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As we know Runge-Kutta method is a one step method hence it is quite limited in terms 

of implementation in parallel, here we going to exploit and extend the favourable 

characteristic of Runge-Kutta method so that they can be implemented in parallel. 

 

In this thesis we are focusing in two types of Runge-Kutta methods.  The first one is the 

Diagonally Implicit Runge-Kutta (DIRK) method.  The method used here is actually 

have been tailored made for the purpose of parallel machine where the subsequent 

functions evaluations do not depend on the previous function evaluations. 

 

The second family of Runge-Kutta method is the block Runge-Kutta both explicit and 

implicit.  In this study, we exploit these methods so that we can implement in parallel 

mode. 
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The C programming of the methods employed are run on a shared memory Sequent 

SE30 parallel computer.  All the numerical results are given to illustrate the algorithms 

developed for the cases that we were tested.  The numerical results show that the parallel 

algorithms of diagonally implicit Runge-Kutta (DIRK), block explicit Runge-Kutta 

(BERK) and block diagonally implicit Runge-Kutta (BDIRK) methods is better than 

sequential modes because the parallel execution time is smaller than sequential 

execution time.   
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Seperti mana yang diketahui, kaedah Runge-Kutta merupakan kaedah satu langkah, 

maka ianya agak terhad untuk diimplimentasikan secara selari.  Di sini , apa yang kita 

lakukan adalah mengeksploitasi serta memperluaskan sifat-sifat istimewa Runge-Kutta 

ini supaya ianya boleh diimplimentasikan secara selari. 

 

Di dalam tesis ini, kita menumpukan kepada dua jenis kaedah Runge-Kutta.  Pertama 

ialah kaedah Runge-Kutta Pepenjuru Tersirat (RKPT).  Kaedah yang telah digunakan di 

sini sebenarnya telah diterbitkan sedemikian rupa untuk tujuan mesin selari di mana 

pergantungan penilaian fungsi daripada fungsi-fungsi sebelumnya diminimumkan. 

 

Famili Runge-Kutta yang kedua adalah kaedah blok Runge-Kutta, iaitu kaedah Blok 

Runge-Kutta Tak Tersirat (BRKTT) dan kaedah Blok Runge-Kutta Pepenjuru Tersirat 

 v
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(BRKPT).  Di dalam kajian ini, kita menggunakan kaedah blok sedia ada dan 

mengeksploitasikan kedua-dua kaedah ini untuk membolehkannya diimplimentasikan 

secara selari. 

 

Pengaturcaraan C untuk semua kaedah tersebut telah dilaksanakan dengan menggunakan 

komputer selari Sequent SE30 berkongsi ingatan yang terdapat di Universiti Putra 

Malaysia (UPM).  Kesemua keputusan berangka diberikan untuk mengillustrasikan 

algoritma yang dibina untuk kes-kes yang telah diujikan.  Keputusan berangka yang 

diperolehi menunjukkan bahawa algoritma selari adalah lebih baik daripada mod jujukan 

kerana masa pelaksanaan selari lebih pantas daripada masa pelaksanaan jujukan.   
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CHAPTER I 

 

INTRODUCTION 

 

 

In science and engineering, mathematical models are developed to help in the 

understanding of physical phenomena.  These models often yield an equation that 

contains some derivatives of an unknown function.  Such an equation is called 

differential equation.  Two examples of models developed in calculus are the free fall of 

a body and the decay of a radioactive substance.  Even though the above examples are 

easily solved by methods learned in calculus, they do give us some insight into the study 

of differential equations in general.  Differential equations arise in a variety of areas, not 

only the physical sciences but also in such diverse fields as economics, medicine, 

psychology and operations research, more recently they have also arisen in models such 

as medicine, biology, and anthropology.  In this thesis we will restrict our scope to 

ordinary differential equations (ODEs) and focus on the initial value problems (IVPs) 

and present the Runge-Kutta methods for solving such problems numerically. 
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Existence and Uniqueness 

 

The IVP for a system of q first order ODEs is defined by: 

 

y´ =f(x,y),   x ∈ [a, b],   y(a) = y0                                (1.1) 

 

where 

 y(x) = [y1(x), y2(x), …, yq(x)]T 

 f(x, y) = [f1(x, y), f2(x, y), …, fq(x, y)]T 

 

and y0 is a given vector of initial conditions.  If the analytical process of finding a 

solution y(x) is not feasible, it is still useful to know whether a solution exists and is 

unique.  Existence serves to justify the use of numerical method and uniqueness is 

necessary so that once a solution is found we can be sure that it is the solution to the 

equation. 

 

Definition 1.1 

A function f(x, y) satisfies a Lipschitz condition with respect to y if there exists a 

constant L > 0 such that zyLzxfyxf −≤− ),(),( for all   The 

Lipschitz constant L is independent of x. 

].,[ bax∈
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Theorem 1.1 

 The first order IVP 

 

],[       ,)(       ];,[       ),,( 0000 baxyxybxxyxfy ∈=′  ∈ =

 

 has a unique solution y(x) for x0  ≤   x   ≤   b if 

(a) f(x, y) is continuous in x 

(b) f(x, y) satisfies a Lipschitz condition with respect to y. 

 

If both conditions are satisfied, there exists a unique solution to IVP (1.1).  The 

proof can be seen in Burden (1997). 

 

 

Numerical Solution of Initial Value Problems 

 

In general there are two classes of methods for approximating the solution of IVP (1.1) 

namely one step method and multi-step method.  One step method requires only the 

value of yn in order to compute the value of yn+1, on the other hand, the p multi-step 

method uses several past values {yn, yn+1,…, yn-p+1}.  The best known one step methods 

are the Runge-Kutta type of methods. 
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A q-stage Runge-Kutta method (q function evaluations per step) can be written as:  

∑
=

+ +=
q

i
iinn kbhyy

1
1                                                    (1.2) 

where  

           i = 1, 2, …, q                               (1.3)                        ,,
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∑

=

i

j
jijnini kayhcxfk

  

For convenience, the coefficients ,  and of the Runge-Kutta methods can be 

written in the form of a Butcher’s array as follows:   

ija ib ic

 

q

qqqqq

q

q

T

bbb

aaac

aaac

aaac

b

Ac

L

L

MOMMM

L

L

21

21

222212

112111

           =                           (1.4) 

 

In Butcher’s array (1.4), an explicit Runge-Kutta method will have all the upper 

diagonal elements of  is zero, that is, ija 0=ija  for all j ≥ i.  Hence, the explicit Runge-

Kutta methods can be represented by the special Butcher’s array as shown below: 

  



 

 

5

 

qq

qqqqq

bbbb

aaac

aac

ac

121

121

32313

212

0

−

−

L

L

OMMM

                           (1.5) 

The explicit Runge-Kutta method is easy to implement because the current function 

evaluation only depends on the previous function evaluation.  That is the evaluation of ki 

depends only on the values of kj, (j = 1, 2, …, i-1). 

 

A diagonally implicit Runge-Kutta method is the method where by aij = 0 for all j > i 

and the coefficients can be represented as: 

q

qqqqq

bbb

aaac

aaac

aac

ac

L

L

OMMM

21

21

3332313

22212

111
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The diagonally implicit Runge-Kutta method is harder to implement compared to the 

explicit Runge-Kutta method, since  meaning that, to 

evaluate ki the values of k1, k2, …, ki-1 and ki are needed.  Hence, in this case simple 

iterations are used for the implementation of the diagonally implicit Runge-Kutta 

method.  However, the method generally gives a more accurate result compared to the 

explicit Runge-Kutta method.  Therefore, in this thesis diagonally implicit Runge-Kutta 

methods are used to solve the IVP. 

∑++=
i

kayhcxfk )  ,(
=j

jijniii
1

   

Another type of Runge-Kutta method is the block Runge-Kutta methods, which 

approximate the solution of the IVP (1.1) at more than one point at a time.  For example, 

the two points block Runge-Kutta method approximate the value of yn+1 and yn+2 at a 

time step.  Hence the block Runge-Kutta method will take a shorter time to solve IVP 

and the nature of the method also makes it suitable for parallel implementations.   

 

 

Objective of the Study 

 

The objective of this research is to solve IVP using three types of Runge-Kutta method 

namely diagonally implicit Runge-Kutta (DIRK) methods, block explicit Runge-Kutta 

(BERK) methods and block diagonally implicit Runge-Kutta (BDIRK) methods in 

sequential and in parallel.  The numerical results both for the sequential and parallel 
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modes for the three types of Runge-Kutta method are tabulated and compared to 

determine their performance. 

 

 

Framework of the Study 

 

This thesis consists of six chapters.  Chapter I presents a brief introduction of ODE and 

IVP, followed by numerical methods to approximate the solutions of the IVP.  A brief 

introduction to Runge-Kutta method is also given and their suitability to be implemented 

in parallel is discussed. 

 

In Chapter II, we discussed the relevant literature. The first part is literature on 

parallelism of Runge-Kutta methods and the second is literature on parallel computing.  

Literature on parallelism of Runge-Kutta methods can be divided into two subdivisions 

that is parallel integration of IVPs and parallel methods for solution of ODEs.  The 

second part of the chapter covers the classification of computer, programming 

languages, program design and performance considerations.  

 

In Chapter III, the concept of directed graph is introduced and DIRK methods derived by 

Iserles and Nørsett (1990) are used to solve ODEs sequentially and in parallel.  

Numerical results based on these two modes are tabulated and compared. 

 

  


