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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of requirements for the degree of Doctor of Philosophy 

 

PARAMETRIC AND SEMIPARAMETRIC COMPETING RISKS MODELS 
FOR STATISTICAL PROCESS CONTROL WITH RELIABILITY 

ANALYSIS 
 

By 
 

FAIZ AHMED MOHAMED ELFAKI 

 
July 2004 

 

Chairman: Associate Professor Isa Daud, Ph.D. 

Faculty: Science and Environmental Studies 
 
 

The work in this thesis is concerned with the development of techniques for the 

assessment of statistical process control in data that include censored observations. 

Various regression models with censored data are presented and we concentrate on 

four competing risks models namely, two parametric Cox’s model that is, Cox’s with 

Weibull distribution, Cox’s with exponential distribution and two semiparametric 

Cox’s model with subdistribution function that is, the weighted score function (W) 

and censoring complete (CC). The Expectation Maximization (EM) algorithm is 

utilized to obtain the estimate of the parameters in the models. A generated data 

where the failure times are taken as exponentially distributed are used to further 

compare these two parametric models. From the simulation study for this particular 

case, we can conclude that Weibull distribution describes well the nature of the 

model concerned as compared to the exponential distribution in terms of the mean 

value of parameter estimates, bias, and the root means square error. Plots of survival 
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distribution function against failure time are used to examine the predicted survival 

patterns for the two types of failures. 

 

In this thesis we develop a modified Fine and Gray methods to increase the 

sensitivity of the models and these methods are tested and compared. A simulation 

data using subdistribution function for the two types of failure are carried out to 

compare the performance of the modified model. The results of the study indicate the 

models show better result compared to Fine and Gray models. However, the 

weighted score function (W) shows better result compared to the censored complete 

data (CC). Residual-based approaches are used to assess the validity of the two 

models (MW, CC) assumptions. Plots of this residual against failure time are used to 

investigate whether important explanatory variables have been omitted from the 

model. 

 

The study also carries out an investigation of the causes of failure for statistical 

process control. The x  chart, R chart and Cp, and Cpk  are examined for the 

possibility of being used to detect the state of control of the covariates in the two 

competing risks models (Cox’s with Weibull distribution (PHW2) and modification 

of weighted score function (MW)). The result of this study indicates that both models 

are successful in investigating the causes of failure for statistical process control. 

However, the results from the real data sets which involves the measurement of 

stress against three covariates (aluminum, wood and plastic) showed that the tubes 

wrapped on plastic mandrel have excellent crashworthiness performance with respect 

to the x  chart, R chart, Cp, and Cpk. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 
 

MODEL RISIKO BERSAING PARAMETRIK DAN SEMIPARAMETRIK 
BAGI KAWALAN PROSES BERSTATISTIK DENGAN ANALISIS 

KEBOLEHPERCAYAAN 
 

Oleh 
 

FAIZ AHMED MOHAMED ELFAKI 

 
Julai 2004 

 

Pengerusi: Profesor Madya Isa Daud, Ph.D. 

Fakulti: Sains dan Pengajian Alam Sekitar 
 

Kajian di dalam tesis ini adalah berkaitan dengan pembangunan teknik bagi penilaian 

kawalan proses berstatistik bagi data yang mengandungi cerapan tertapis. Pelbagai 

model regresi dengan data tertapis dibincangkan dan tumpuan kajian adalah pada 

empat model risiko bersaing iaitu dua model berparameter Cox (Cox dengan taburan 

Weibull dan Cox dengan taburan eksponen) dan dua model semi-berparameter Cox 

(fungsi skor berpemberat (W) dan tapisan lengkap (CC)). Algoritma Pemaksimuman 

Jangkaan (EM) digunakan bagi menganggar parameter model tersebut. Data yang 

dijana dengan masa kegagalan bertaburan eksponen digunakan bagi tujuan 

perbandingan lanjut kedua-dua model parametrik. Daripada kajian simulasi untuk 

kes ini, dapat disimpulkan bahawa taburan Weibull menjelaskan dengan baik sifat 

model berbanding taburan eksponen dari segi nilai min anggaran parameter, 

kepincangan dan ralat punca min kuasa dua. Plot fungsi taburan kemandirian 
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melawan masa kegagalan digunakan untuk melihat pola-pola kemandirian ramalan 

bagi dua jenis kegagalan. 

 

Dalam tesis, kaedah Fine dan Gray terubahsuai dibangunkan untuk meningkatkan 

kepekaan model. Kaedah ini kemudiannya diuji dan dibandingkan. Data simulasi 

menggunakan fungsi subtaburan bagi dua jenis kegagalan dijalankan untuk 

membanding pencapaian model yang telah diubahsuai. Hasil kajian ini menunjukkan 

model ini menghasilkan keputusan yang lebih baik berbanding model Fine dan Gray. 

Walau bagaimanapun, fungsi skor berpemberat (W) menunjukkan keputusan yang 

lebih baik berbanding data penapisan lengkap (CC). Pendekatan berasaskan reja 

digunakan untuk menilai kesahihan anggapan dua model tersebut (MW dan CC). 

Plot reja melawan masa kegagalan digunakan untuk memeriksa samada 

pembolehubah penerang yang penting telah dikeluarkan daripada model. 

 

Kajian dijalankan juga untuk mengetahui penyebab kegagalan bagi kawalan proses 

berstatistik. Carta x , carta R, Cp dan Cpk dipertimbangkan bagi kemungkinan 

digunakan untuk mengesan keadaan kawalan kovariat dua model risiko bersaing 

(Cox dengan taburan Weibull (PHW2) dan fungsi skor berpemberat terubahsuai 

(MW)). Keputusan kajian menunjukkan kedua-dua model dapat memeriksa 

penyebab kegagalan bagi kawalan proses berstatistik dengan jayanya. Walau 

bagaimanapun, hasil kajian daripada set data sebenar yang melibatkan ukuran 

tegangan melawan tiga kovariat (aluminum, kayu dan plastik) menunjukkan bahawa 

tiub-tiub yang dibaluti plastik ‘mandrel’ memberikan pencapaian ‘crashworthiness’ 

yang cemerlang berdasarkan carta x , carta R, Cp dan Cpk. 
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