

UNIVERSITI PUTRA MALAYSIA

PARALLEL EXECUTION OF RUNGE-KUTTA METHODS
FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

ZAILAN SIRI

FS 2004 22

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Putra Malaysia Institutional Repository

https://core.ac.uk/display/42992748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PARALLEL EXECUTION OF RUNGE-KUTTA METHODS
FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

ZAILAN SIRI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

May 2004

TABLE OF CONTENTS

 Page

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vii
APPROVAL ix
DECLARATION xi
LIST OF TABLES xv
LIST OF FIGURES xvii
LIST OF ABBREVIATIONS xxii

CHAPTER

 I INTRODUCTION 1
 Existence and Uniqueness 2

 Objective of the Study 6

Numerical Solution of Initial Value Problems 3

 Framework of the Study 7

 II LITERATURE REVIEW 9
 Introduction 9
 Literature Review on Parallel Runge-Kutta Methods 9
 Parallel Integration of Initial Value Problems 10
 Parallel Methods for Solution of ODEs 11
 Literature Review on Parallel Computing 15
 Categories of Computers 17

 Memory Architecture 22
 Sequent SE30 Machine 23
 Parallel Languages 26
 Measuring Performance 28

 III DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS 31
 Introduction 31
 Directed Graphs 32
 Parallelism in DIRK Methods 35
 Problem Tested and Numerical Results 41

 Discussions 64
 Discussions on Execution Time 64
 Discussions on Performance Metrics 65

 xii

 xiii

 IV BLOCK EXPLICIT RUNGE-KUTTA METHODS 66
 Introduction 66
 Second-Order BERK Methods 66

 2P1BERK Method 68
 3P1BERK Method 72
 Fourth-Order BERK Methods 75

 Error in the BERK Methods 79
 Problem Tested and Numerical Results 80

 Discussions 96
 Discussions on Execution Time 96

 Discussions on Perfrmance Metrics 97

 V BLOCK DIAGONALLY IMPLICIT RUNGE-KUTTA METHOD 99
 Introduction 99
 Second-Order BDIRK Method 99
 Parallelism in the Second-Order BDIRK Method 105
 Error in the Second-Order BDIRK Method 106
 Problem Tested and Numerical Results 106
 Discussions 117
 Discussions on Execution Time 117
 Discussions on Performance Metrics 117

 VI CONCLUSIONS 118
 Summary 118
 Future Work 121

REFFERENCES 123
APPENDICES 130
BIODATA OF THE AUTHOR 162

Abstract of the thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment
of the requirements for the degree of Master of Science

PARALLEL EXECUTION OF RUNGE-KUTTA METHODS
FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

By

ZAILAN SIRI

May 2004

Chairman: Associate Professor Dr. Fudziah Ismail, Ph.D.

Faculty: Science

As we know Runge-Kutta method is a one step method hence it is quite limited in terms

of implementation in parallel, here we going to exploit and extend the favourable

characteristic of Runge-Kutta method so that they can be implemented in parallel.

In this thesis we are focusing in two types of Runge-Kutta methods. The first one is the

Diagonally Implicit Runge-Kutta (DIRK) method. The method used here is actually

have been tailored made for the purpose of parallel machine where the subsequent

functions evaluations do not depend on the previous function evaluations.

The second family of Runge-Kutta method is the block Runge-Kutta both explicit and

implicit. In this study, we exploit these methods so that we can implement in parallel

mode.

 iii

 iv

The C programming of the methods employed are run on a shared memory Sequent

SE30 parallel computer. All the numerical results are given to illustrate the algorithms

developed for the cases that we were tested. The numerical results show that the parallel

algorithms of diagonally implicit Runge-Kutta (DIRK), block explicit Runge-Kutta

(BERK) and block diagonally implicit Runge-Kutta (BDIRK) methods is better than

sequential modes because the parallel execution time is smaller than sequential

execution time.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

PENYELESAIAN BERANGKA BAGI PERSAMAAN PEMBEZAAN
BIASA MENGGUNAKAN KAEDAH RUNGE-KUTTA SECARA SELARI

Oleh

ZAILAN SIRI

Mei 2004

Pengerusi: Professor Madya Dr. Fudziah Ismail, Ph.D.

Fakulti: Sains

Seperti mana yang diketahui, kaedah Runge-Kutta merupakan kaedah satu langkah,

maka ianya agak terhad untuk diimplimentasikan secara selari. Di sini , apa yang kita

lakukan adalah mengeksploitasi serta memperluaskan sifat-sifat istimewa Runge-Kutta

ini supaya ianya boleh diimplimentasikan secara selari.

Di dalam tesis ini, kita menumpukan kepada dua jenis kaedah Runge-Kutta. Pertama

ialah kaedah Runge-Kutta Pepenjuru Tersirat (RKPT). Kaedah yang telah digunakan di

sini sebenarnya telah diterbitkan sedemikian rupa untuk tujuan mesin selari di mana

pergantungan penilaian fungsi daripada fungsi-fungsi sebelumnya diminimumkan.

Famili Runge-Kutta yang kedua adalah kaedah blok Runge-Kutta, iaitu kaedah Blok

Runge-Kutta Tak Tersirat (BRKTT) dan kaedah Blok Runge-Kutta Pepenjuru Tersirat

 v

 vi

(BRKPT). Di dalam kajian ini, kita menggunakan kaedah blok sedia ada dan

mengeksploitasikan kedua-dua kaedah ini untuk membolehkannya diimplimentasikan

secara selari.

Pengaturcaraan C untuk semua kaedah tersebut telah dilaksanakan dengan menggunakan

komputer selari Sequent SE30 berkongsi ingatan yang terdapat di Universiti Putra

Malaysia (UPM). Kesemua keputusan berangka diberikan untuk mengillustrasikan

algoritma yang dibina untuk kes-kes yang telah diujikan. Keputusan berangka yang

diperolehi menunjukkan bahawa algoritma selari adalah lebih baik daripada mod jujukan

kerana masa pelaksanaan selari lebih pantas daripada masa pelaksanaan jujukan.

ACKNOWLEDGEMENTS

Most of all I would like to thank my supervisor, Dr. Fudziah Ismail from the Department

of Mathematics, Faculty of Science and Environmental Studies, University Putra

Malaysia. She is not only a mathematician with vision but most importantly a kind

person. Her trust has inspired me to make the right research decision.

My sincere thanks to the Committee member Associate Professor Dr. Mohamed Othman,

Head of Communication Technology and Network Department, Faculty of Computer

Science and Information Technology, University Putra Malaysia, for giving more than

just a laboratory space to work in but the understanding of what is “a good programmer”.

My best regards to Dato’ Dr. Mohamed Suleiman from the National Accreditation Board,

who is also the Committee member for his patience and guidance.

I also want to thank all the people who have given me the encouragement and motivation

throughout the study, especially Associate Professor Dr. Nor Aishah Hamzah and all the

staffs of the Institute of Mathematical Sciences, University of Malaya.

Thank you also to the Skim Latihan Akademik Bumiputra unit of University of Malaya

for the financial support.

A special thanks to my wife, Rose Irnawaty Ibrahim for being kind and patient while

editing this text and the valuable suggestion which helped me in writing the thesis.

 vii

 viii

Finally, I wish to express my love and gratitude to all my family and friends, particularly

my parents Encik Siri Dawi and Puan Safiyah Komeng for the continuous support and

love.

LIST OF ABBREVIATIONS

2P1BERK : Two-Point One Block Explicit Runge-Kutta

3P1BERK : Three-Point One Block Explicit Runge-Kutta

4OBERK1 : Fourth-Order Block Explicit Runge-Kutta 1

4OBERK2 : Fourth-Order Block Explicit Runge-Kutta 2

BERK : Block Explicit Runge-Kutta

BDIRK : Block Diagonally Implicit Runge-Kutta

CPU : Central Processing Unit

DIRK : Diagonally Implicit Runge-Kutta

HPF : High Performance FORTRAN

IVP : Initial Value Problem

LTE : Local Truncation Error

MIMD : Multiple Instruction Stream, Multiple Data Stream

MISD : Multiple Instruction Stream, Single Data Stream

MP : Message Passing

ODE : Ordinary Differential Equation

OpenMP : Open Message Passing

PDIRK : Parallel Diagonally Implicit Runge-Kutta

SIMD : Single Instruction Stream, Multiple Data Stream

SISD : Single Instruction Stream, Single Data Stream

SMP : Symmetry Multiprocessing

UPM : University Putra Malaysia

 xxi

LIST OF FIGURES

Figure Page

 2.1 SISD Computer 18

 2.2 SIMD Computer 19

 2.3 MISD Computer 20

 2.4 MIMD Computer 21

 2.5 Shared Memory Parallel Computer 24

3.1 Graph number of processors against speed-up when DIRK1 is

used to solve problem 1 49

3.2 Graph number of processors against speed-up when DIRK2 is

used to solve problem 1 49

3.3 Graph number of processors against speed-up when DIRK3 is

used to solve problem 1 50

3.4 Graph number of processors against efficiency when DIRK1 is

used to solve problem 1 50

3.5 Graph number of processors against efficiency when DIRK2 is
 used to solve problem 1 51

3.6 Graph number of processors against efficiency when DIRK3 is

used to solve problem 1 51

3.7 Graph number of processors against speed-up when DIRK1 is
used to solve problem 2 52

3.8 Graph number of processors against speed-up when DIRK2 is

used to solve problem 2 52

3.9 Graph number of processors against speed-up when DIRK3 is

used to solve problem 2 53

3.10 Graph number of processors against efficiency when DIRK1 is

used to solve problem 2 53

 xvi

3.11 Graph number of processors against efficiency when DIRK2 is
 used to solve problem 2 54

3.12 Graph number of processors against efficiency when DIRK3 is

used to solve problem 2 54

3.13 Graph number of processors against speed-up when DIRK1 is
used to solve problem 3 55

3.14 Graph number of processors against speed-up when DIRK2 is

used to solve problem 3 55

3.15 Graph number of processors against speed-up when DIRK3 is

used to solve problem 3 56

3.16 Graph number of processors against efficiency when DIRK1 is

used to solve problem 3 56

3.17 Graph number of processors against efficiency when DIRK2 is
 used to solve problem 3 57

3.18 Graph number of processors against efficiency when DIRK3 is

used to solve problem 3 57

3.19 Graph number of processors against speed-up when DIRK1 is
used to solve problem 4 58

3.20 Graph number of processors against speed-up when DIRK2 is

used to solve problem 4 58

3.21 Graph number of processors against speed-up when DIRK3 is

used to solve problem 4 59

3.22 Graph number of processors against efficiency when DIRK1 is

used to solve problem 4 59

3.23 Graph number of processors against efficiency when DIRK2 is
 used to solve problem 4 60

3.24 Graph number of processors against efficiency when DIRK3 is

used to solve problem 4 60

3.25 Graph number of processors against speed-up when DIRK1 is
used to solve problem 5 61

3.26 Graph number of processors against speed-up when DIRK2 is

used to solve problem 5 61

 xvii

3.27 Graph number of processors against speed-up when DIRK3 is
used to solve problem 5 62

3.28 Graph number of processors against efficiency when DIRK1 is
used to solve problem 5 62

3.29 Graph number of processors against efficiency when DIRK2 is
 used to solve problem 5 63

3.30 Graph number of processors against efficiency when DIRK3 is

used to solve problem 5 63

 4.1 The Digraph of 2P1BERK Method 71

4.2 The Digraph of 3P1BERK Method 75

4.3 The Digraph of the Fourth-Order BERK Methods 78

4.4 Graph number of processors against speed-up when second-order
 BERK method is used to solve problem 1 86

4.5 Graph number of processors against efficiency when second-order
 BERK method is used to solve problem 1 86

4.6 Graph number of processors against speed-up when second-order
 BERK method is used to solve problem 2 87

4.7 Graph number of processors against efficiency when second-order
 BERK method is used to solve problem 2 87

4.8 Graph number of processors against speed-up when second-order
 BERK method is used to solve problem 3 88

4.9 Graph number of processors against efficiency when second-order
 BERK method is used to solve problem 3 88

4.10 Graph number of processors against speed-up when second-order
 BERK method is used to solve problem 4 89

4.11 Graph number of processors against efficiency when second-order
 BERK method is used to solve problem 4 89

4.12 Graph number of processors against speed-up when second-order
 BERK method is used to solve problem 5 90

4.13 Graph number of processors against efficiency when second-order
 BERK method is used to solve problem 5 90

 xviii

4.14 Graph number of processors against speed-up when fourth-order
 BERK method is used to solve problem 1 91

4.15 Graph number of processors against efficiency when fourth-order
 BERK method is used to solve problem 1 91

4.16 Graph number of processors against speed-up when fourth-order
 BERK method is used to solve problem 2 92

4.17 Graph number of processors against efficiency when fourth-order
 BERK method is used to solve problem 2 92

4.18 Graph number of processors against speed-up when fourth-order
 BERK method is used to solve problem 3 93

4.19 Graph number of processors against efficiency when fourth-order
 BERK method is used to solve problem 3 93

4.20 Graph number of processors against speed-up when fourth-order
 BERK method is used to solve problem 4 94

4.21 Graph number of processors against efficiency when fourth-order
 BERK method is used to solve problem 4 94

4.22 Graph number of processors against speed-up when fourth-order
 BERK method is used to solve problem 5 95

4.23 Graph number of processors against efficiency when fourth-order
 BERK method is used to solve problem 5 95

 5.1 Digraph of Second-Order BDIRK Method 105

 5.2 Graph number of processors against speed-up when BDIRK
method is used to solve problem 1 112

 5.3 Graph number of processors against efficiency when BDIRK
method is used to solve problem 1 112

 5.4 Graph number of processors against speed-up when BDIRK
method is used to solve problem 2 113

 5.5 Graph number of processors against efficiency when BDIRK
method is used to solve problem 2 113

 5.6 Graph number of processors against speed-up when BDIRK
method is used to solve problem 3 114

 xix

 xx

 5.7 Graph number of processors against efficiency when BDIRK
method is used to solve problem 3 114

 5.8 Graph number of processors against speed-up when BDIRK
method is used to solve problem 4 115

 5.9 Graph number of processors against efficiency when BDIRK
method is used to solve problem 4 115

 5.10 Graph number of processors against speed-up when BDIRK

method is used to solve problem 5 116

 5.11 Graph number of processors against efficiency when BDIRK
method is used to solve problem 5 116

LIST OF TABLES

Table Page

 2.1 Memory Classification 22

 2.2 Message Passing Libraries 27

 3.1 Digraphs of Runge-Kutta Methods 33

 3.2 Notations used in the Numerical Tables 43

 3.3 Numerical Results when Problem 1 is Solved using the DIRK1,

DIRK2 and DIRK3 44

 3.4 Numerical Results when Problem 2 is Solved using the DIRK1,

DIRK2 and DIRK3 45

 3.5 Numerical Results when Problem 3 is Solved using the DIRK1,

DIRK2 and DIRK3 46

 3.6 Numerical Results when Problem 4 is Solved using the DIRK1,

DIRK2 and DIRK3 47

 3.7 Numerical Results when Problem 5 is Solved using the DIRK1,

DIRK2 and DIRK3 48

4.1 Numerical Results when Problem 1 is Solved using the
2P1BERK, 3P1BERK, 4OBERK1 and 4OBERK2 81

4.2 Numerical Results when Problem 2 is Solved using the

2P1BERK, 3P1BERK, 4OBERK1 and 4OBERK2 82

4.3 Numerical Results when Problem 3 is Solved using the
2P1BERK, 3P1BERK, 4OBERK1 and 4OBERK2 83

4.4 Numerical Results when Problem 4 is Solved using the

2P1BERK, 3P1BERK, 4OBERK1 and 4OBERK2 84

4.5 Numerical Results when Problem 5 is Solved using the
2P1BERK, 3P1BERK, 4OBERK1 and 4OBERK2 85

5.1 Numerical Results when Problems 1 is Solved using

Second-Order BDIRK Method 107

 xiv

 xv

5.2 Numerical Results when Problems 2 is Solved using
Second-Order BDIRK Method 108

5.3 Numerical Results when Problems 3 is Solved using

Second-Order BDIRK Method 109

5.4 Numerical Results when Problems 4 is Solved using
Second-Order BDIRK Method 110

5.5 Numerical Results when Problems 5 is Solved using

Second-Order BDIRK Method 111

CHAPTER I

INTRODUCTION

In science and engineering, mathematical models are developed to help in the

understanding of physical phenomena. These models often yield an equation that

contains some derivatives of an unknown function. Such an equation is called

differential equation. Two examples of models developed in calculus are the free fall of

a body and the decay of a radioactive substance. Even though the above examples are

easily solved by methods learned in calculus, they do give us some insight into the study

of differential equations in general. Differential equations arise in a variety of areas, not

only the physical sciences but also in such diverse fields as economics, medicine,

psychology and operations research, more recently they have also arisen in models such

as medicine, biology, and anthropology. In this thesis we will restrict our scope to

ordinary differential equations (ODEs) and focus on the initial value problems (IVPs)

and present the Runge-Kutta methods for solving such problems numerically.

 2

Existence and Uniqueness

The IVP for a system of q first order ODEs is defined by:

y´ =f(x,y), x ∈ [a, b], y(a) = y0 (1.1)

where

 y(x) = [y1(x), y2(x), …, yq(x)]T

 f(x, y) = [f1(x, y), f2(x, y), …, fq(x, y)]T

and y0 is a given vector of initial conditions. If the analytical process of finding a

solution y(x) is not feasible, it is still useful to know whether a solution exists and is

unique. Existence serves to justify the use of numerical method and uniqueness is

necessary so that once a solution is found we can be sure that it is the solution to the

equation.

Definition 1.1

A function f(x, y) satisfies a Lipschitz condition with respect to y if there exists a

constant L > 0 such that zyLzxfyxf −≤−),(),(for all The

Lipschitz constant L is independent of x.

].,[bax∈

 3

Theorem 1.1

 The first order IVP

],[,)(];,[),,(0000 baxyxybxxyxfy ∈=′ ∈ =

 has a unique solution y(x) for x0 ≤ x ≤ b if

(a) f(x, y) is continuous in x

(b) f(x, y) satisfies a Lipschitz condition with respect to y.

If both conditions are satisfied, there exists a unique solution to IVP (1.1). The

proof can be seen in Burden (1997).

Numerical Solution of Initial Value Problems

In general there are two classes of methods for approximating the solution of IVP (1.1)

namely one step method and multi-step method. One step method requires only the

value of yn in order to compute the value of yn+1, on the other hand, the p multi-step

method uses several past values {yn, yn+1,…, yn-p+1}. The best known one step methods

are the Runge-Kutta type of methods.

 4

A q-stage Runge-Kutta method (q function evaluations per step) can be written as:

∑
=

+ +=
q

i
iinn kbhyy

1
1 (1.2)

where

 i = 1, 2, …, q (1.3) ,,
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∑

=

i

j
jijnini kayhcxfk

For convenience, the coefficients , and of the Runge-Kutta methods can be

written in the form of a Butcher’s array as follows:

ija ib ic

q

qqqqq

q

q

T

bbb

aaac

aaac

aaac

b

Ac

L

L

MOMMM

L

L

21

21

222212

112111

 = (1.4)

In Butcher’s array (1.4), an explicit Runge-Kutta method will have all the upper

diagonal elements of is zero, that is, ija 0=ija for all j ≥ i. Hence, the explicit Runge-

Kutta methods can be represented by the special Butcher’s array as shown below:

5

qq

qqqqq

bbbb

aaac

aac

ac

121

121

32313

212

0

−

−

L

L

OMMM

 (1.5)

The explicit Runge-Kutta method is easy to implement because the current function

evaluation only depends on the previous function evaluation. That is the evaluation of ki

depends only on the values of kj, (j = 1, 2, …, i-1).

A diagonally implicit Runge-Kutta method is the method where by aij = 0 for all j > i

and the coefficients can be represented as:

q

qqqqq

bbb

aaac

aaac

aac

ac

L

L

OMMM

21

21

3332313

22212

111

 6

The diagonally implicit Runge-Kutta method is harder to implement compared to the

explicit Runge-Kutta method, since meaning that, to

evaluate ki the values of k1, k2, …, ki-1 and ki are needed. Hence, in this case simple

iterations are used for the implementation of the diagonally implicit Runge-Kutta

method. However, the method generally gives a more accurate result compared to the

explicit Runge-Kutta method. Therefore, in this thesis diagonally implicit Runge-Kutta

methods are used to solve the IVP.

∑++=
i

kayhcxfk) ,(
=j

jijniii
1

Another type of Runge-Kutta method is the block Runge-Kutta methods, which

approximate the solution of the IVP (1.1) at more than one point at a time. For example,

the two points block Runge-Kutta method approximate the value of yn+1 and yn+2 at a

time step. Hence the block Runge-Kutta method will take a shorter time to solve IVP

and the nature of the method also makes it suitable for parallel implementations.

Objective of the Study

The objective of this research is to solve IVP using three types of Runge-Kutta method

namely diagonally implicit Runge-Kutta (DIRK) methods, block explicit Runge-Kutta

(BERK) methods and block diagonally implicit Runge-Kutta (BDIRK) methods in

sequential and in parallel. The numerical results both for the sequential and parallel

 7

modes for the three types of Runge-Kutta method are tabulated and compared to

determine their performance.

Framework of the Study

This thesis consists of six chapters. Chapter I presents a brief introduction of ODE and

IVP, followed by numerical methods to approximate the solutions of the IVP. A brief

introduction to Runge-Kutta method is also given and their suitability to be implemented

in parallel is discussed.

In Chapter II, we discussed the relevant literature. The first part is literature on

parallelism of Runge-Kutta methods and the second is literature on parallel computing.

Literature on parallelism of Runge-Kutta methods can be divided into two subdivisions

that is parallel integration of IVPs and parallel methods for solution of ODEs. The

second part of the chapter covers the classification of computer, programming

languages, program design and performance considerations.

In Chapter III, the concept of directed graph is introduced and DIRK methods derived by

Iserles and Nørsett (1990) are used to solve ODEs sequentially and in parallel.

Numerical results based on these two modes are tabulated and compared.

