sequences that needs to be executed.
In [6], Hierons extends the approach for the case when an implementation FSM can be
non-deterministic. In this paper, in order to terminate traces of a test earlier than in [16]
Hierons refines not the fault domain but the product of the specification and an
implementation FSM when the latter already produced expected output responses to
some input sequences. Termination rules and algorithms in [4 – 6] depend on the num-
ber of states of an implementation FSM, and should be completely reconsidered when
extending the methods proposed there to another fault domain. In [17], we elaborated an
approach to test generation using the notion of a test as a tree FSM. A complete test is
defined as sound and exhaustive, i.e., each conforming IUT (a reduction of the
specification FSM) has to pass the test, while each non-conforming implementation (not
a reduction of the specification FSM) of the fault domain has to fail the test.

All the known methods for deriving tests with respect to the reduction relation keep
the same original specification FSM during test generation, while in this paper, we
propose to refine the specification FSM by removing traces absent in the
implementation, which has already passed some subtest of a given complete (sound and
exhaustive) test. A refined specification usually becomes more deterministic and thus, a
shorter complete test may exist for the refined specification FSM. The test execution
process can be terminated as soon as the executed so far subtest is complete for the
current refined version of the specification. The sufficient conditions for the
completeness of a test with respect to the reduction relation when the upper bound on
the number of states of an IUT is known, formulated in the paper can be used for this
purpose. This approach does not differentiate between deterministic and
nondeterministic implementation FSMs and can be easily extended to other fault
domains with respect to which sufficient conditions for the test completeness are
known. A proposed approach is based on checking experiments with FSMs, which are
usually known to be shorter that the identification experiments; however, additional
research is needed to compare the effectiveness of the proposed approach and that of the
approach in [4] when an implementation FSM is deterministic.

The paper is organized as follows. Section 2 contains basic definitions related to
nondeterministic finite state machines including the reduction relation. Section 3 defines
a test as a nondeterministic acyclic FSM. A method for adaptive test execution of a
given complete test against a given possibly nondeterministic implementation FSM
which is based on a consecutive refinement of a given specification is elaborated and
illustrated on an example in Section 4. Section 5 concludes the paper.
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1. Definitions

Definition 1. A Finite State Machine (FSM) A is a 5-tuple (S, s0, I, O, h), where
• S is a finite set of states with the initial state s0;
• I and O are finite non-empty disjoint sets of inputs and outputs, respectively;
• h is a behavior function h: S × I → 2S×O, where 2S×O is the powerset of S × O. The

function h has two projections h1 and h2: for each (s, a) ∈ S × I, it holds that h1(s, a) =
= {s′| ∃o ∈ O s.t. (s′, o) ∈ h(s, a)} and h2(s, a) = {o | ∃s′ ∈ S s.t. (s′, o) ∈ h(s, a)}.

We slightly abuse the notation h by referring to the behavior function extended to
input words.

An input a is a defined input at state s if h(s, a) ≠ ∅; otherwise, an input a is
undefined at state s.

A word α ∈ (I×O)* of the automaton A× in state s is a trace of A in state s; let Tr(s)
denote the set of all traces of A in state s, while Tr(A) denote the set of traces of A in the
initial state. Given a trace set T, we denote Max(T) the set that contains completed trace
of the set T, i.e., those traces are not proper prefixes of the other traces of T. Given
sequence α ∈ (I×O)*, the input projection of α, denoted α↓I, is a sequence obtained
from α by erasing symbols in O. Input sequence β ∈ I* is a defined input sequence in
state s of A if there exists α ∈ Tr(s) s.t. β = α↓I. We use Ω(s) to denote the set of all
defined input sequences for state s and Ω(A) for the state s0, i.e., for A. Ω(A) = Tr(A)↓I = I*
holds for any complete machine A, while for a partial FSM Ω(A) ⊆ I*.

We use the following categorization of state machines.
Definition 2. FSM A = (S, s0, I, O, h) is
• completely specified (a complete FSM) if h(s, a) ≠ ∅ for all (s, a) ∈ S × I;
• partially specified (a partial FSM) if h(s, a) = ∅ for some (s, a) ∈ S × I;
• trace-harmonized if for each sequence αa ∈ Ω(A) input a is defined at each state

h1(s0, α);
• trivial, if S = {s0} and h(s0, a) = ∅ for all a ∈ I;
• state deterministic if |h1(s, a)| ≤ 1 for all (s, a) ∈ S × I;
• output deterministic if |h2(s, a)| ≤ 1 for all (s, a) ∈ S × I;
• deterministic if |h(s, a)| ≤ 1, i.e., if it is state and output deterministic;
• nondeterministic if |h(s, a)| > 1 for some (s, a) ∈ S × I;
• observable if the automaton A× = (S, s0, I × O, δ), where δ(s, (a,o)) = s′ iff (s′, o) ∈

h(s, a), is deterministic;
• acyclic if its transition diagram is acyclic;
• output-complete if for each pair (s, a), h(s, a) = ∅ or h2(s, a) = O;
• regular if it is observable, output-complete, acyclic and has at each state at most

one defined input; the set of its traces is called regular.
We define several relations between states of observable and traced-harmonized

FSMs.
Definition 3. Given observable and traced-harmonize FSM A = (S, s0, I, O, h) and s,

t ∈ S,
• s and t are (trace-) equivalent, s ≅ t, if Tr(s) = Tr(t);
• t is quasi-equivalent to s, t ⊒ s, if Ω(t) ⊇ Ω(s) and {β | β ∈ Tr(s) & β↓I = α} =

= {β | β ∈ Tr(t) & β↓I = α} for each α ∈ Ω(s);
• t is trace-included into (is a reduction of) s, t ≤ s, if Tr(t) ⊆ Tr(s);
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• s is not a reduction of t, written s ≰ t, if Tr(s) ⊈ Tr(t); if s is not a reduction of t
and there exists an input sequence α ∈ Ω(s) ∩ Ω(t) s.t. {β | β ∈ Tr(s) & β↓I = α} ⊈
{β | β ∈ Tr(t) & β↓I = α} we use the notation s ≰α t in order to refer to the input
sequence α that evidences that s is not a reduction of t; in this case, we say that a trace
β ∈ Tr(s) that is not a trace at state t, i.e., β ∉ Tr(t), distinguishes s from t;

• s and t are r-distinguishable, s ≄ t, if there exists a regular set T of traces s.t.
Max(T) ∩ Tr(s) ∩ Tr(t) = ∅, called a set r-distinguishing s and t; then the set of traces
T ∩ Tr(s) is the r-distinguishing set of s w.r.t. t, denoted d(s, t), and T ∩ Tr(t) is the
r-distinguishing set of t w.r.t. s, denoted d(t, s); we also use the notation s ≄Τ t when we
need to refer to the set T of traces r-distinguishing s and t.

The notion of r-distinguishability (or adaptive distinguishability) is used in several
work, e.g., [15 – 17, 2, 6]; below we briefly sketch how states can be efficiently checked
for the r-distinguishability and how corresponding r-distinguishing sets can be
determined. As usual, for a trace α ∈ Tr(s), s-after-α denotes the state reached by A
when it executes the trace α from state s. If s is the initial state s0 then instead of
s0-after-α we write A-after-α.

Definition 4. Given an FSM A = (S, s0, I, O, h), states s, t ∈ S,
• s and t are r(1)-distinguishable if there exists input a s.t. h2(s, a) ∩ h2(t, a) = ∅;
• given k  > 1, s and t are r(k)-distinguishable, if the states are r(k – 1)-distinguish-

able or there exists an input a ∈ I s.t. for each trace (a,b), b ∈ h2(s, a) ∩ h2(t, a),  states
s-after-(a,b) and t-after-(a,b) are r(k – 1)-distinguishable.

Proposition 1. States s and t are r-distinguishable if there exists k  > 0 s.t. states s
and t are r(k)-distinguishable.

If h2(s, a) ∩ h2(t, a) = ∅ for some input a then the set of traces {(a,b) | b ∈ O}
r-distinguishes states s and t. If the states s and t are r(k)-distinguishable, but not
r(k – 1)-distinguishable and there exists an input a ∈ I s.t. for each b ∈ h2(s, a) ∩
h2(t, a), states s-after-(a,b) and t-after-(a,b) are r(k – 1)-distinguishable, while d(s-after-
(a,b), t-after-(a,b)) and d(t-after-(a,b), s-after-(a,b)) are their r-distinguishing sets,
respectively, then the set of traces d(s, t) = {(a,b) | b ∈ h2(s, a)} ∪ {(a,b)γ | b ∈ (h2(s, a)
∩ h2(t, a)) ∧ γ ∈ d(s-after-(a,b), t-after-(a,b))} is a r-distinguishing set of s w.r.t. t and
d(t, s) = {(a,b) | b ∈ h2(t, a)} ∪ {(a,b)γ | b ∈ (h2(s, a) ∩ h2(t, a)) ∧ γ ∈ d(t-after-(a,b),
s-after-(a,b))} is that of t w.r.t. s [16, 17].

The above relations could also be applied to states from different machines.
Considering the disjoint union of these machines, we have B r A, if and only if t0 r s0,
where r ∈ {≤, ≰, ≄}.

There exists a simple means to characterize the maximal common behavior of two
machines.

Definition 5. Let A = (S, s0, I, O, h) and B = (T, t0, I, O, g) be FSMs. The
intersection of A and B is an FSM A ∩ B = (Q q0, I, O, ϕ) with the state set Q ⊆ S × T,
the initial state (s0, t0) = q0, and the behavior function ϕ: Q × I → 2Q×O, where Q is the
smallest state set s.t. ((s′, t′), o) ∈ ϕ((s, t), a) iff (s′, o) ∈ h(s, a) and (t′, o) ∈ g(t, a).

This operation on machines will be used in refining a given specification FSM. We
also define a complete FSM which contains a given prefix-closed set of traces. This
construction is useful in characterizing the set of implementation machines which have
passed some test and thus shown to contain a certain set of traces of the specification
machine.
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Given a finite set T of traces over the sets I and O, we derive the observable machine
M(T) = <pref(T), ε, I, I, λΤ>, where the state set pref(T) is the set of all prefixes of each
trace of the set T with ε as the initial state, and the transition relation λΤ = {(β, a, βa) | βa
∈ pref(T)}. By construction, the set Tr(M(T)) coincides with the prefix closure of the set
T. We complete the FSM M(T) by adding a designated dnc state that has a self loop
transition for each pair (a, o) ∈ I × O. For each state β ∈ pref(T) and each input a
undefined at state β, we define λΤ(β, a) = {(dnc, o) | o ∈ O } and denote ˆ ( )M T the

completed form of M(T). The set {C | C ⊒ M(T)} contains each FSM C s.t. Tr(C) ⊇ T
and C is a reduction of ˆ ( )M T .

The following proposition indicates how refinement of an FSM can be performed by
using a set of common traces and intersection of machines.

Proposition 2. Given a complete FSM A = (S, s0, I, O, h) and a subset T of traces of
A, for each complete FSM B ∈ {C | C ⊒ M(T)}, if B ≤ A then B ≤ A ∩ ˆ ( )M T .

Proof. Consider FSM B = (Q, q0, I, O, f) of the set {C | C ⊒ M(T)}, i.e., B ⊒ M(T).
Given a trace γ ∈ Tr(A), let α be the longest prefix of γ that is in the prefix closure of T,
i.e., γ = αβ . Then, by definition of ˆ ( )M T , αβ ∈ Tr( ˆ ( )M T . Thus, γ ∈ Tr(A ∩ ˆ ( )M T ).

2. FSM Tests

In this paper, we assume that a specification FSM is a complete observable, but not
necessarily deterministic, machine, while any implementation FSM is complete, but not
necessarily deterministic and observable. One could use a standard procedure for
automata determinization to convert a given FSM into an observable one.

Definition 6. Given initially connected FSM U = (T, t0, I, O, λ), U is a test if it is an
observable acyclic output-complete FSM with the designated pass and fail states, s.t.
λ(t, a) = ∅ implies t ∈ {pass, fail} and if (fail, o) ∈ λ(t, a) then t-after-(a,o′)β = pass
for some o′ ≠ o and (a,o′)β ∈ (I×O)*.

We use the notion of a trivial test to denote a trivial FSM with the single initial pass
state where no input is defined. Given a test U, we further refer to traces which take U
from the initial state to the fail state as to fail traces and denote Trfail(U) the set of all fail
traces. Pass traces are defined as follows, Trpass(U) = Tr(U)\Trfail(U).

Note that inputs (outputs) of the specification machine are also inputs (outputs) of a
test, so a tester, executing such a test, applies inputs of the test to an implementation
under test, observes its outputs and produces a corresponding verdict after observing
completed traces. The tester produces the verdict fail whenever the implementation
FSM executes an input/output sequence that takes the test to the state fail.

The test may have transitions with different inputs from a same state. In several
work, it is not allowed to ensure the controllability of test execution. We leave the
choice of inputs to a tester; executing such a test it simply selects one among alternative
inputs during a particular test run. To execute another input, the tester first uses a
reliable reset operation assumed to be available in any implementation to reset the
implementation to its initial state and then re-executes the preamble taking the test to
this input. Test execution continues until no more executable input sequences in the test
are left. A strategy to achieve this is considered as an implementation detail of the tester
and is not discussed here. Note that a test, as defined above, corresponds to what is
called a test suite in other work, where a test case has no choice between inputs. We
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also assume that all possible output reactions of a non-deterministic implementation to
any input sequence can be observed in testing by repetitive application of the sequence
(the complete testing assumption [11]).

Given two tests U1 = (T1, t10, I, O, λ1) and U2 = (T2, t20, I, O, λ2), U1 is a subtest of U2

if Tr(U1) ⊆ Tr(U2) and Trpass(U1) ∩ Trfail(U2) = ∅. To combine tests, we define the
union of tests.

Definition 7. Let U1 = (T1, t10, I, O, λ1) and U2 = (T2, t20, I, O, λ2) be two tests s.t. the
sets Trpass(U1) and Trfail(U2) as well the sets Trpass(U2) and Trfail(U1) are disjoint and
T1 ∩ T2 = {pass, fail}. The union U1 ∪ U2 of tests U1 and U2 is the initially connected
observable form of an FSM (Q, p0, I, O, ψ), where Q = {p0} ∪ T1 ∪ T2, p0 ∉ T1 ∪ T2,
and the behavior function ψ : Q × I → 2Q×O is defined as follows: for each a ∈ I it holds
thatψ(p0, a) = h(s0, a) ∪ g(t0, a); for each s ∈ T1, ψ(s, a) = h(s, a), and for each t ∈ T2,
ψ(s, a) = g(t, a).  A trace γ of U1 ∪ U2 that is not a proper prefix of another trace is a
pass trace if γ is a pass trace of U1 or U2; otherwise, γ is a fail trace of U1 ∪ U2.

Given a state s of FSM A and a finite prefix closed set T of traces at state s, we
derive the test Us(T) called the test closure of the set T in state s. For each prefix μ(i,o)
∈ (I×O)* of each trace of the set T, the test Us(T) has a fail trace μ(i,o′) for each o′ = O
s.t. μ(i,o′) ∉ T. Each trace γ ∈ T that is not a proper prefix of another trace is a pass
trace of Us(T).

To characterize conformance in this paper, we use the reduction relation (Definition
3). Recall that reduction conformance relation requires that in response to each input
sequence a conforming implementation FSM produces only output sequences of the
specification FSM. Given a complete observable FSM A = (S, s0, I, O, h), let ℑ(Α) be a
set of complete (implementation) machines over the input alphabet I and the output
alphabet O, called a fault domain. FSM B ∈ ℑ(A) is a conforming implementation
machine of A w.r.t. the reduction relation if B ≤ A.

Definition 8. Given the specification FSM A, a test U = (T, t0, I, O, λ), and an
implementation FSM B ∈ ℑ(A),

• B passes the test U, if the intersection B ∩ U has no state where the FSM U is in
the state fail. The test U is sound for FSM A in ℑ(A) w.r.t. the reduction relation, if any
B ∈ ℑ(A), which is a reduction of A, passes the test U.

• B fails U if the intersection B ∩ U has a state where the FSM U is in the state fail.
The test U is exhaustive for FSM A in ℑ(A) w.r.t. the reduction relation, if any B ∈
ℑ(A), which is not a reduction of A, fails the test U.

• The test U is complete for FSM A in ℑ(A) w.r.t. the reduction relation, if it is
sound and exhaustive in ℑ(A) w.r.t. the reduction relation.

The set ℑ(A) that contains all complete FSMs with at most m states is denoted
ℑm(A). A test is m-complete if it is complete in the fault domain ℑm(A). Clearly, an
m-complete test is also complete in any subset of ℑm(A), i.e., an m-complete test is also
k-complete for any k < m.

The following proposition states that a test complete for a refined specification
machine is also complete for the original specification machine once all machines which
do not possess traces used in the process of refinement are excluded from the fault
domain.

Proposition 3. Given the complete specification FSM A, let T be a subset of traces
of A. If a test W is complete for A ∩ ˆ ( )M T  in ℑ(A) then W is complete for A in ℑ(A) ∩

{C | C ⊒ M(T)}.
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Proof. Let W be a complete test for A ∩ ˆ ( )M T . Consider FSM B ∈ ℑ(A) ∩ {C | C

⊒ M(T)} that is a reduction of A. Due to Proposition 2, B is a reduction of A ∩ ˆ ( )M T

and thus, B passes the test W, i.e., W is a sound test for A in ℑ(A) ∩ {C | C ⊒ M(T)}. Let
now B ∈ ℑ(A) ∩ {C | C ⊒ M(T)} be not a reduction of A. In this case, B is not a
reduction of A ∩ ˆ ( )M T , i.e., B fails the test W, and thus, W is exhaustive for A in

ℑ(A) ∩ {C | C ⊒ M(T)}.
Since W is sound and exhaustive for A in ℑ(A) ∩ {C | C ⊒ M(T)}, the test W is

complete for A in ℑ(A) ∩ {C | C ⊒ M(T)}.

3. Testing Nondeterministic Machines

3 . 1 .  S u f f i c i e n t  c o n d i t i o n s  o f  t h e  t e s t  m - c o m p l e t e n e s s

In this section, we formulate conditions stating when a test is m-complete for a given
nondeterministic specification machine, mostly relying on a test generation method
which we elaborated in [17], where, however, sufficient conditions are not stated
explicitly.

Given a specification FSM A, states s, p ∈ S and trace β ∈ Tr(s), let prefs,p(β) be the
set {ω | ω ∈ pref(β) ∧ s-after-ω  ≤ p}. We define a relation ≤s,p on the set prefs,p(β), s.t.
ω ≤s,p ω′ for ω, ω′ ∈ prefs,p(β), if |ω| ≤ |ω′| and s-after-ω  ≤ s-after-ω′.

Proposition 4 [17]. Given a specification FSM A, states s, p ∈ S and trace β ∈ Tr(s),
the relation ≤s,p is a partial order on the set prefs,p(β).

Let ≤s,p be a partial order relation on the set prefs,p(β). Given a chain Cs,p(β) of the
poset (prefs,p(β),≤s,p), the length of Cs,p(β) is denoted l(Cs,p(β)). By definition, we assume
that l(Cs,p(β)) = 0 if the set prefs,p(β) is empty.

A state s ∈ S is deterministically reachable (d-reachable) in FSM A if there exists an
input sequence χ s.t. for each trace α of FSM A with the input projection χ it holds that
A-after-α = s; in this case, the set of all traces of FSM A with the input projection χ is a
d-transfer set for the state s. Given a set Sd of deterministically reachable states of FSM
A, we determine a minimal subset (a set is minimal w.r.t. the inclusion) of the set Sd,
called a d-core of the set Sd, that contains the initial state and, for each state s ∈ Sd, a
state that is a reduction of s. A set K of traces of A is a d-core cover of the set Sd if K has
the empty sequence and for each state s in the d-core of the set Sd, the set K contains a
d-transfer set for the state s. Given a subset R of states of A, we denote Rd = R ∩ Sd and
Kd(R) a d-core cover of the set Rd. For each state p ∈ R ∩ Sd, the set Kd(R) contains a
d-transfer set for a state that is a reduction of state p.

A set R ⊆ S s.t. for all p1, p2 ∈ R, p1 ≠ p2 implies p1 ≄ p2 is called a set of pairwise
r-distinguishable states of A, we use RA to denote the set of all such sets of states of A.
Note that a trivial test is m-complete when there exists R ∈ RA s.t. |R| > m. The reason is
that in this case, the fault domain ℑm(A) has no conforming implementation FSM. In the
following, we assume that m ≥ |R| for all R ∈ RA. We also assume that each singleton
R = {p} is an item of RA; in this case, by definition, the empty sequence is said to
r-distinguish states of R.
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Theorem 1. Given a complete specification FSM A, let U be a sound test for A in
ℑm(A). The test U is m-complete for A if each trace of U that is not a trace of A is a fail
trace and there exists a set Sd of d-reachable states of A, a d-core cover Kd of the set Sd
with the following properties:

• ε ∈ Kd;
• for each trace α ∈ Kd, h1(s0, α) = {s}, and each sequence β of length mn that is a

trace of A, it holds that there exists a pass trace in U with a prefix γ of β s.t. for some set
R ∈ RA and for each p ∈ R there exists a chain Cs,p(γ) s.t. Σp∈Rl(Cs,p(γ)) + |R ∩ Sd| = m + 1,
and for each pair of r-distinguishable states s1 and s2, the set Tr(U) contains the sets
μd(s1, s2) and χd(s2, s1) where A-after-μ = s1, A-after-χ = s2, and μ, χ ∈{ν | ν ∈ Kd(R) ∪
∪p∈RαCs,p(γ)}.

Proof. According to Proposition 13 [17], given B = (T, t0, I, O, g), B ∈ ℑm(A), B ≰ A,
that passes the test U, there exist α ∈ Kd, h1(s0, α) = {s}, αγ ∈ U, s.t. for any set R ∈ RA

if Σp∈Rl(Cs,p(γ)) + |R ∩ Sd| = m + 1 then there exist (s', t) and (s'', t), s' ≄ s'', in the set
{(A ∩ B)-after-ω | ω ∈ (Ki(γ) ∪ ∪p∈RαCs,p(γ))}, where Ki(γ) ⊆ Kd and for each r ∈ (R ∪
{A-after-ω | ω ∈ ∪p∈RαCs,p(γ)}) that has a reduction in the d-core of Sd there exists
σ ∈ Ki(γ) s.t. A-after-σ ≤ r. Let sequences ω1 and ω2 be sequences which take A ∩ B to
(s', t) and (s'', t). According to Theorem 1, the set Tr(U) contains the sets ω1d(s', s'') and
ω2d(s'', s'). By the definition of the sets d(s', s'') and d(s'', s'), the set of traces of FSM B
at state t is not contained in d(s', s'') or in d(s'', s'), and thus, B fails the test U.

For more detail and explanation on m-complete test generation for nondeterministic
FSM, we refer the reader to our previous work [17].

According to Theorem 1, the length of an m-complete test does not significantly
depend on the number of states of the specification FSM, it rather depends on the sets of
d-reachable and r-distinguishable states and the degree of nondeterminism in the
specification FSM. Thus, it is worth to check if given an FSM A = (S, s0, I, O, h) and a
natural m, there exists a more deterministic reduction Am of the FSM A s.t. for each
complete FSM C with at most m states, it holds that if C ≤ A then C ≤ Am. FSM Am is
called an m-reduction of A. According to Theorem 1, we can expect that a shorter
m-complete test can be derived for the specification FSM Am. A straightforward
approach to derive an m-reduction of A is to explicitly enumerate all possible reductions
of A with m states, derive the union of these reductions and intersect the union with the
FSM A. However, such an approach is impractical, since the number of possible
reductions of a given FSM with the given number of states can be exponential. On the
other hand, it is difficult to know in advance whether an obtained m-reduction will be
simpler than the given specification FSM, for example, whether an m-reduction has
fewer states than the FSM A. Moreover, it is an open question what is the relationship
between two m-reductions; i.e., whether any two m-reductions of a given FSM are
equivalent. All the above issues need additional research before using m-reductions in
test derivation.

Another way of making the specification FSM more deterministic is to use some
knowledge about an implementation FSM which can be obtained through testing. For
example, if an implementation FSM is more deterministic that the specification then
after applying some inputs to the implementation FSM and observing the corresponding
output sequences, we could refine the specification FSM. For some applied input
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sequence, only fewer traces with this input projection should be left in the specification
and if T is the set of such traces then the machine ˆ ( )M T  is the “loosest” machine that
can represent each implementation FSM which has T as a subset of the trace set.
According to Proposition 3, a complete test can now be derived for a more deterministic
specification FSM A ∩ ˆ ( )M T  and due to Theorem 1; this test is expected to be shorter
than the one derived for the initial, more nondeterministic, specification FSM A. In the
following section, we formally describe such a refinement of the specification FSM in
adaptive test execution.

3 . 2 .  A d a p t i v e  T e s t  E x e c u t i o n  M e t h o d

A simple minded test execution method would try to repeatedly execute each and
every sequence of input stimuli used in a given test against an implementation under test
and terminate its application only when all the produced traces take the test into pass
state or a trace occurs which takes the test into fail state. As an example, consider the
specification FSM shown on the left-hand side of Figure 1 and the test in Figure 2. The
trace (a,1)(a,0) is one of the shortest traces of the test, this trace uses a shortest sequence
of input stimuli of length two, namely aa, not counting the reset input. At the same time,
if a given implementation produces in response to the input sequence aa the output
sequence 02 instead of 10, the input sequence aa needs be extended to a longest input
sequence, e.g., abbaa. The test shown in Figure 2 contains 13 different input sequences
of the total length of 65 inputs (including resets and excluding prefixes) which need to
be executed in the worst case, when, for example, the implementation is equivalent to
the specification machine. Moreover, in this case, some input sequences should be
executed several times in order to allow an IUT to produce all possible output responses
to each input sequence.

The problem we are trying to address in this section is as follows: can the results of
executing a part of a given test be used to terminate the test execution process earlier?

The idea of the proposed solution is to refine the specification FSM, by removing
traces absent in a given implementation under test, which has already passed some
subtest of a given complete test. The test execution process can be terminated as soon as
the executed so far subtest is complete for the current refined version of the
specification. The sufficient conditions formulated in Section 3 can be used for this
purpose. This idea leads to the following.

Adaptive test execution method for checking whether an implementation under
test with at most m states is a reduction of the specification FSM

Input. A complete FSM A = (S, s0, I, O, h), an m-complete test U = (T, t0, I, O, λ)
for FSM A w.r.t. the reduction relation, and an implementation FSM B in the form of a
procedure Procedure(V) which for a given test V returns fail if B fails V or if B passes V
the non-empty set of completed traces Trpass(V) ∩ Tr(B).

Output. The verdict fail if B is a non-conforming implementation and the verdict
pass if B is a conforming implementation as well as a subtest G of the test U that is a
complete test for A in ℑm(A) ∩ {C | C ⊒ M(Trpass(G))} and a refined specification Ai s.t.
for each complete FSM D ∈ ℑm(A) ∩ {C | C ⊒ M(Trpass(G))}, it holds that if C ≤ A if
and only if C ≤ Ai.

1. Initialize G as a trivial test, i:= 1, Ai:= A.
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2. Choose an arbitrary subtest U′ of U s.t. U′↓I ⊄ G↓I and for each pass trace α ∈ U′,
the subtest U′ contains all the pass traces of U with the input projection α↓I and go to
Step 3. If there is no such subtest then go to Step 7.

3. Call Procedure(U′), where Procedure(U′) = Trpass(U′) ∩ Tr(B) if it does not return
fail, else stop and return the verdict fail.

4. Derive the test closure of Procedure(U′) in the initial state, i.e., the test Ui =
Us0(Procedure(U′)); G:= G ∪ Ui.

5. Determine and reduce the FSM M̂ (Procedure(U′)) by merging its equivalent
states.

6. Increment i by one and derive Ai:= M̂ (Procedure(U′)) ∩ Ai–1. If the test G is not
complete for Ai in ℑm(Ai) according to the sufficient conditions of Theorem 1, then
delete from U each trace which contains α ∈ Trfail(G) as its proper prefix and replace
the pass state U-after-α by fail state and go to Step 2.

7. Return the complete test G for A in the set ℑm(A) ∩ {C | C ⊒ M(Trpass(G))} and
produce the verdict pass.

Theorem 2. The above procedure terminates and produces the pass verdict if and
only if B is a reduction of A.

Proof. The verdict fail can be produced in one of the intermediate steps if and only
the IUT has a trace that is a fail trace of the test U and thus, the verdict fail can be
produced if and only the IUT is not a reduction of A.

Let the test G satisfy sufficient conditions of Theorem 1 for Ai in ℑm(Ai) and the
verdict fail was not produced in one of the intermediate steps, an implementation at
hand is a reduction of Ai and thus, is a reduction of A.

If in Step 2 no new subtest can be chosen then G = Us0(T), where T = Procedure(U).
Three cases are possible for an FSM B ∈ ℑ(A): 1) B is a reduction of ˆ ( )M T ∩ A; 2) B is

a not a reduction of ˆ ( )M T ∩ A, but B is a reduction of A; 3) B is not a reduction of A.
Case 1: Consider a trace γ ∈ Us0(T) ∩ Tr(B). If γ ∈ T then, by construction of Us0(T),

γ is a pass trace in Us0(T). If γ ∉ T then γ is a prefix of a pass trace in Us0(T), since U is
sound for A in ℑ(A).

Case 2: There exists a trace γ ∈ Tr(B) s.t. γ↓I ∈ T↓I. Denote μ the shortest prefix of γ
that is not a trace of ˆ ( )M T ∩ A. By construction of Us0(T), μ is a fail trace in Us0(T).

Case 3: FSM B fails the test U, i.e., FSM B fails the test Us0(T), as the latter
preserves all the fail traces of U. ■

We now comment on the complexity of the above algorithm. The length of a
resulting test suite can only decrease; in the worst case the whole initial test suite will be
applied to an IUT. The intersection of two FSMs has the polynomial complexity w.r.t.
the number of their states. The union of two FSMs, generally, has the exponential
complexity according to the determinization operator. However, in Step 4, the input
projections of G and Ui do not intersect and thus, there is no need to use the
determinization operator. We also can stop to check the sufficient conditions in Step 6
any time facing increasing complexity; though, in this case, a longer resulting test suite
might be obtained. Thus, it is always possible to execute the algorithm in polynomial
time.

The method is illustrated in the next section.
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3 . 3 .  E x a m p l e

Consider the specification and implementation machines, shown in Figure 1. The
specification FSM A with three states is nondeterministic, while the implementation
FSM B with two states is deterministic and chosen to be a reduction of A. We use the
FSM B as an implementation of the procedure Procedure(V) which for a given test V
returns the non-empty set Trpass(V) ∩ Tr(B) of completed pass traces, since B is a
conforming implementation in this example.

 
1 2

3

a/0,2

a/0

a,b/0,1

a/1 
b/0,1 

b/0 b/2
x y

a/0 b/0

b/1

a/1

Fig. 1. The specification A and implementation B FSMs;
initial states are depicted in bold

Assuming that a given implementation has at most two states (as the FSM B), i.e.,
m = 2, we generate an m-complete test U for FSM A w.r.t. the reduction relation using the
method [17]. Note that any two states of the specification A are not r-distinguishable;
states 1 and 3 are d-reachable, thus, Sd = {1, 3}, the d-core cover Kd = {ε, (b,{0, 1})},
where (b,{0, 1}) = {(b,0), (b,1)}. The 2–complete test U is shown in Figure 2, where the
nodes inherit the names of states of the FSM A¸ note that all the deadlock states are pass
states. To reduce the clutter, all the fail traces are omitted, for example, two transitions
from the initial state to the fail state labeled a/2 and b/2 are not shown in the figure.
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Fig. 2. The pass traces of 2-complete test U for the FSM A w.r.t. the reduction relation
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Executing the first step, we initialize G as a trivial test, i:= 1, A1:= A. Next, we select
the right-hand side subtree in Figure 2 (depicted with dotted transitions) for a subtest U′
with the following input projections {baa, bab, bba, bbb)}. The set of completed pass
traces Trpass(U′) = {(b,{0, 1})(a,{0, 1})(a,{0, 1}); (b,{0, 1})(a,{0, 1})(b,{0, 1}); (b,{0,
1})(b,{0, 1})(a,{0, 1}); (b,{0, 1})(b,{0, 1})(b,{0, 1})} contains 32 traces. The procedure
Procedure(U′) returns the set of completed traces Trpass(U′) ∩ Tr(B) = {(b,0)(a,1)(a,1),
(b,0)(a,1)(b,1), (b,0)(b,1)(a,0), (b,0)(b,1)(b,0)}.

In the forth step, we obtain the test closure of Procedure(U′) in the initial state, i.e.,
the test U1 = Us0(Procedure(U′)) (Figure 3).
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Fig. 3. The test U1 = Us0(Procedure(U′)),
where p denotes pass and f – fail states

The fifth step returns the FSM M̂ (Procedure(U′)), which represents all FSMs which
can pass the test U1, shown in Figure 4. The FSM has no equivalent states.
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Fig. 4. The FSM M̂ (Procedure(U′)) in the first iteration

Next, we construct the first refined specification A2 = M̂ (Procedure(U′)) ∩ A1
(Figure 5).
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Fig. 5. The FSM A2 = M̂ (Procedure(U′)) ∩ A1, where states are renamed as follows:
x1 – 1; y3 – 2; p3 – 3; t3 – 4; z1 – 5; z2 – 6; z3 – 7
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The FSM A2 has five d-reachable states, 1, 2, 3, 4, and 7. There are four pairs of
r-distinguishable states, (1, 2), (1, 3), (2, 4), (4, 5). The obtained machine refines the
original specification FSM A, its traces constitute a proper subset of that of A; it is
“more” deterministic than A, at the price of having more states. We delete from U each
trace which contains α ∈ Trfail(G) as its proper prefix. For example, all the traces with
the prefix (b,0) will be deleted from the set of pass traces in Figure 2.  The test G is not
m-complete for A2 and m = 2, according to Theorem 1, as it violates its sufficient
conditions. For example, it contains no trace which starts with the input a.

Step 2 has to be executed again. To satisfy the above mentioned sufficient condition,
we select another subtest U′ of the 2-complete test U (dashed transitions in Figure 2),
with input a followed by a and b. The set of completed pass traces Trpass(U′) =
= {(a,0)(a,{0, 2}), (a,0)(b,{0, 2}), (a,1)(a,{0, 1}), (a,1)(b,{0, 1})} contains eight traces.
Clearly, U′↓I ⊄ G↓I, where the test G = U1, see Figure 3. The procedure Procedure(U′)
returns now the set of completed pass traces Trpass(U′) ∩ Tr(B) = {(a,0)(a0), (a,0)(b.0)}.

In the forth step, we obtain the test closure of Procedure(U′) in the initial state, i.e.,
the test U2 = Us0(Procedure(U′)) and G = U1 ∪ U2 (Figure 6).
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Fig. 6. The tests U2 = Us0(Procedure(U′)) and G = U1 ∪ U2

The fifth step returns now the FSM M̂ (Procedure(U′)), Figure 7, which represents
all the FSMs as its reductions which can pass the test U2, shown in Figure 6. The FSM
has no equivalent states.

 
x ya/0 z

a,b/0,1,2

a,b/0 
b/0,1,2

Fig. 7. The FSM M̂ (Procedure(U′)) in the second iteration

The refined specification FSM becomes now A3
 = M̂ (Procedure(U′)) ∩ A2 (Figure 8).

The reduction relation between states of A2: 1 ≤ 6; 1 ≤ 2 ≤ 7; 5 ≤ 8; 3 ≤ 6; 3 ≤ 4 ≤ 8.
Pairs of r-distinguishable states are (1, 3); (1, 4); (2, 3); (2, 4); (3, 5); (3, 7); (4, 5);
(4, 7). The test G for FSM A3 satisfies the conditions of Theorem 1, i.e., the test G is
2-complete for A3. Due to Proposition 3, the test G is complete for A in ℑ2(A)∩{C |C⊒
M(Trpass(G))}.
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Fig. 8. The FSM A3 = M̂ (Procedure(U′)) ∩ A2, where states are renamed as follows:
x1 – 1; y6 – 2; z2 – 3; z3 – 4; z4 – 5; z5 – 6; z6 – 7; x7 – 8

The original test U (Figure 2) contains, as mentioned above, 13 input sequences of
the total length of 65 inputs (including resets) and all these sequences should be applied
to the given implementation FSM B (Figure 1) if the tester does not take into account
output responses produced by the FSM B, i.e., it executes this test in a preset manner.

However, the tester executes this test adaptively, i.e., it only applies a suffix of an
input sequence that is defined in the test after the output response of B to the prefix of
this sequence. For example, the tester would not apply the input sequence abbab to the
FSM B, since it should be applied only when an IUT has the output response 02 to the
prefix ab, but the FSM B replies with 00. In such adaptive execution of this test against
the given deterministic implementation FSM B (Figure 1), the tester would use ten input
sequences of the total length of 54.

At the same time, the proposed method needs only six input sequences of the total
length of 18. This indicates that refining the specification FSM can bring a significant
saving in testing efforts, especially in dealing with nondeterministic implementation
FSMs which require repeated test runs driven by a same input sequence to observe all
the implemented traces. In fact, each dropped input sequence of the original test would
have been repeatedly executed to make sure that all the implemented traces with this
input projection are observed. The saving tends to increase when a given
implementation FSM is less nondeterministic than its specification FSM.

Conclusion

We considered testing of nondeterministic FSMs, when tests are first generated from
a given specification and then executed against a given implementation FSM. This type
of testing avoids repetitive test generation when several implementations (or its
versions) have to be tested against a given specification. In this setting, the overall
testing efforts can be reduced by minimizing a part of given tests that needs to be
executed against a particular implementation. The novelty of the proposed solution lies
in the iterative refinement of the original specification during adaptive test execution.
The test execution terminates when the executed test is found to be complete for the
refined specification FSM.

Several possible avenues for future work can be indicated. First, we have already
mentioned that characterization of all possible reductions of a given FSM which have
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a given number of states (m-reductions) is an open interesting problem. Then, the
proposed method does not provide any hint on which subtest of a predefined test has
to be chosen at each step of the iteration. It looks like ideas similar to those proposed
in [7] can be of help to address this issue. Finally, our current work is to use the idea
of specification refinement in online testing, thus refining both, the specification and
test.
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