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STATISTICAL ESTIMATION
WITH POSSIBLY INCORRECT MODEL ASSUMPTIONS

We combine a consistent (base) estimator of a population parameter with one or
several other possibly inconsistent estimators. Some or all assumptions used for
calculating the latter estimators may be incorrect. The suggested in the manuscript
approach is not restricted to parametric families and can be easily used for im-
proving efficiency of estimators built under nonparametric or semiparametric
models. The combined estimator minimizes the mean squared error (MSE) in a
family of linear combinations of considered estimators when all variances and co-
variances used in its structure are known. In real life problems these variances and
covariances are estimated generating an empirical version of the combined esti-
mator. The combined estimator as well as its empirical version are consistent. The
asymptotic properties of these estimators are presented. The combined estimator is
applicable when analysts can use several different procedures for estimating the
same population parameter. Different assumptions are associated with the use of
each of non-base estimators. Our estimator is consistent in the presence of wrong
assumptions for non-base estimating procedures. In addition to theoretical results
of this manuscript, simulation studies describe properties of the estimator com-
bining the Kaplan-Meier estimator with the censored data exponential estimator of
a survival curve. Another set of simulation examples combine semi-parametric
Cox regression with exponential regression on right censored data.

Keywords: model misspecification, robust estimation, minimum mean squared
error, multimodel inference.

In many applied problems researchers are challenged with statistical estimation of a
population parameter θ.

In some cases θ is expressed as a functional ( ) ( )g y dF yθ = ∫ , where the real valued

and possibly multidimensional function ( )g y  is known but the distribution ( )F y  may
be either completely unknown (nonparametric case) or unknown with some restrictions
(for example, symmetric or belongs to a parametric family). Different degrees of un-
certainty about ( )F y  are expressed by different sets of assumptions and lead to differ-
ent estimating procedures. The common part is that all of these procedures attempt to
estimate the same θ. The quality of estimation highly depends on how well assumptions
are used in an estimating procedure and whether these assumptions are correct or not.

There are situations when θ is not easily expressed via ( ) ( )g y dF y∫ , for example,

when θ is a regression coefficient or a distribution parameter. Then, a model dependent
interpretation should be applied to θ. For example, θ may be defined as a hazard ratio
between two groups in a proportional hazards regression model. Different assumptions
on a baseline hazard lead to different estimating procedures. Cox model deals with a
nonparametric baseline hazard, Weibull and exponential baseline hazards lead to para-
metric regression models. We emphasize that the interpretation of θ stays the same.
Thus different estimating procedures can compete for being used for θ estimation.
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Often researchers choose a single estimating procedure and proceed as if underlying
assumptions are correct. These procedures start with choosing a functional form of a
model and then proceed with variable selection. A detailed review of model selection
procedures can be found in [1]. The major focus of recent statistical research is on vari-
able selection methods, see Fraiman [5], Radchenko [8] and Fan [4].

Multimodel inference avoids reliance on a single model via combing several models.
Bayesian model averaging is discussed by Hoeting et al. [6]. The frequentist counterpart
in presented by Hjort and Claeskens [7].

Hjort and Claeskens performed averaging over a set of parametric models with the
same parametric form but different number of variables.

In our work we attempt to improve properties of our base estimator by guessing on
additional restrictions and thus creating grounds for using the other possibly more effi-
cient estimators of θ. Our approach can deal with misspecification of a functional model
form as well as with misspecification of the set of variables.

Section 2 derives the estimator. Its asymptotic properties are considered in Section
3. Section 4 illustrates performance of the combined estimator for various scenarios of
survival function estimation.

1. Estimator

Let 1 nY Y, ...,  be an independent sample from an unknown distribution. If there are no

additional information of any kind we can estimate θ via a base estimator (0)ˆ
nθ . Hereaf-

ter n  in a subscript highlights dependence on a sample of size n. We assume that the
base estimator is asymptotically unbiased estimator of θ. Further we assume that there
exist S sets of possibly incorrect assumptions. Each of these S assumptions can be used
for building another estimator of θ, ( )ˆ s

nθ , 1s S= ,..., . If an assumption, say ( )ths′ , is cor-

rect, we may reasonably expect that 
'( )ˆ s

nθ  is a more efficient estimator of θ  than (0)ˆ
nθ .

However, it is not known which of the S  sets of assumptions are correct and which are
not. It is also possible that all sets are false.

In order to avoid dealing directly with different sets of regularity conditions we as-
sume (1) s∀  ( ) ( ) ( )ˆ ,s s s

nn n
E

→∞
= θ → θθ  where (0)θ = θ , (2) ( )ˆ[ ]s

nE θ < ∞ , s∀ , n∀ , (3) un-

der a correctly chosen model ( )( ) ( )ˆ s s
ns nna − θθ  has a finite variance for every n including

its limiting case at n = +∞ , where nsa  is a diverging to +∞  sequence of positive num-
bers as n →∞ . Consider a family of estimators of θ

( )(0) ( ) (0)

1
ˆ ˆ ˆ ˆ( )

S
s

n nsn n n n
s=

Λ = + λ − ,θ θ θ θ∑
where ( )0n n nSΛ = λ ,...,λ . The mean squared error of ˆ ( )nn Λθ  is

( )
2

(0) ( ) (0)(0)

1
ˆ ˆ ˆ

S
s

n nsn n n
s

E
=

⎛ ⎞
− θ + λ − .θ θ θ⎜ ⎟

⎝ ⎠
∑

For every niλ

( ) ( )( ) ( )( )(0) ( ) (0) ( ) (0) ( ) (0)(0)
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆMSE ( ) 2 2 Si i s
n n nsn n n n n n n ns

ni
E E

=

∂ ⎡ ⎤ ⎡ ⎤Λ = −θ − + λ − − ,θ θ θ θ θ θ θ θ⎣ ⎦ ⎣ ⎦∂λ ∑
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or, in a matrix form

( ) ( )(0) (0)ˆ ˆ ˆ ˆ ˆMSE ( ) 2 2 T
n n nn n nn n

n
E E∂ ⎡ ⎤ ⎡ ⎤Λ = − θ + Λ ,θ θ Δ Δ Δ⎣ ⎦⎣ ⎦∂Λ

where

( ) ( )(1) (0) ( ) (0)(1) ( ) ˆ ˆ ˆ ˆˆ ˆ ˆ
TT SS

n n n n n n n= = − ,..., − .,...,Δ θ θ θ θΔ Δ

From

( )ˆMSE ( ) 0nn
n

∂
Λ ≡θ∂Λ

,

we find

( )(0) (0) 1
0 ˆ ˆ ˆ ˆT T

n n n n nnE E−⎡ ⎤ ⎡ ⎤Λ = − −θ .θ Δ Δ Δ⎣ ⎦⎣ ⎦

Since ( )( ){ }ˆ ˆdet T
n nE a a⎡ ⎤− −Δ Δ⎣ ⎦  is minimized at ˆ na E≡ Δ  and ( ){ }ˆ ˆdet cov 0T

n n, ≥Δ Δ ,

the matrix of second derivatives ( )ˆ ˆ ˆMSE ( ) T
n n nnT

n n
E∂ ⎡ ⎤Λ =θ Δ Δ⎣ ⎦∂Λ Λ

 is nonnegative

definite, which assures that 0nΛ  defines the smallest MSE among ˆ ( )nn Λθ . The case
when the determinant is equal to zero corresponds to multiple solutions for 0Λ , but the
MSE stays at its minimum for each of them. The Moore-Penrose generalized inverse
can be used for selecting one of these solutions. Then,

( ) ( )(0) (0) (0) 1
0ˆ ˆ ˆ ˆ ˆ ˆ ˆT T

n n n n n nn n nE E−⎡ ⎤ ⎡ ⎤Λ = − −θθ θ θ Δ Δ Δ Δ⎣ ⎦⎣ ⎦ , (1)

provides the smallest MSE among all ( )ˆ nn Λθ  which is

( ) ( ) ( )2 (0) (0)(0) (0) 1 (0)(0) ˆ ˆˆ ˆ ˆ ˆ ˆ
TT T T

n nn n n n nn nnE E E E−⎡ ⎤ ⎡ ⎤⎡ ⎤− − θ − θ .− θ θ Δ Δ Δ θ Δθ ⎣ ⎦⎣ ⎦ ⎣ ⎦ (2)

Due to the quadratic form at the right hand side the mean squared error of 0ˆ ( )nn Λθ

is never higher than ( )(0)ˆMSE nθ . The formulas (1) and (2) cannot be used directly be-

cause [ ]E ⋅  in their expressions are not known. Applying [ ]Ê ⋅  instead of [ ]E ⋅  leads to

( ) ( )(0) (0) 1(0)
0

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆT T
n n n n n nn n nE E

−⎡ ⎤ ⎡ ⎤Λ = − −θθ θ θ Δ Δ Δ Δ⎣ ⎦⎣ ⎦ (3)

and

( )( ) ( ) ( ) ( )2 (0) (0)(0) 1(0) (0)(0)
0

ˆ ˆ ˆˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆMSE
TT T T

n nnn n n n nn n nnE E EE
⎡ ⎤ −
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤= − −θ −θ .−θθ Λ θ Δ Δ Δ θ Δθ ⎣ ⎦⎣ ⎦ ⎣ ⎦ (4)

Quantities [ ]Ê ⋅  can be plug-in estimators, where the unknown distribution is sub-

stituted by its empirical estimator. Further the estimator with [ ]Ê ⋅  instead of [ ]E ⋅  will
be called empirical combined (EC) estimator. Following Efron [3] and Davidson and
Hinkley [2] we used a nonparametric bootstrap for estimating the unknown [ ]E ⋅ . See
simulation studies in Section 4. Asymptotic properties of ( )0ˆ nn Λθ  and ( )0ˆ ˆ nnθ Λ  are
presented in Section 3.
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2. Asymptotic properties

Large sample properties of ( )ˆ s
nθ  ( 1s S= ,..., ) are usually known, which allow de-

scribing asymptotic results for the combined estimator and its empirical version.
Theorem 1. Let ( ) ( )ˆ ˆi j

n nE < +∞θ θ  ( 0 )i j S, = ,...,  and as n →∞

1. sequences of positive real numbers nia →∞ ,

2. ( )( ) ( )ˆ
d d

i i
ni ni n inaη = −θ →ηθ , where ( ) 0iE η = , ( )i j ijE η η = σ < ∞ , and (0)θ = θ ,

3. 1
0 1ni n ni ia a k k− = → ≤ .

Then, ( )( )0 0ˆ
d d

n n nnaξ = Λ −θ →ξθ  with ( ) ( ) 0nE Eξ → ξ =  and
( ) ( ) 00 0 00 1n i i i SMSE MSE k = ,...,ξ → ξ = σ − σ + σ ×

1
0 0 00 1i j ij i i j j ij i j S

k k k k −

, = ,...,
× σ + σ + σ + σ + τ 0 00 1

T
j j j S

k
= ,...,

σ + σ ,

where 2 ( ) ( )
0lim i j

ij n n n na→∞τ = Δ Δ .

Proof. Since ( )( ) ( )(0)
0ˆ ˆMSE MSEnn nΛ ≤θ θ  by construction, the condition 2 leads to

( ) 0nE ξ → .

( ) ( )2(0)2
0 ˆn n nMSE a E ⎡ ⎤ξ = − θθ⎢ ⎥⎣ ⎦ ( ) ( )(0) (0)2 1

0 ˆ ˆˆ ˆ ˆ ˆ
TT T T

n n n n nn na E E E−⎡ ⎤ ⎡ ⎤⎡ ⎤− − θ − θθ Δ Δ Δ θ Δ⎣ ⎦⎣ ⎦ ⎣ ⎦ =

( )2 1
0 0 0 0 0 0 0ˆ ˆ ˆ ˆ

TT T T
n n n n n n nn n n nE E a E a a E a−⎡ ⎤ ⎡ ⎤ ⎡ ⎤= η − η η .Δ Δ Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (5)

Taking into consideration
( )

0 ˆ i
n na =Δ ( )( ) (0)

0 ˆ ˆi
n n na −θ θ = ( ) ( ) ( )0 ( ) (0)( ) (0) ( ) (0)

0 0ˆ ˆn

ni

a i i i
ni n n n n n nn na a a a−θ + −θ + θ − θθ θ =

= ( )
0 0

i
ni ni n n nk aη + η + Δ ,

and denoting ( )1
T

n n nSk k k= ,..., , ( )n nK diag k= , ( )1
T

n n nSη = η ,...,η  the mean squared
error can be rewritten as

( )MSE nξ = ( ) ( )2
0 0 0 0n n n n n n nE E K a⎡ ⎤⎣ ⎦η − η η + η + Δ ×

( ) ( )1
0 0 0 0

T
n n n n n n n n n nE K a K a− ⎡ ⎤

⎢ ⎥⎣ ⎦
η + η + Δ η + η + Δ ,

( )0 0 0
T

n n n n n nE K a⎡ ⎤⎣ ⎦η η + η + Δ =

= ( ) ( )2
0 0 0 0n n n n n n nE E K a⎡ ⎤⎣ ⎦η − η η + η + Δ

( ) ( )1
0 0 0 0

T
n n n n n n n n n nE K a K a− ⎡ ⎤

⎢ ⎥⎣ ⎦
η + η + Δ η + η + Δ ×

× ( )0 0 0
T

n n n n n nE K a⎡ ⎤⎣ ⎦η η + η + Δ =

( )2 2 ( )
0 0 0 0 0 1

i
n ni n ni n n n n i S

E k E E a⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦ = ,...,
= η − η η + η + η Δ ×

× ( ) ( ) ( )0 0ni nj ni nj ni ni n nj n njk k E k E k Eη η + η η + η η + ( ) 12 2 ( ) ( )
0 0 1

i j
n n n n i j S

E a
−

, = ,...,
η + Δ Δ ×

× 2 ( )
0 0 0 0 1

Tj
nj n nj n n n n j S

k E E a⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ = ,...,
η η + η +η Δ .
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Then, if the inverse exists for every n
( )MSE n n→∞
ξ → 00 0 00 1i i i Sk = ,...,σ − σ + σ ×

×
1

0 0 00 1i j ij i i j j ij i j S
k k k k −

, = ,...,
σ + σ + σ + σ + τ × 0 00 1

T
j j j S

k
= ,...,

σ + σ ,

where 2 ( ) ( )
0lim i j

ij n n n na→∞τ = Δ Δ . Q.E.D.

A note on the inverse. The ijτ  depends on rates of convergence of ( )i
nΔ  and ( )j

nΔ

and their limits.
1. If ( )i

nΔ  converges to a 0const ≠  ( ( )ˆ i
nθ  is not a consistent estimator of θ) and

2 ( )
0

j
n na Δ  does not converge to zero then ijτ = −∞  or ijτ = +∞ .

2. If ( )i
nΔ  converges to a const 0≠  and ( ) 0j

nΔ =  (unbiased estimator n∀ ) then
0ijτ = .

3. If convergence rates of ( )i
nΔ  and ( )j

nΔ  to zero are faster than 0na  each then 0ijτ = .

4. In some cases when rates of convergence are the same (for example, nja n= ,

j∀ ) ijτ  is a different from zero constant.

Hence, some ijτ  may be infinite. However, on a practical side, for every finite n

the ∞  is never reached. In the expression for ( )nMSE ξ  the matrix with elements

( ) ( ) ( ) ( )2 2 ( ) ( )
0 0 0 0

i j
ni nj ni nj ni ni n nj n nj n n n nk k E k E k E E aη η + η η + η η + η + Δ Δ

should be inverted. Denote this matrix as   
1n ij i j S

b′ ′
, = ,...,

=B . The inverse of n
′B  always

exists but not necessarily unique, which is usually a result of linearly dependent rows
(and columns) of n

′B . This comes from linear dependence among some ( )ˆ i
nθ , 1i S= ,..., .

If  det( ) 0n
′ =B  then the use of the Moore-Penrose generalized inverse resolves the mul-

tiplicity problem.
Another problem comes when n

′B  is of high dimensionality. Then, a large sample

size is needed for estimating n
′B . A possible solution is to use only those principle

components which correspond to eigenvalues above some cutoff, say 10% of the sum of
eigenvalues.

Theorem 2. If conditions of Theorem 1 hold then the use of 0ˆ ˆ( )nnθ Λ  instead of

0ˆ ( )nn Λθ  does not change its asymptotic properties.
Proof. The optimal parameter

2 ( )
0 0 0 0 0 1

i
n ni n ni n n n n i S

k E E a⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦ = ,...,
Λ = η η + η + η Δ ×

( ) ( ) ( ) ( ) 12 2 ( ) ( )
0 0 0 0 1

i j
ni nj ni nj ni ni n nj n nj n n n n i j S

k k E k E k E E a
−

, = ,...,
× η η + η η + η η + η + Δ Δ (6)

is a continuous function of ( )ni njE η η  and ( )niE η  i j∀ , , because 0nΛ  can be repre-

sented as a ratio of two polynomials of ( )ni njE η η  and ( )0nE η . The multiplicity of in-
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verses is resolved through the Moore-Penrose generalized inverse, which is unique.
Similarly, 0ˆ ( )nn Λθ  is also a continuous function of ( )nij ni njEσ = η η  and

( )0 0n nEμ = η .
From delta method

0
00

0

( )ˆ ˆˆ( ) ( ) ( )ˆ
S

n n
nijn nijnn n

niji j

∗

, =

∂θ Λ
= Λ + −σσθ Λ θ ∂σ∑ +

( )0
0 0 00

0

( ) ˆˆ( ) ( )n n
n n P nn n

n
o a

∗∂θ Λ
+ −μ = Λ +μ θ∂μ

, (7)

where 0n
∗Λ  is located between 0ˆ nΛ  and 0nΛ . Thus,

( ) ( ) ( )0 0 0 0 00 0ˆ ˆ ˆ ˆˆ ˆ( ) ) ( ) ( ) ( ) )n n n n nn nn n n na a a− θ = − Λ + Λ −θθ Λ θ Λ θ θ =

( )0 0ˆ(1) ( ) )P n nno a= + Λ −θθ , (8)

which assures that asymptotic distributions of 0ˆ ˆ( )nnθ Λ  and 0ˆ ( )nn Λθ  are the same.
Q.E.D.

3. Simulation studies

3 . 1 .  C o m b i n i n g  t h e  K a p l a n - M e i e r  e s t i m a t o r
w i t h  t h e  c e n s o r e d  e x p o n e n t i a l  l i k e l i h o o d  e s t i m a t o r

o f  a  s u r v i v a l  f u n c t i o n

Consider a right censored sample 1 nT T, ..., , where min( )i i iT X C= , , 
d

i XX X F= ∼ ,
d

i CC C F= ∼ , X  is independent of C. This sample is accompanied by ( )i i iI T Cδ = < . If
the exponential family is assumed for X then it depends on a single parameter μ. The
censored data likelihood is

[ ] [ ]1
1 1

( ) exp( )exp( ) exp( )i i i
n n

ii i
i i

L TT Tδ −δ δ

= =

μ = = −μ μ .μ −μ −μ∏ ∏

The maximum of L(μ)is reached at 
1

1 1
ˆ n n

i ii i T
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟= =⎝ ⎠ ⎝ ⎠
μ = δ∑ ∑  leading to

1ˆ ˆ( ) exp( )n t tS = −μ  an estimate of ( )S t , which is consistent if the data actually came
from an exponential distribution. Otherwise, the Kaplan-Meier (KM) estimator [9],

0ˆ ( )n tS , can be used. Our objective is to estimate the survival curve by combing 0ˆ ( )n tS
and 1ˆ ( )n tS .

At every time point KM estimator is asymptotically normal. For finite sample sizes
some normalizing transformations may be needed, see Klein et al. [10] for details. The
combined estimator can be used with the transformed estimators of the survival in a
similar manner.

The combined estimator 0
ˆ ˆ( )n nθ Λ  becomes

( ) [ ]( ) [ ] 12
00 0 ˆˆ ˆ ˆ ˆ( ) ( ) ( ) T

n n nn n nn nt t E t S t ES S S
−

Δ= − − Δ ,Δ Δ
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where 0 1
ˆ ˆˆ ( ) ( )n n nS t S tΔ = −  and ( )nS t  is the combined estimator of ( )S t . Estimating

[ ]( )00ˆ ˆ( ) ( ) T
n nnnE t S tS − ΔΔ  with ( )0 ˆ( )n ncov S t ,Δ  and 2ˆ nE ⎡ ⎤Δ⎣ ⎦  via ( ) 2ˆ ˆn nvar +Δ Δ  we con-

struct the EC estimator

( ) ( ) ( ) ( )( ) 12
00

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )n n n n nnn t t cov S t varSS
−

= − , +Δ Δ Δ Δ

and

( ) ( ) ( ) ( )( ) 12 2
00ˆ ˆ ˆ ˆMSE ( ) ( ) ( )nn n n nnt var t S t varS S cov

−
= − , + .Δ Δ Δ

Simulation settings. To assess performance of ˆ( )S t  we consider two scenarios: (1)

1 exp( )nX X t,..., −∼  (standard exponential) and (2) 2
1 exp( )nX X t,..., −∼  (Weibull

with the scale parameter equal to 1 and its shape is set to 2). In each case, censoring
follows exponential distribution with the rate of 0,75. For estimating the unknown
quantities in 0Λ  we used 100 bootstrap samples. Single experiment estimators of the
survival curve under different sample sizes (30 and 300) and different distributional as-
sumptions (Exponential and Weibull) are presented on Figure 1. In order to assess
MSEs of the estimators 10,000 simulations were performed in each of two Monte-Carlo
experiments (exponential and Weibull) for both sample sizes. MSEs from these Monte-
Carlo simulations are plotted on Figure 1.
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Fig. 1. Four experiments with different sample sizes and distribution. The dotted
line is the parametric EXP(1) estimator. The thin solid line is the Kaplan-Meier
estimator. The thick solid line is the combined estimator
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The behavior of the KM estimator is bounded between 0 and 1 at a fixed sample size
and time point is not necessarily normal, which means that it may take a large sample to
be able to rely on normal approximation.

Figure 2 shows dynamics of the mean squared error for 0
ˆ ( )nS t , 1

ˆ ( )nS t , and ˆ ( )nS t .
The data were drawn from the standard exponential distribution (correct model is used

for building ˆ ( )nS t ) and Weibull (incorrect model assumption is used for ˆ ( )nS t ). Not

surprisingly, the MSE of the 1
ˆ ( )nS t  is always smaller then the MSEs of the other two

estimators, for the first two pictures. On the other hand the Kaplan-Meier produces the
highest MSE among the estimators (this is the price we pay for not using parametric as-

sumptions). The MSE of ˆ ( )nS t  is located between the other two estimators and its ad-
vantage against the KM estimator is clearly seen till 2 5t = . .
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Fig. 2. Monte-Carlo MSEs. The dotted line is the Monte-Carlo MSE of the parametric
EXP(1) estimator. The thin solid line is the Monte-Carlo MSE of the Kaplan-Meier
estimator. The thick solid line is the Monte-Carlo MSE of the combined estimator

The last two pictures calculate ˆ ( )nS t  with a wrong parametric assumption at 30n =
and 300n = . The standard exponential assumption is violated, the data are coming
from a Weibull distribution. In the ranges where the MSE of the fitted standard expo-

nential is much higher than the MSE of the KM estimator, the MSE of ˆ ( )nS t  is close to
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the MSE of the KM estimator. In the place where the exponential survival crosses the

KM survival curve the MSE of the ˆ ( )nS t  is slightly smaller than the KM MSE: at this
time point a wrong parametric assumption leads to an unbiased estimation of the sur-
vival probability (weibull and standard exponential survival curves cross). To the left

( (0 3 0 8)t∈ . , . ) and to the right ( (1 1 1 6)t∈ . , . ) of the crossing area, the MSE of ˆ ( )nS t  is
slightly higher than the MSE of the KM estimator. This slight increase in MSE does not
violate Theorem 2, the MSE increase comes from the variability associated with 0nΛ
estimation. At the same time, moving further away from the crossing point this MSE
difference goes to zero. In all these situations (except probably the crossing point area)

the use of ˆ ( )nS t  is preferable to the use of 1
ˆ ( )nS t .

3 . 2 .  C o m b i n i n g  r e g r e s s i o n  p a r a m e t e r  e s t i m a t o r s
f r o m  p r o p o r t i o n a l  h a z a r d s  a n d  e x p o n e n t i a l  m o d e l s

Cox proportional hazards model allows estimating log hazards ratios (regression co-
efficients of the model) under a nonparametric baseline hazard. However, if a paramet-
ric form of the baseline hazard is known then a Cox model is not a most efficient model
for estimating log hazards ratios. For example, if the baseline hazard is constant then
Cox proportional hazard model can be safely substituted by censored data exponential
regression. Censored data Weibull regression can be used with the Weibull baseline
hazard. If the proportional hazard assumption is violated for one or several covariates,
the stratified on these covariates Cox proportional hazards model can be used. All these
models (stratified Cox, Cox, Weibull, and exponential regressions) adjust for con-
founding effects of the same variables and the interpretation of regression parameters
continue being the same. The difference between models is solely incorporated in the
baseline hazard assumptions. The least restricted of these four is the stratified Cox
model, which is built on stratum specific nonparametric baseline hazards. If we assume
that the hazard in all strata is the same, the Cox model can be used. Further, assigning
Weibull hazard to the baseline only two baseline hazard parameters are to be estimated
(shape and scale). Setting the scale parameter equal to one the Weibull hazard becomes
constant.

In this section we present a Monte-Carlo study with 10,000 repetitions. Cox model
regression parameters will be improved under the constant baseline hazard guess.

Simulation settings. We generate N independent multidimentional observations
( )Y A B C D E F, , , , , , , where (0 5), (0 5), (0 5), (0 5),A Bern B Bern C Bern D Bern. . . .∼ ∼ ∼ ∼

(0 1),E N ,∼  (0 1)F N ,∼  and ( )A B C D E FY Exp A B C D E Fβ +β +β +β +β +β∼ ,
( ) ( 1 0 1 0 5 0 2 0 5)A B C D E Fβ = β ,β ,β ,β ,β ,β = − , , , . , . , − . . Actual sample sizes (N) used with

different simulation settings are presented in captions for Tables 1, 2, 3, and 4.
Monte-Carlo Experiment 1: Constant baseline hazard, six predictors, constant

baseline hazard. Results of 10,000 Monte-Carlo experiments are given in Table 1. This
table shows that MSEs of exponential regression parameter estimates are up to 25%
smaller than MSEs of Cox model regression parameter estimates. This is not surprising
since the baseline hazard is constant in our experiment and a censored data exponential
regression is a valid alternative to the Cox model. MSEs of parameter estimates of the
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EC estimator are up to 10% smaller than MSEs of Cox model regression parameter es-
timates.

T a b l e  1

Regression parameter estimates under an exponential baseline,
( 1 0 1 0 5 0 2 0 5)β = − , , , . , . , − . , the sample size N = 75

ˆ
Aβ ˆ

Bβ ˆ
Cβ ˆ

Dβ ˆ
Eβ ˆ

FβMonte Carlo means
and root MSEs (RMSE) (RMSE) (RMSE) (RMSE) (RMSE) (RMSE)

1 0768− . 0 0119. 1 0680. 0 5412. 0 2244. 0 5407− .
Cox (0 4232). (0 3755). (0 4062). (0 3824). (0 1872). (0 2085).

1 0208− . 0 0124. 1 0159. 0 5109. 0 2119. 0 5101− .
Exponential (0 3497). (0 3096). (0 2987). (0 2988). (0 1716). (0 5373).

1 0618− . 0 0185. 1 0690. 0 5457. 0 2222. 0 5279− .
EC (0 3994). (0 3503). (0 3687). (0 3526). (0 1850). (0 2009).

In order to estimate the unknown expectations we use nonparametric bootstrap. Af-
ter this bootstrap based estimation the EC estimator is not optimal in terms of the small-
est MSE. Moreover, the higher dimensionality of ˆ

nΔ  the more expectations should be

estimated. To balance the dimensionality of ˆ
nΔ  and the amount of noise associated with

its estimation we set to zero all eigenvalues contributing less than 10% from the sum of
all eigenvalues. Thus, only several (less or equal than six, often two) principal compo-
nents are used in the estimating procedure.

Monte-Carlo Experiment 2: constant baseline hazard, six predictors, an incorrect
number of parameters for the exponential model (assumed 0C D E Fβ = β = β = β = ).
Results of 10,000 Monte-Carlo experiments are given in Table 1. From this table we see
that a wrong assumption shows a minor influence on the EC estimator. Moreover, since
maximum likelihood estimators do not provide the smallest MSE and we may occasion-
ally see a better MSE for the EC estimator.

T a b l e  2

Regression parameter estimates under an exponential baseline, ( 1 0 1 0 5 0 2 0 5)β = − , , , . , . , − . ,
75N = . We use an incorrect assumption ( 0)C D E Fβ = β = β = β =  for the exponential model

ˆ
Aβ ˆ

Bβ ˆ
Cβ ˆ

Dβ ˆ
Eβ ˆ

FβMonte Carlo means
and root MSEs (RMSE) (RMSE) (RMSE) (RMSE) (RMSE) (RMSE)

1 1056− . 0 0055− . 1 0930. 0 5521. 0 2224. 0 5431− .
Cox (0 4227). (0 3734). (0 4118). (0 3787). (0 1983). (0 2117).

0 5101− . 0 4995. 0 0 0
Exponential (0 6020). (0 5992). (1 0000). (0 5000). (0 2000). (0 5000).

1 0628− . 0 0178. 1 0168. 0 5148. 0 2145. 0 5250− .
EC (0 4059). (0 3629). (0 3889). (0 3538). (0 1906). (0 2018).

Tables 1 and 2 show only a minor improvement associated with the use of the EC
estimator.
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Monte-Carlo Experiments 3 and 4: constant baseline, 2-predictor case. Consider a
simpler case with ( ) ( 1 1)A Bβ = β ,β = − ,  and 40N = . Table 3 presents results of Ex-
periment 3: a correct guess, constant baseline hazard. Table 4 shows the results of the
Experiment 4: an incorrect guess, we correctly assumed constant baseline hazard but we
also assumed 0Bβ = . We observe a higher decrease of MSE comparing with the 6-
predictor case (Tables 1 and 2).

In Tables 3 and 4 the MSE of the EC estimator is not larger than the MSE of Cox
regression parameter estimators. Moreover, we observe an interesting effect when par-
tially incorrect model assumptions may actually make MSE of the EC estimator smaller
comparing to the Cox model.

T a b l e  3

Regression parameter estimates under different model assumptions
(Cox, exponential, or combined estimators), ( 1 1)β = − , , 40N = .

In this model we use a correct guess that the baseline hazard is constant

ˆ
Aβ ˆ

BβMonte Carlo means
and root MSEs (RMSE) (RMSE)

1 0933− . 1 0420.
Cox (0 5543). (0 5364).

1 0368− . 1 0168.
Exponential (0 4317). (0 3399).

1 0353− . 1 0011.
EC (0 4830). (0 4061).

T a b l e  4

Regression parameter estimates under an exponential baseline and ( 1 1)β = − , ,  40N = .
We guessed that the baseline hazard is constant (correct) and 0Bβ =  (wrong)

ˆ
Aβ ˆ

BβMonte Carlo means
and root MSEs (RMSE) (RMSE)

1 0700− . 1 0976.
Cox (0 6093). (0 5920).

0 4745− . 0
Exponential (0 6842). (1)

0 8662− . 0 6820.
EC (0 4930). (0 5008).

Monte-Carlo Experiment 5: the same as Table 1 but with 500N = . Results of Ex-
periment 5 are presented in Table 5, where we can see results similar to our previous
experiments findings. Slight improvement of MSE are seen for the EC estimator, except
for only one case: the MSE of ˆ

Eβ  became a little bit higher. This is a result of either a

simulation error or 0nΛ  estimation.



98 Sergey S. Tarima, Yuriy G. Dmitriev

T a b l e  5

Regression parameter estimates under constant baseline hazard,
( 1 0 1 0 5 0 2 0 5)β = − , , , . , . , − . , 500N = .

ˆ
Aβ ˆ

Bβ ˆ
Cβ ˆ

Dβ ˆ
Eβ ˆ

FβMonte Carlo means
and root MSEs (RMSE) (RMSE) (RMSE) (RMSE) (RMSE) (RMSE)

1 0180− . 0 0030− . 1 0089. 0 5057. 0 2001. 0 5063− .
Cox (0 1334). (0 1265). (0 1293). (0 1224). (0 0623). (0 0706).

0 0122− . 0 0032. 1 0041. 0 5035. 0 1987. 0 5032− .
Exponential (0 1204). (0 1097). (0 1089). (0 1037). (0 0615). (0 0655).

1 0164− . 0 0037. 1 0087. 0 5061. 0 2003. 0 5063− .
EC (0 1291). (0 1204). (0 1209). (0 1149). (0 0624). (0 0694).

Conclusion

In this manuscript we suggest an estimating procedure combining a consistent esti-
mator of a population parameter with one or several others possibly inconsistent esti-
mators. The combined estimator provides the smallest MSE among all possible linear
combinations between the base and the other estimators. If assumptions used for con-
structing one or more of the non-base estimators are correct than we expect that the
combined estimator will have a smaller MSE than the MSE of the base estimator. If
there is no correlation between the base and non-base estimators, the combined estima-
tor is equal to the base estimator. The combined estimator depends on unknown second
moments. Their estimation is preformed via nonparametric bootstrap leading to the em-
pirical combined (EC) estimator. This estimator uses the first two moments of the esti-
mators incorporated in its structure.

The EC estimator is consistent and can be used for improving efficiency of non-
parametric estimators in the presence of a possibly more efficient parametric estimator.
If the parametric estimator is calculated under an incorrect model assumption, its limit-
ing risk is not higher than the limiting risk of the original nonparametric estimator. A
simulation example for improving efficiency of the Kaplan-Meier estimator with a
parametric model guess illustrates the use of the EC estimator.

Our approach allows to perform multimodel inference in the presence of model mis-
specification. Comparing to Hjort and Claeskens [7] model averaging approach, we do
not restrict our estimating procedure to variable selection in a family of parametric
models. Simulation studies show how a Cox regression parameter estimates can be
combined with a parametric model regression estimates.
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