

UNIVERSITI PUTRA MALAYSIA

EFFECTS OF MULBERRY (*Morus alba*) FOLIAGE SUPPLEMENTATION ON SHEEP FED WITH RICE STRAW

DWI YULISTIANI

FP 2008 9

EFFECTS OF MULBERRY (*Morus alba*) FOLIAGE SUPPLEMENTATION ON SHEEP FED WITH RICE STRAW

DWI YULISTIANI

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2008

EFFECTS OF MULBERRY (*Morus alba*) FOLIAGE SUPPLEMENTATION ON SHEEP FED WITH RICE STRAW

By

DWI YULISTIANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the requirements for the Degree of Doctor of Philosophy

January 2008

TABLE OF CONTENTS

Page

DE	DICA	ATION		ii
ABSTRACT			iii	
ABSTRAK				vi
ACKNOWLEDGEMENTS				ix
AP	PRO	VAL		xi
DE	CLA	RATIO	N N	xiii
LIS	ST OI	F TABI	LES	xviii
LIS	ST OI	F FIGU	RES	XX
LIS	ST OI	F PLAT	`ES	xxi
LIS	ST OI	F ABBF	REVIATION	xxii
CH	IAPT	ER		
1	INT	RODU	CTION	1
2	LIT	ERATU	JRE REVIEW	5
	2.1	Strate	gies of the utilization of tropical feed resources	5
		2.1.1	Factors affecting digestibility of fibrous crop residues	5
		2.1.2	Treatment of low quality roughages	12
		2.1.3	Supplementation strategies for low quality roughages	14
	2.2	The us	se of mulberry as ruminant feed	25
		2.2.1	Biomass production	25
		2.2.2	The nutritional value of mulberry	27
		2.2.3	The effect of feeding mulberry on animal performance	31
	2.3	Digest	tion and metabolism in ruminants fed fibrous feed	33
		2.3.1	Rumen fermentation	33
		2.3.2	Microbial protein production	37
	2.4	Concl	usion	40
3	RIC	E STRA	MENT OF FERMENTATION OF MULBERRY- AW BASED DIET THROUGH SUPPLEMENTATION ENTABLE ENERGY	42
	3.1	Introd	uction	42
	3.2	Mater	ials and methods	43
		3.2.1	Feed	43
		3.2.2	In vitro gas production technique	46

		3.2.3	Chemical analyses	52
		3.2.4	Statistical analyses	53
	3.3	Result	S	53
		3.3.1	Chemical composition and fermentation kinetics of feed ingredients	53
		3.3.2	Fermentation kinetics of the diet	56
		3.3.3	In vitro true organic matter digestibility	61
		3.3.4	Ruminal pH and volatile fatty acid	64
	3.4	Discus	ssion	67
	3.5	Conclu	usions	77
1	BRA SOU	AN AS VRCES	ENTATION OF MULBERRY AND UREA-RICE 5 FERMENTABLE ENERGY AND PROTEIN IN UREA-TREATED RICE STRAW BASAL DIET NANTS	78
	4.1	Introdu	uction	78
	4.2	Materi	als and Method	80
		4.2.1	In Vivo study	80
		4.2.2	In situ study	84
		4.2.3	Statistical Analyses	87
	4.3	Result	S	87
		4.3.1	In Vivo study	87
		4.3.2	In situ study	92
	4.4	Discus	ssion	98
	4.5	Conclu	usions	110
5	LEU	CAENA	ION OF MULBERRY AND MIXED MULBERRY- A BY <i>IN VITRO</i> GAS PRODUCTION TECHNIQUE WTH RESPONSE	112
	5.1	Introdu	uction	112
	5.2	Materi	als and Methods	113
		5.2.1	Digestibility of mulberry and Leucaena foliage mixture by <i>in vitro</i> gas production technique	113
		5.2.2	Feeding trial of lambs fed urea-treated rice straw supplemented with mulberry or mulberry- <i>leucaena</i> foliage mixture	117
		5.2.3	Statistical analyses	121
	5.3	Result	S	121
				XV

		5.3.1	Assessment of <i>in vitro</i> digestibility of mulberry and <i>Leucaena</i> foliage mixture as measured by <i>in vitro</i> gas production technique	121
		5.3.2	Feed utilization and growth of lambs fed urea treated rice straw basal diet with mulberry, mulberry and <i>Leucaena</i> foliage mixture supplements	129
	5.4	Discu	ssion	135
		5.4.1	<i>in vitro</i> digestibility of mulberry and <i>Leucaena</i> foliage mixture as measured by <i>in vitro</i> gas production technique	135
		5.4.2	Performance of lambs fed urea-treated rice straw basal diet with supplements of mulberry (<i>Morus sp</i>) and mulberry- <i>leucaena</i> foliage	140
	5.5	Concl	usions	149
6	GEN	NERAL	DISCUSSION AND CONCLUSION	150
RF	EFER	ENCES		157
AF	PEN	DICES		176
BI	ODA'	ГА OF '	THE AUTHOR	184
LI	ST O	F PUBL	JCATIONS	185

LIST OF TABLE

2.1	The effect of tree foliage supplementation to low quality basal diet on intake and dry matter digestibility of cattle, sheep and goat	18
2.2	Chemical composition of mulberry (% of DM)	24
2.3	DM digestibility (DMD), protein digestibility and digestible energy of mulberry foliage	27
2.4	Effect of mulberry supplementation to different basal diets on the performance of different ruminant species	29
3.1	Type of diets used for evaluation	41
3.2	Composition of the diets (% of DM basis)	41
3.3	Chemical composition, IVTOMD at 24 and 48 h of incubation and <i>in vitro</i> gas production characteristics of feed ingredients	49
3.4	CP, gas production at 24 h incubation and energy content of the diets	51
3.5	Mean value of interaction between treatment and supplementation on fermentation kinetics of experimental diet	53
3.6	Effect of urea treatment and fermentable carbohydrate supplementation on IVTOMD (%), gas production (ml), substrate fermented (mg), PF (mg/ml), microbial biomass production (mg/100mg substrate fermented) derived from the incubation of 500 mg sample at 24 h	58
3.7	Effect of urea treatment and fermentable carbohydrate supplementation on pH of buffered rumen fluid, Total VFA production (mM) and proportion of VFA (%) of the diets after 24 h incubation	61
4.1	Ingredients and chemical composition of experimental diets	76
4.2	Means of dry matter intake (DMI) and nutrients digestibility in sheep fed different supplements	82
4.3	Means of Nitrogen (N) utilisation in sheep fed different supplements	83

xvii

4.4	Means of rumen ammonia nitrogen (NH ₃ -N) levels and rumen pH at different sampling times of sheep fed different dietary supplements	84
4.5	Means of pH , rumen NH_3 -N, total VFA and proportion of VFA	85
4.6	Excretion of urinary PD (mM/d) and estimated daily MNS (g N/d) in sheep fed different dietary supplements	86
4.7	DM degradation characteristics of mulberry and rice bran incubated in the rumen of sheep fed different dietary supplements	88
4.8	CP degradation characteristics of mulberry and rice bran incubated in the rumen of sheep fed different supplements	90
4.9	DM degradability (%) and degradation characteristics of untreated rice straw (URS) and urea-treated rice straw (TRS) at different incubation times in the rumen of sheep fed different dietary supplements	92
4.10	Fiber (NDF) degradability (%) and degradation characteristics of untreated rice straw (URS) and urea-treated rice straw (TRS) incubated at different incubation times in the rumen of sheep fed different diets	93
5.1	Content (% DM basis) of tannin in <i>Leucaena</i> species and mulberry that were used in the study	109
5.2	Type of diets	109
5.3	Composition of feed ingredients (% DM basis), nutrients and metabolisable energy content of the experimental diets	115
5.4	Fermentation kinetics of mulberry, <i>Leucaena</i> and mulberry and <i>Leucaena</i> mixture	116
5.5	Estimates of <i>in vitro</i> true organic matter digestibility (IVTOMD), fermentable substrate, volume gas production derived from 24 h <i>in vitro</i> fermentation of 500 mg DM of the experimental diets	118
5.6	Estimates of apparent protein digestibility of mulberry, <i>Leucaena</i> and mixed mulberry and <i>Leucaena</i> after incubation for 24 h in rumen buffer media followed by acid pepsin digestion	119
5.7	Total production and proportions of VFA of mulberry, <i>Leucaena</i> and their mixture after 24 h incubation	122
5.8	Mean values of DMI and nutrient digestibility in sheep fed different supplementations	123

5.9	Nitrogen utilisation in sheep fed different supplements	124
5.10	Average rumen pH, ammonia-N (NH ₃ -N), total VFA (volatile fatty acid) and proportion of VFA	127
5.11	Excretion of urinary purine derivatives (PD) (mM/d) and estimated daily microbial N supply in sheep fed the treatment diets	128
5.12	Average body weight and daily weight gain in lambs fed the treatment diets	129

LIST OF FIGURES

2.1	Origin of principal metabolites in ruminants	12
2.2	Utilisation of protein and carbohydrate by rumen bacteria	36
2.3	Prediction of microbial cells and VFA production from kg glucose at increasing levels of microbial cell growth efficiency (Y_{ATP})	37
3.1	Cumulative gas productions (ml/200mgDM) of feedstuff at different incubation times	50
3.2a	Cumulative gas production from untreated rice straw and mulberry diet supplemented with cassava chip and molasses	55
3.2b	Cumulative gas production from urea treated rice straw and mulberry diet supplemented with cassava chip and molasses	55
3.3	Relationship between gas production and VFA production of the experimental diet	70
4.1	DM degradability of mulberry (M) and rice bran (R) incubated in the rumen of sheep fed mulberry supplement (\bullet) 50% mulberry were replaced by urea-rice bran mixture (\blacksquare) and all mulberry were replaced by urea-rice bran mixture (\blacktriangle)	88
4.2	Protein degradability of mulberry (M) and rice bran (R) incubated in the rumen of sheep fed mulberry supplement (\bullet) 50% mulberry were replaced by urea-rice bran mixture (\blacksquare) and all mulberry were replaced by urea-rice bran mixture (\blacktriangle)	90
5.1	Cummulative gas production of mulberry, Leucaena and their mixture	117
5.2	Protein degradability of mulberry and <i>Leucaena</i> mixture in rumen buffered medium extrapolated from incubation of individual feed and measured by incubation of two feeds in different combination	120
5.3	Protein digestibility of mulberry and <i>Leucaena</i> mixture in acid pepsin solution media extrapolated from incubation of individual feed and measured by incubation of two feeds in different combination	121
5.4	The pH, NH ₃ -N and total VFA of the rumen of sheep fed diet T0 (\bullet), T1 (\blacksquare) and T2 (\blacktriangle) at 0, 2, 4 and 6 h post-feeding	126

DEDICATION

To

My devoted husband Markus Anda, my dearest children Dita and Ones and my beloved parents Soedjono and Soekini

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF MULBERRY (Morus alba) FOLIAGE SUPPLEMENTATION ON SHEEP FED WITH RICE STRAW

By

DWI YULISTIANI

January 2008

Chairman : Professor Zainal Aznam bin Mohd Jelan, PhD

Faculty : Agriculture

Feeding of fibrous agricultural by-product is the most appropriate strategy to reduce the cost of feeding of ruminants. However, these by-products have low nutritive values and the use of tree foliages as supplement could improve the utilisation of these fibrous feeds. A study consisting of three experiments was conducted with the aim of enhancing the utilization of rice straw by supplementation of the diet with mulberry foliage in sheep.

The first experiment evaluated the effect of adding fermentable energy in the mulberry-rice straw basal diet by *in vitro* gas production technique. Molasses supplementation to mulberry-urea treated rice straw based (TRSM) significantly (P<0.05) improved fermentation of the diet as indicated by the increase in gas production, microbial biomass yield and proportion of propionic acid. Supplementation of molasses at 5% level was sufficient to improve fermentation of the diet.

The second experiment was carried out based on the result from the first experiment. It was postulated that mulberry supplementation also provide fermentable nitrogen

and energy in the rumen. Therefore in the second experiment was conducted to compare the effect of mulberry foliage or urea-rice bran mixture supplementation on nutrient digestibility, N utilization, rumen fermentation and fibre degradation. Sheep were fed urea treated rice straw basal diet and three different supplements namely; (i) mulberry, (ii) 50% of the mulberry replaced with urea-rice bran mixture and (iii) mulberry was replaced by to rice bran and urea. DMI, nutrient digestibility, nitrogen balance, and efficiency rumen microbial protein synthesis was similar in sheep fed on urea treated rice straw based diet supplemented by mulberry foliage or urea-rice bran mix. Hence, mulberry supplementation at 30% level in urea treated rice straw basal diet provided fermentable energy and protein. The rate of protein degradability of mulberry in the rumen was reduced in sheep fed mixed urea-rice bran supplement. Supplementation of mulberry or urea-rice bran mixed to urea treated rice straw basal diet resulted in similar fibre degradation of rice straw or urea treated rice straw. Hence, mulberry or urea-rice bran mixture offers an alternative source of fermentable nitrogen and energy to improve the utilisation of rice straw by sheep.

The third experiment determined the effect of mulberry and mulberry-leucaena foliage supplementation on feed utilization, rumen fermentation and growth of lambs fed urea-treated rice straw basal diet. In an *in vitro* gas production study, mulberry was mixed with either one of the two leucaena varieties (*Leucaena leucocephala* hybrid and *Leucaena leucocephala* local) at 2 levels (25 and 50%). Supplementation of leucaena to mulberry decreased *in vitro* true organic matter digestibility (IVOMD), the rate of gas production and protein digestibility in the rumen buffered medium. Protein digestibility in acid pepsin which is an estimate of protein availability in intestine was increased. Tannin derived from leucaena hybrid

iv

supplementation to mulberry at ratio 1:1 was most effective level to decrease protein digestion in the rumen, but increased the protein digestibility in acid pepsin incubation. In a feeding trial, supplementation level at 30% of mulberry-leucaena mixture at the ratio of 1:1 to urea treated rice straw basal diet showed similar effect to mulberry or rice bran supplementation on nutrient digestibility, N balance, microbial protein synthesis and body weight gain. Hence, supplementation of either mulberry-*Leucaena* mixture or mulberry or urea-rice bran mixture provided the critically deficient nutrient required by rumen microbes to stimulate rumen fermentation digestion and thus the efficiency forage utilization.

It is concluded that mulberry utilization improved when molasses was also supplemented to the rice straw basal diet. In addition, mulberry supplementation also provided the fermentable energy and nitrogen. However, due to the rapid microbial fermentation of mulberry protein in the rumen, mixing of *Leucaena* that has high tannin content with mulberry could reduce protein degradability in the rumen (*in vitro*). Feeding of *Leucaena*-mulberry mixture had similar effect to mulberry supplementation on growth of lambs.

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

STRATEJI SUPLEMENTASI MULBERI (Morus alba) FOLIAJ UNTUK BIRI-BIRI YANG DIBERI MAKANAN JERAMI PADI

Oleh

DWI YULISTIANI

January 2008

Pengerusi: Profesor Zainal Aznam bin Mohd Jelan, PhDFakulti: Pertanian

Pemberian makanan daripada hasil sampingan pertanian yang berserat adalah strategi yang wajar untuk mengurangkan kos pemberian makanan ruminan. Walau bagaimanapun, hasil sampingan ini mempunyai nilai pemakanan yang rendah dan penggunaan foliaj pokok sebagai suplemen boleh meningkatkan penggunaan bahan makanan berserat ini. Satu kajian yang mengandungi tiga eksperimen telah dilakukan dengan tujuan untuk meningkatkan penggunaan jerami padi dengan suplementasi diet ini dengan foliaj mulberi pada biri-biri.

Eksperimen pertama telah menilai kesan penambahan tenaga terfermentasi dalam diet berasas mulberi-jerami padi melalui teknik produksi gas *in vitro*. Suplementasi molas pada mulberi-jerami padi terawat urea pada kadar 5% (TRSM) adalah bererti (P<0.05) untuk meningkatkan fermentasi diet seperti ditunjukkan oleh peningkatan pengeluaran gas, hasil biomas mikrob dan perkadaran asid propionik. Suplementasi molas pada paras 5% adalah cukup untuk meningkatkan fermentasi diet.

vi

Eksperimen kedua menilai kesan suplementasi mulberi foliaj berbanding campuran urea-dedak padi ke atas pencernaan nutrient, kegunaan nitrogen, ciri-ciri fementasi rumen dan degradasi serat. Biri-biri diberi diet berasas jerami padi urea terawat dan tiga suplemen berbeza berikut: (i) mulberi, (ii) 50% mulberi digantikan dengan campuran urea-dedak padi dan (iii) mulberi digantikan dengan campuran urea-dedak padi. Pengambilan makanan, pencernaan nutrient, imbangan nitrogen, efisiensi sintesis protein mikrob rumen adalah serupa pada biri-biri yang memakan jerami padi urea terawat dengan suplemen foliaj mulberi atau campuran urea-dedak padi.

Suplementasi mulberi pada aras 30% dalam diet berasaskan jerami padi urea terawat menyediakan tenaga terfermentasi dan protein. Kadar degradasi protein dalam rumen menurun dalam biri-biri yang memakan suplmen campuran urea-dedak padi. Suplementasi mulberi atau campuran urea-dedak padi kepada diet berasaskan jerami padi urea terawat menyebabkan kesan yang sama pada degradasi jerami padi atau jerami padi urea terawat. Oleh itu mulberi atau campuran urea-dedak padi memberi satu sumber alternatif nitrogen terfermentasi dan tenaga untuk meningkatkan penggunaan jerami padi pada biri-biri.

Eksperimen ketiga menentukan kesan suplementasi foliaj mulberi dan mulberileucaena ke atas penggunaan makanan, fermentasi rumen dan pertumbuhan anak biri-biri yang diberi makanan asas jerami padi urea terawat. Dalam kajian pengeluaran gas *in vitro*, mulberi telah dicampurkan dengan sama ada satu daripada dua variati *Leucaena* (hybrid *Leucaena leucocephala* dan *Leucaena leucocephala* tempatan) pada 2 aras (25 dan 50%). Suplementasi *leucaena* kepada mulberi menurunkan pencernaan benar *in vitro* bahan organik (IVOMD), kadar produksi gas

dan pencernaan protein dalam rumen. Pencernaan protein dalam asid pepsin yang menganggarkan kesediaadaan protein dalam usus kecil telah meningkat. Tannin daripada hibrid leucaena yang disuplementasikan kepada mulberi pada nisbah 1:1 paling efektif untuk mengurangkan pencernaan protein dalam rumen, tetapi meningkatkan pencernaan protein dalam inkubasi asid pepsin. Dalam satu percubaan pemberian makanan, suplementasi campuran dengan nisbah 1:1 mulberry-leucaena pada paras 30% kepada diet berasaskan jerami padi urea terawat, menunjukkan kesan yang sama kepada mulberi atau suplementasi dedak padi ke atas pencernaan nutrien, keseimbangan N, sintesis mikrob rumen dan kenaikan berat badan. Oleh itu, suplementasi sama ada campuran mulberi-leucaena atau mulberi atau campuran urea-dedak padi menyediakan nutrient kritikal yang kurang dan diperlukan oleh mikrob rumen untuk merangsang fermentasi rumen dan efisiensi penggunaan foraj.

Adalah dirumuskan bahawa pengggunaan mulberi meningkat apabila molas juga disuplementasikan kepada diet berasaskan jerami padi. Tambahan lagi, suplementasi mulberi juga menyediakan tenaga dan nitrogen terfermentasi. Walau bagaimanapun, disebabkan oleh fermentasi mikrob yang cepat pada protein mulberi dalam rumen, campuran *leucaena* yang mengandungi tannin yang tinggi dengan mulberry boleh mengurangkan degradasi protein di dalam rumen (*in vitro*). Pemberian campuran *leucaena*-mulberry memberi kesan yang sama dengan supplementasi mulberry pada pertumbuhan anak biri-biri.

viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my Supervisory Committee, Professor Dr. Zainal Aznam bin Mohd Jelan (Chairman), Professor Dr. Norhani Abdullah, Associate Professor Dr. Liang Juan Boo and Associate Professor Dr. Halimatun Yaakub for their invaluable supervision and encouragement throughout this study.

I am very grateful to the Agency of Agricultural Research and Development (AARD), Indonesia for giving me an opportunity and the scholarship to study for my PhD degree at UPM. I would also like to thank Dr. Kusumo Diwyanto and Dr. Abdullah Bamualim, the past and present Director of the Center Research Institute of Animal Science, respectively for their approval for me to pursue my career and Dr. Sofyan Iskandar, Director of Research Institute for Animal Production for his moral support during my study in Malaysia.

My deep appreciation goes to all lecturers and staff of the Dept of Animal Science, Faculty of Agriculture, UPM for their friendship and kind hospitality. Thanks are due to the staff of Nutrition Laboratory and Research Farm at Dept of Animal Science for their assistance. I would also like to thank my colleagues and postgraduate students at the Dept of Animal Science for their friendship. My special thanks to Dr. Bodee Kamsekiew for his assistance on sample analysis, Dr. Mohd Mainul Hasan, Mr. Arsadi Ali and Mr. Mohd Rafie for their support to conduct the field experiment and the Indonesian students who always provided help in time of hardships.

The two people I would like to express my deepest appreciation for their love and support are my beloved mother, Sukini and father, Soedjono. Your humble ways of life, patience and advice inspire all of your children for a greater achievement in life.

Finally, my deep gratitude is extended to my husband, Markus Anda and my children, Marulini Piadiata Salokang and Onesmus Hopijayanto Salokang for their patience, continuous support, understanding and encouragement throughout my study.

I certify that an Examination Committee met on 14th January 2008 to conduct the final examination of Dwi Yulistiani on her Doctor of Philosophy thesis entitled "Strategic supplementation of mulberry (*Morus alba*) foliage for sheep fed rice straw" in accordance with University Putra Malaysia (Higher Degree) Act 1980 and University Putra Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

AZHAR B. KASIM, Ph.D.

Associate Professor, Faculty of Agriculture University Putra Malaysia (Chairman)

ABDUL RAZAK ALIMON, Ph.D.

Professor, Faculty of Agriculture University Putra Malaysia (Internal Examiner)

MOHD RIDZWAN B. ABDUL HALIM, Ph.D.

Associate Professor, Faculty of Agriculture University Putra Malaysia (Internal Examiner)

BOB ORSKOV, Ph.D.

Professor Emeritus (External Examiner)

HASANAH MOHD GAZALI Ph.D.

Professor/Deputy Dean School of Graduate Studies University Putra Malaysia

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zainal Aznam B. Mohd Jelan, PhD

Professor Faculty of Agriculture University Putra Malaysia (Chairman)

Halimatun Yaakub, PhD

Associate Professor Faculty of Agriculture University Putra Malaysia (Member)

Liang Juan Boo, PhD

Associate Professor Institute Biosience University Putra Malaysia (Member)

Norhani Abdullah, PhD

Professor Faculty of Biotechnology and Biomoleculer Sciences University Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 February 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

DWI YULISTIANI

Date: 5 February 2008

LIST OF TABLES

Table		Page
2.1	The effect of tree foliage supplementation to low quality basal diet on intake and dry matter digestibility of cattle, sheep and goat	21
2.2	Chemical composition of mulberry (% of DM)	28
2.3	DM digestibility (DMD), protein digestibility and digestible energy of mulberry foliage	30
2.4	Effect of mulberry supplementation to different basal diets on the performance of different ruminant species	32
3.1	Type of diets used for evaluation	45
3.2	Composition of the diets (% of DM basis)	45
3.3	Chemical composition, IVTOMD at 24 and 48 h of incubation and <i>in vitro</i> gas production characteristics of feed ingredients	54
3.4	CP, gas production at 24 h incubation and energy content of the diets	56
3.5	Mean value of interaction between treatment and supplementation on fermentation kinetics of experimental diet	58
3.6	Effect of urea treatment and fermentable carbohydrate supplementation on IVTOMD (%), gas production (ml), substrate fermented (mg), PF (mg/ml), microbial biomass production (mg/100mg substrate fermented) derived from the incubation of 500 mg sample at 24 h	63
3.7	Effect of urea treatment and fermentable carbohydrate supplementation on pH of buffered rumen fluid, Total VFA production (mM) and proportion of VFA (%) of the diets after 24 h incubation	65
4.1	Chemical composition of feed ingredients used for the formulation of the experimental diet	82
4.2	Ingredients and chemical composition of experimental diets	82
4.3	Means of dry matter intake (DMI) and nutrients digestibility in sheep fed different supplements	88
4.4	Means of Nitrogen (N) utilisation in sheep fed different	89

xvii

supplements

4.5	Means of rumen ammonia nitrogen (NH ₃ -N) levels and rumen pH at different sampling times of sheep fed different dietary supplements	90
4.6	Means of pH, rumen NH ₃ -N, total VFA and proportion of VFA	91
4.7	Excretion of urinary PD (mM/d) and estimated daily MNS (g N/d) in sheep fed different dietary supplements	92
4.8	DM degradation characteristics of mulberry and rice bran incubated in the rumen of sheep fed different dietary supplements	93
4.9	CP degradation characteristics of mulberry and rice bran incubated in the rumen of sheep fed different supplements	95
4.10	DM degradability (%) and degradation characteristics of untreated rice straw (URS) and urea-treated rice straw (TRS) at different incubation times in the rumen of sheep fed different dietary supplements	96
4.11	Fiber (NDF) degradability (%) and degradation characteristics of untreated rice straw (URS) and urea-treated rice straw (TRS) incubated at different incubation times in the rumen of sheep fed different diets	97
5.1	Content (% DM basis) of tannin in <i>Leucaena</i> species and mulberry that were used in the study	114
5.2	Type of diets	114
5.3	Chemical composition of feed ingredients used for the diet formulation in growth trial study	119
5.4	Composition of feed ingredients (% DM basis), nutrients and metabolisable energy content of the experimental diets	120
5.5	Fermentation kinetics of mulberry, <i>Leucaena</i> and mulberry and <i>Leucaena</i> mixture	122
5.6	Estimates of <i>in vitro</i> true organic matter digestibility (IVTOMD), fermentable substrate, volume gas production derived from 24 h <i>in vitro</i> fermentation of 500 mg DM of the experimental diets	124
5.7	Estimates of apparent protein digestibility of mulberry, <i>Leucaena</i> and mixed mulberry and <i>Leucaena</i> after incubation for 24 h in rumen buffer media followed by acid pepsin digestion	125
5.8	Total production and proportions of VFA of mulberry, Leucaena	128

xviii

