



# **UNIVERSITI PUTRA MALAYSIA**

#### SYNTHESIS AND CONTROLLED RELEASE CHARACTERIZATION OF ZINC-ALUMINIUM-LAYERED DOUBLE HYDROXIDE-CHLOROPHENOXYACETATES NANOHYBRIDS

SITI HALIMAH BINTI SARIJO

T ITMA 2008 3



#### SYNTHESIS AND CONTROLLED RELEASE CHARACTERIZATION OF ZINC-ALUMINIUM-LAYERED DOUBLE HYDROXIDE-CHLOROPHENOXYACETATES NANOHYBRIDS

By

SITI HALIMAH BINTI SARIJO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

September 2008



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

#### SYNTHESIS AND CONTROLLED RELEASE CHARACTERIZATION OF ZINC-ALUMINIUM-LAYERED DOUBLE HYDROXIDE-CHLOROPHENOXYACETATES NANOHYBRIDS

By

#### SITI HALIMAH BINTI SARIJO

#### **SEPTEMBER 2008**

# Chairman: Professor Mohd. Zobir bin Hussein, PhD Faculty: Institute of Advanced Technology

The massive use of agrochemicals, such as herbicides has led to the contamination of these chemicals in the environment especially surface and ground-water reservoir. One approach to solve this problem is to develop controlled release agrochemical, in which the chemical is embedded into a matrix/support system, and can be released in a controlled manner. This study aimed at the synthesis of new controlled release of herbicides, namely 2-chlorophenoxyacetate, 4-chlorophenoxy-acetate and 2,4,5-trichlorophenoxyacetate via intercalation of the chlorophenoxyherbicides into zinc-aluminium-layered double hydroxide by self-assembly and anion-exchange methods. Upon the successful intercalation of the herbicides, release profiles and the factors govern its release from their matrices into various aqueous media were determined. In this study, relatively phase-pure with well ordered layered nanohybrid materials were successfully synthesized by both methods at optimum condition. Expansion of basal spacing was observed from 8.9 Å in the



zinc-aluminium-layered double hydroxide to 18.5, 20.1 and 26.2 Å, in zinc-aluminium-2-chlorophenoxyacetate, zinc-aluminium-4-chlorophenoxyacetate and zinc-aluminium-2,4,5-trichlorophenoxyacetate nanohybrids respectively, obtained from self-assembly method, compared to 19.6, 19.5 and 25.8 Å, respectively, in the nanohybrids synthesized by anion-exchange method. Controlled release study of the herbicides into the aqueous solutions of sodium carbonate, sodium sulfate and sodium chloride as well as in distilled water at pH = 3, 6.25 and 12 is in the order of: 2-chlorophenoxyacetate > 4-chlorophenoxyacetate > 2,4,5trichloro-phenoxy acetate. Release of herbicides into the aqueous media is in the order of: sodium carbonate > sodium sulfate > sodium chloride and pH 12 > pH 3 > pH 6.25. The release profiles are best described by pseudo-second order kinetic model as shown by the regression values of about 1.0. The 4-chlorophenoxyacetates anion was selectively intercalated into zinc-aluminium-layered double hydroxide than 2,4,5trichlorophenoxyacetate, with percentage anion of 35.5 and 21.0 %, for 4chlorophenoxyacetates and 2,4,5-trichlorophenoxyacetate, respectively 2,4,5-tri-chloro-phenoxyacetate while was preferably intercalated compared to 2-chlorop-henoxyacetates with the percentage loading of 57.8 and 31.4 %, respectively, for the latter and the former. This study shows that the zinc-aluminium-layered double hydroxide can be used as a matrix for controlled release formulation of chlorophenoxyacetic acid herbicides. The release of chlorophenoxyherbicides from the matrix was found to be controlled by the concentration and the anion in the release aqueous solution as well as the pH of the release media.



Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

#### SINTESIS DAN SIFAT PERLEPASAN TERKAWAL HIBRID NANO ZINK-ALUMINIUM- HIDROKSIDA BERLAPIS GANDA-KLOROFENOKSIASETAT

Oleh

#### SITI HALIMAH BINTI SARIJO

#### **SEPTEMBER 2008**

# Pengerusi: Profesor Mohd. Zobir bin Hussein, PhD

#### Fakulti: Institut Teknologi Maju

Penggunaan bahan agrokimia seperti herbisid secara meluas telah menyebabkan pencemaran alam sekitar terutama air dan punca air bawah tanah. Satu pendekatan untuk menyelesaikan masalah ini ialah dengan memajukan bahan agrokimia berperlepasan terkawal di mana bahan kimia ini diselitkan di dalam matrik/sistem penyokong dan boleh dilepaskan secara terkawal. Kajian ini bertujuan untuk mensintesis herbisid lepasan terkawal yang baru, iaitu 2-klorofenoksiasetat, 4klorofenoksiasetat dan 2,4,5-triklorofenoksiasetat dengan penyisipan ke dalam lapisan berganda zink-aluminium hidroksida secara pemendakan bersama dan penukargantian anion. Setelah penyisipan herbisid berjaya dilakukan, kajian mengenai perlepasan terkawal dan faktor-faktor yang mengawal perlepasannya ke dalam berbagai media berakuaes telah dilakukan. Dalam kajian ini, bahan hibrid nanokomposit yang berfasa tulen dengan struktur yang teratur telah berjaya disintesis dengan



daripada 8.9 Å dalam lapisan hidroksida berlapis ganda zink-aluminium kepada masing-masing 18.5, 20.1 dan 26.2 Å, dalam nanohibrid zinkaluminium-2-klorofenoksiasetat, zink-aluminium-4-klorofenoksiasetat dan zink-aluminium-2,4,5-triklorofenoksiasetat telah dihasilkan daripada kaedah pemendakan bersama berbanding dengan masing-masing 19.6, 19.5 dan 25.8 Å, dengan kaedah penukargantian ion. Kajian perlepasan terkawal klorofenoksiasetat dalam larutan akuas natrium karbonat, natrium sulfat dan natrium klorida serta air suling pada pH = 3, 6.25 dan 12 adalah dalam turutan: 2-klorofenoksiasetat > 4-klorofenoksiasetat > 2,4,5-triklorofenoksiasetat. Peratus perlepasan terkawal dalam media berakueus adalah dalam turutan: natrium karbonat > natrium sulfat > natrium klorida dan pH 12 > pH 3 > pH 6.25. Profil perlepasan terkawal didapati mematuhi kinetik tertib pseudo-kedua dengan nilai regresi bagi kesemua profil hampir 1.0. 4-klorofenoksiasetat lebih mudah disisipkan berbanding dengan 2,4,5-triklorofenoksiasetat dengan 35.5 dan 21.0 % tersisip, masing-masing, bagi 4-klorofenoksi-asetat dan 2,4,5-triklorofenoksiasetat sementara 2,4,5-triklorofenoksiasetat lebih cenderung untuk disisipkan ke dalam lapisan berganda hidroksida berbanding 2klorofenoksiasetat dengan masing-masing 57.8 dan 31.4 % anion Kajian ini menunjukkan hidroksida berlapis ganda zinktersisip. aluminium boleh digunakan sebagai matrik bagi formulasi perlepasan terkawal herbisid asid klorofenoksiasetik. Perlepasan klorofenoksi-asetat daripada matriksnya didapati dikawal oleh kepekatan dan jenis anion di dalam larutan akuas dan juga pH media.



#### ACKNOWLEDGEMENT

Glory is to Allah and all praise is to Allah. It is only with His help, blessings and guidance that bring to the completion of this thesis. I would like to express my grateful and deepest appreciations to my dedicated supervisor, Professor Dr. Mohd. Zobir bin Hussein for his excellent supervision and guidance throughout the three years of my study. Special thanks and appreciation are due to Associate Professor Dr. Asmah binti Hj. Yahaya and Professor Dr. Zulkarnain bin Zainal for their kind help and suggestions. I would like to thank my employer, University Technology MARA for the financial support and the opportunity given to pursue my study. Special thanks to my UiTM colleagues, Associate Professor Dr. Halila binti Jasmani and Dr. Seripah Awang Kecil for their help in the multicomponent analysis and kinetic study. Thank you to Mrs Zalaniah Graff for the assistance in this thesis writing. My sincere thanks to all the very helpful UPM officers, Mrs Sarinawani binti Abdul Ghani, Mrs Rosnani binti Amiruddin, Mr Zainal Abidin bin Kassim and Mdm Choo Chai Sam for always giving hands whenever in need. Thank you to the kind hearted lab-mates; Mazlina binti Musa and Mazidah binti Mamat who have helped me during the early days of the research. Last but not least my thanks and appreciation to my husband, Nordin bin Abdul Kadir Norshafiqah and childrens, Hannah, Muhammad Aminuddin, Muhammad Ridhuan and Muhammad Muhsin for the unlimited patience and understanding throughout the years of my study.



I certify that an Examination Committee met on the 23 September 2008 to conduct the final examination of Siti Halimah binti Sarijo on her Doctor of Philososophy thesis entitled "Synthesis and Controlled Release Characterization of Zinc-Aluminium-Layered Double Hydroxide-Chlorophenoxyacetates Nanohybrids" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee are as follows:

#### Sidik Silong, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

#### Md. Jelas Haron, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

#### Abdul Halim Abdullah, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

#### Shahidan Radiman, PhD

Professor Faculty of Science Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor and Deputy Dean School of Graduates Studies Universiti Putra Malaysia

Date: 30 December 2008



This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

#### MOHD. ZOBIR BIN HUSSEIN, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

#### ASMAH BINTI HJ. YAHAYA, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

#### ZULKARNAIN BIN ZAINAL, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

#### HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 15.1.2009



#### DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare it has not been previously and is not concurrently submitted for any other degree at UPM or at any other institutions.

#### SITI HALIMAH BINTI SARIJO

Date: 4.11.2008



#### TABLE OF CONTENTS

| ABSTRACT              | ii   |
|-----------------------|------|
| ABSTRAK               | iv   |
| ACKNOWLEDGEMENTS      | vi   |
| APPROVAL              | vii  |
| DECLARATION           | ix   |
| LIST OF TABLES        | xiv  |
| LIST OF FIGURES       | xvii |
| LIST of ABBREVIATIONS | XXV  |

#### CHAPTER

| 1 | INTE | RODUCTION                                         |    |
|---|------|---------------------------------------------------|----|
|   | 1.1  | Hybrid composite                                  | 1  |
|   | 1.2  | Hybrid organic-inorganic nanocomposite as control |    |
|   |      | release of agrochemicals                          | 4  |
|   | 1.3  | Problem statement                                 | 5  |
|   | 1.4  | Objective of the research                         | 10 |
| 2 | LITE | CRATURE REVIEW                                    |    |
|   | 2.1  | Historical background                             | 13 |
|   | 2.2  | Structure of layered double hydroxide             | 15 |
|   |      | 2.2.1 Trivalent metal ratio                       | 17 |
|   |      | 2.2.2 Metal cations in the interlayer             | 18 |
|   |      | 2.2.3 Ratio of $M^{2+}/M^{3+}$                    | 18 |
|   |      | 2.2.4 Interlamellar anions                        | 19 |
|   | 2.3  | Intercalation                                     | 21 |
|   | 2.4  | Synthesis of hybrid layered double hydroxides     | 23 |
|   |      | 2.4.1 Direct co-precipitation method              | 23 |
|   |      | 2.4.2 Anion-exchange reaction                     | 25 |
|   |      | 2.4.3 Hydrothermal treatment method               | 26 |
|   |      | 2.4.4 Glycerol method                             | 27 |
|   |      | 2.4.5 Rehydration of layered double hydroxide     | 28 |
|   |      | 2.4.6 Salt oxide method                           | 29 |
|   |      | 2.4.7 Hydrolysis in polyol medium                 | 30 |
|   |      | 2.4.8 Solid state reaction                        | 30 |
|   | 2.5  | Application of LDHs                               | 31 |
|   |      | 2.5.1 Controlled release of agrochemicals         | 32 |
|   |      | 2.5.2 Controlled release of drug and biomolecules | 35 |
|   |      | 2.5.3 Cosmetic application                        | 38 |
|   |      | 2.5.4 Environmental applications                  | 40 |



|                                           | 2.5.5 Catalyst precursor                      | 43       |
|-------------------------------------------|-----------------------------------------------|----------|
| $\begin{array}{c} 2.6 \\ 2.7 \end{array}$ | Selective intercalation<br>Controlled release | 45<br>47 |

### **3 METHODOLOGY**

4

| 2 1   | S-retho | and of lowered double burdeneride             |            |
|-------|---------|-----------------------------------------------|------------|
| 3.1   | Synthe  | Zing alarminism. Issued develop hadronide     |            |
|       | 3.1.1   | Zinc-aluminium –layered double hydroxide      | <b>-</b> 0 |
|       | 010     | with nitrate as the counter anion             | 52         |
|       | 3.1.2   | Zinc-aluminium –layered double hydroxide      |            |
|       |         | with sulfate as the counter anion             | 53         |
|       | 3.1.3   | Zinc-aluminium –layered double hydroxide      |            |
|       |         | with chloride as the counter anion            | 53         |
|       | 3.1.4   | Zinc-aluminium –layered double hydroxide      |            |
|       |         | with carbonate as the counter anion           | 54         |
| 3.2   | Synthe  | esis of nanocomposite                         |            |
| 3.2.1 | Direct  | self-assembly method                          | 54         |
|       | 3.2.2   | Anion-exchange method                         | 56         |
| 3.3   | Physic  | o-chemical analysis and characterization      |            |
|       | 3.3.1   | Powder X-ray diffraction analysis (PXRD)      | 59         |
|       | 3.3.2   | Fourier transform-infrared spectroscopy       | 60         |
|       | 3.3.3   | Inductive couple plasma-atomic emission       |            |
|       |         | spectroscopy                                  | 60         |
|       | 3.3.4   | Carbon hydrogen Nitrogen Sulfur (CHNS)        |            |
|       | 0.011   | analysis                                      | 61         |
|       | 335     | Thermogravimetric and differential thermal    | 01         |
|       | 0.0.0   | analysis                                      | 61         |
|       | 336     | Surface area and parasimetry analysis         | 62         |
|       | 3.3.0   | Surface area and porosimilarly analysis       | 62         |
|       | 3.3.1   | Controlled release study of the onione from   | 03         |
|       | 3.3.8   | Controlled release study of the amons from    |            |
|       |         | the respective nanocomposites into various    | 60         |
|       |         | media by UV-Vis spectrophotometer             | 63         |
|       | 3.3.9   | Multicomponent analysis                       | 64         |
| 3.4   | Buffer  | effect study                                  | 66         |
| 3.5   | Kinetic | s of intercalation and deintercalaton of      |            |
|       | phenox  | kyherbicides from Zn-Al-LDH                   | 66         |
| 3.6   | Selecti | ve intercalation of chlorophenoxyherbicides   |            |
|       | into Zr | n-Al-LDH by anion-exchange method             | 67         |
|       |         |                                               |            |
|       |         |                                               |            |
| RESU  | JLTS AI | ND DISCUSSIONS                                |            |
| 4.1   | Physica | al properties                                 | 69         |
| 4.2   | Synthe  | esis of zinc-aluminium-layered double         |            |
|       | Hydrox  | cide                                          | 69         |
|       |         |                                               |            |
| 4.3   | Synthe  | esis of zinc-aluminium-4-chlorophenoxyacetate |            |
|       | nanoco  | omposite.                                     | 74         |
|       | 4.3.1 H | Effect of concentration and initial molar     |            |
|       | 1       | catio, R <sub>i</sub>                         | 74         |



|            | 4.3.2 Effect of pH                                                             | 95         |
|------------|--------------------------------------------------------------------------------|------------|
| 4.4        | Synthesis of zinc-aluminium-2-chlorophenoxy-                                   |            |
|            | Acetate nanocomposite.                                                         | 109        |
|            | 4.4.1 X-ray diffraction analysis                                               | 109        |
|            | 4.4.2 Fourier transform infrared spectroscopy                                  | 111        |
|            | 4.4.3 Elemental analysis of organic and                                        |            |
|            | inorganic compositions                                                         | 113        |
|            | 4.4.4 Thermal properties                                                       | 114        |
| 4.5        | Synthesis of zinc-aluminium-2,4,5-trichloro-                                   | 100        |
|            | phenoxyacetate nanocomposite.                                                  | 120        |
|            | 4.5.1 Powder X-ray Diffraction                                                 | 120        |
|            | 4.5.2 Fourier transform infrared (FTIR) spectroscopy                           | 124        |
|            | 4.5.5 Surface properties                                                       | 120        |
|            | 4.5.4 Elemental analysis-organic-morganic                                      | 120        |
|            | 4 5 5 Thermal properties                                                       | 130        |
|            | 1.5.5 memai properties                                                         | 150        |
| 4.6        | Synthesis of nanocomposite by anion-exchange                                   |            |
|            | method.                                                                        |            |
|            | 4.6.1 Powder X-ray diffraction                                                 | 132        |
|            | 4.6.2 Fourier transform infrared (FTIR) spectroscopy                           | 138        |
|            | 4.6.3 Elemental analysis - organic-inorganic                                   | 1 4 1      |
|            | composition                                                                    | 141        |
| 17         | 4.0.4 Inermal properties                                                       | 143        |
| 4.7<br>7 Q | Controlled release study                                                       | 140        |
| 4.0        | 4.8.1 Release of 4-chloron henowy acetate into Na <sub>2</sub> CO <sub>2</sub> | 140        |
|            | 4.8.2 Release of 4-chlorophenoxyacetate into various                           | 117        |
|            | pHs: pH 3 6 25 and 12                                                          | 158        |
|            | 4.8.3 Release of 2-chlorophenoxyacetates and 2.4.5-                            | 100        |
|            | trichlorophenoxyacetates from Zn-Al-2CPA and                                   |            |
|            | Zn-Al-TCPA into various pH: pH 3, 6.25 and 12                                  | 170        |
| 4.9        | Controlled release properties of 4CPA, 2CPA and                                |            |
|            | TCPA from their respective nanocomposites into                                 |            |
|            | various aqueous solution solutions; Na <sub>2</sub> CO <sub>3</sub> ,          |            |
|            | Na <sub>2</sub> SO <sub>4</sub> and NaCl                                       | 177        |
|            | 4.9.1 Release profile of the guest anion                                       | 177        |
|            | 4.9.2 Effect of the intercalated anion                                         | 180        |
|            | 4.9.3 Kinetic release                                                          | 184        |
|            | 4.9.4 PXRD study on the reclaimed samples                                      | 191        |
|            | 4.9.5 FTIR spectra for the ZACs reclaimed samples                              | 206        |
| 4.10       | Kinetic of intercalation and deintercalation                                   | 211        |
|            | 4.10.1 X-ray diffraction                                                       | 211        |
|            | 4.10.2 Elemental analysis                                                      | 218        |
|            | 4.10.3 Quantitative analysis of UV-visible                                     | 001        |
|            | spectrophotometer data                                                         | 221        |
|            | 4.10.4 Release of chlorophenoxyacetates anions                                 | 004        |
|            | 1110 0.0000 MI Na2CO3<br>4 10 5 Fitting of data into various linatic models    | 224<br>007 |
|            | T. 10.0 FILLING OF UATA INTO VATIOUS KINETIC INOUEIS                           | 441        |



|                        | 4.11 | Selective intercalation of phenoxyherbicides into<br>zinc-aluminium-layered double hydroxide<br>4 11 1 Selective intercalation of 4CPA and TCPA | 232 |
|------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                        |      | into Zn-Al-LDH                                                                                                                                  | 232 |
|                        |      | 4.11.2 Selective intercalation of 2CPA and TCPA                                                                                                 |     |
|                        |      | into Zn-Al-LDH                                                                                                                                  | 237 |
|                        |      | 4.11.3 Elemental analysis                                                                                                                       | 244 |
|                        |      | 4.11.4 Release of anion into 0.0005 M $Na_2CO_3$                                                                                                | 244 |
| 5                      | CON  | CLUSIONS AND                                                                                                                                    |     |
|                        | RECO | OMMENDATIONS FOR FUTURE RESEARCH                                                                                                                | 248 |
| REFERENCES             |      |                                                                                                                                                 |     |
| APPENDICES             |      |                                                                                                                                                 | 268 |
| BIODATA OF THE STUDENT |      |                                                                                                                                                 | 280 |

LIST OF PUBLICATIONS



281

#### LIST OF TABLES

| Table |                                                                                                                                                                                                                | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.1   | Chemical composition range of various LDH.                                                                                                                                                                     | 19   |
| 2.2   | LDHs name based on the mineral composition                                                                                                                                                                     | 20   |
| 2.3   | Examples of calcined LDH and their catalytic applications.                                                                                                                                                     | 45   |
| 4.1   | Basal spacing of LDHs with various counter anions.                                                                                                                                                             | 69   |
| 4.2   | Elemental analysis of ZAL and ZA4Cs                                                                                                                                                                            | 84   |
| 4.3   | Physicochemical properties of Zn-Al-NO <sub>3</sub> layered double hydroxide (ZAL) and its nanocomposites (ZA4Cs).                                                                                             | 84   |
| 4.4   | Comparison of weight loss for ZAL and ZA4Cs<br>synthesized at different concentrations of 4CPA and<br>different Zn to Al molar ratios.                                                                         | 92   |
| 4.5   | Physicochemical properties of ZAL and ZA4Cs synthesized at various pH.                                                                                                                                         | 99   |
| 4.6   | Comparison of weight loss for ZAL and ZA4Cs synthesized at various pH.                                                                                                                                         | 106  |
| 4.7   | Basal spacing, chemical composition, surface and<br>thermal properties of LDH and its nanocomposites;<br>ZA2C synthesized at 0.2 M 2CPA.                                                                       | 114  |
| 4.8   | Basal spacing, chemical composition, surface and<br>thermal properties of LDH and its nanocomposites;<br>ZATC synthesized at 0.4 M TCPA                                                                        | 129  |
| 4.9   | Comparison of the physicochemical properties<br>and percentage release of 2CPA, 4CPA and TCPA<br>from their respective nanocomposites synthesized by<br>anion-exchange and direct self assembly method.<br>143 | 143  |
| 4.10  | Phase observed after the release of 4CPA from the ZA4C nanocomposite interlamellae into 0.0005 M $Na_2CO_3$ aqueous solution.                                                                                  | 154  |
| 4.11  | Phase observed after the release of 4CPA from the ZA4C nanocomposite interlamellae into the aqueous solution.                                                                                                  | 164  |



| 4.12 | Release of 4CPA into the aqueous solution containing<br>various concentration of sodium carbonate and<br>distilled water. The extend of 4CPA released<br>from the nanocomposites in which the zeroth,<br>first order kinetic, and Bhaskar equation give a<br>good fit is also indicated.     | 167 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.13 | Comparison of the percentage releases of 2CPA and<br>TCPA in distilled water at pH 3, 6.25 and 12<br>together with the maximum release time.                                                                                                                                                 | 172 |
| 4.14 | Fitting the release data of 2CPA and TCPA from ZA2C and ZATC, respectively into distilled water at various pHs using zeroth-, first-, pseudo-second order kinetics and parabolic diffusion models for 0-300 and 0-1000 min.                                                                  | 174 |
| 4.15 | Fitting the release data of 2CPA, 4CPA and TCPA from ZA2C, ZA4C and ZATC nanocomposites into various media using zeroth-, first-, pseudo-second order kinetics and parabolic diffusion models for 0-300 and 0-1000 min.                                                                      | 186 |
| 4.16 | Phase observed after the anion-exchange reaction<br>of ZALR4 with 0.05 M 2CPA, 4CPA and TCPA<br>at various aging times together with the<br>respective percentage loading of 2CPA, 4CPA and<br>TCPA calculated based on the UV-visible data.                                                 | 215 |
| 4.17 | Comparison of percentage release of 2CPA, 4CPA<br>and TCPA from their respective nanocomposites,<br>ZA2C, ZA4C and ZATC, respectively, synthesized<br>by anion-exchange and direct self assembly<br>methods.                                                                                 | 219 |
| 4.18 | Fitting the release data of phenoxyherbicides<br>from their nanohybrids into $0.0005 \text{ M} \text{ Na}_2\text{CO}_3$ using<br>zeroth, first, pseudo-second order and parabolic<br>diffusion models for 0-250 and 0-1200 min.                                                              | 229 |
| 4.19 | Phase observed after the anion-exchange reaction<br>of ZALR4 with solution containing mixed of 0.05 M<br>4CPA and TCPA at various aging times together<br>with the moles and percentage intercalation of<br>4CPA and TCPA calculated by simultaneous<br>equation using UV-visible technique. | 237 |
|      |                                                                                                                                                                                                                                                                                              |     |



4.20 Phase observed after the anion-exchange reaction of ZALR4 with solution containing mixed of 0.05 M 2CPA and TCPA at various aging times together with the moles and percentage intercalation of 2CPA and TCPA calculated by simultaneous equation using UV-visible technique. 242



## LIST OF FIGURES

| Figure |                                                                                                                                                                                                                                                        | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1    | Molecular structure of 2-chlorophenoxyacetic acid (a),<br>4-chloropenoxyacetic acid (b) and 2,4,5-<br>trichlorophenoxyacetic acid (c).                                                                                                                 | 9    |
| 2.1    | Schematic view of the LDH structure.                                                                                                                                                                                                                   | 16   |
| 2.2    | Possible arrangements of given species intercalated<br>into the interlayer region of LDHs; oriented disposition<br>of guests (a-e), the co-intercalation of two different<br>guests (f).                                                               | 22   |
| 3.1    | Schematic diagram of preparation of zinc-<br>aluminium-layered double hydroxide by self-assembly<br>method.                                                                                                                                            | 57   |
| 3.2    | Schematic diagram of preparation of zinc-<br>aluminium-layered double hydroxide-4CPA<br>nanocomposite by self-assembly method.                                                                                                                         | 58   |
| 3.3    | Schematic diagram of the procedure for the<br>selective intercalation of phenoxyacetates into LDH<br>for the formation of layered zinc-aluminium-<br>2CPA, zinc-aluminium-4CPA and zinc-<br>aluminium-TCPA nanocomposite by anion-<br>exchange method. | 68   |
| 4.1    | PXRD patterns for layered double hydroxides with various counter anions; $NO_3^{-}$ (ZAL), Cl <sup>-</sup> (ZALCl), $SO_4^{2-}$ (ZALS) and $CO_3^{2-}$ (ZALC).                                                                                         | 70   |
| 4.2    | FTIR spectra for layered double hydroxides synthesized with NO <sub>3</sub> <sup>-</sup> (ZAL), Cl <sup>-</sup> (ZALCl), SO <sub>4</sub> <sup>2-</sup> (ZALS), and CO <sub>3</sub> <sup>2-</sup> (ZALC) as the counter anion.                          | 73   |
| 4.3    | PXRD patterns for Zn-Al-LDH (ZAL) and ZA4Cs synthesized at various concentrations of 4CPA; 0.1 – 1.6 M.                                                                                                                                                | 75   |
| 4.4    | PXRD patterns for ZACs synthesized using different $R_i$ values of 1- 6, at fixed concentration of 4CPA= 0.4 M.                                                                                                                                        | 77   |
| 4.5    | FTIR spectra for ZAL, 4CPA and ZA4Cs synthesized at various concentrations of 4CPA ranging from 0.1–1.6 M.                                                                                                                                             | 80   |



| 4.6  | FTIR spectra for ZAL, 4CPA and ZA4C synthesized at various Zn to Al initial molar ratio; $R_i = 1-6$ .                                                                                                 | 81  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.7  | Adsorption-desorption isotherm of nitrogen gas on<br>ZAL and ZA4Cs synthesized with various<br>concentrations of 4CPA ranging from 0.1 – 1.6 M.                                                        | 86  |
| 4.8  | Adsorption-desorption isotherms of nitrogen gas on ZAL and ZA4Cs synthesized at various Zn to Al initial molar ratio; $R_i = 1-6$ .                                                                    | 87  |
| 4.9  | BJH desorption pore size distribution for ZAL<br>and ZA4Cs synthesized at various concentrations<br>of 4CPA ranging from 0.1 to 1.6 M.                                                                 | 88  |
| 4.10 | BJH desorption pore size distribution for ZAL and ZA4Cs synthesized at various Zn to Al initial molar ratio; $R_i = 1$ to 6.                                                                           | 89  |
| 4.11 | TGA-DTG thermograms for (a) 4CPA, (b) ZAL (c) ZA4Cs synthesized at 0.1 M (d) 0.2 M (e) 0.4 M (f) 0.8 M and (g) 1.6M 4CPA.                                                                              | 93  |
| 4.12 | TGA-DTG thermograms for ZA4Cs synthesized using 0.4 M 4CPA at $R_i$ =1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f).                                                                                      | 94  |
| 4.13 | PXRD patterns for ZAL and ZA4Cs synthesized at various pHs, (*) =ZnO phase.                                                                                                                            | 95  |
| 4.14 | FTIR spectra for ZAL, 4CPA and ZA4Cs synthesized at various pHs.                                                                                                                                       | 97  |
| 4.15 | Plot of pH against mole fraction of $Al^{3+}$ substituted into<br>the LDH inorganic layers (X <sub>Al</sub> ) and the amount of 4CPA<br>intercalated (% w/w) into ZA4Cs synthesized at various<br>pHs. | 99  |
| 4.16 | Plot of $x_{A1}$ against BET surface area of ZA4Cs synthesized at various pHs.                                                                                                                         | 101 |
| 4.17 | Adsorption-desorption isotherm of nitrogen gas on ZAL and ZA4Cs synthesized at various pHs.                                                                                                            | 103 |
| 4.18 | BJH desorption pore size distribution for ZAL and ZA4Cs synthesized at various pHs.                                                                                                                    | 104 |
| 4.19 | TGA-DTG hermograms for (a) ZAL, (b) 4CPA, (c) ZA4C                                                                                                                                                     |     |



|      | synthesized at pH 7.5, (d) pH 8, (e) pH 9, (f) pH 10.                                                                                                                                                                                       | 107 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.20 | Surface morphology of Zn-Al-LDH (ZAL) (a) and ZA4C (b) at 15,000x magnification.                                                                                                                                                            | 108 |
| 4.21 | Molecular structure of 2-chlorophenoxyacetic acid (a) and 2-chlorophenoxyacetate, 2CPA (b).                                                                                                                                                 | 109 |
| 4.22 | PXRD patterns for Zn-Al-2CPA nanohybrid<br>synthesized at Zn to Al initial molar ratio of 2 and<br>various concentrations of 2CPA.                                                                                                          | 110 |
| 4.23 | FTIR spectra for Zn-Al-2CPA nanohybrid synthesized at $R_i = 2$ and various concentration of 2-CPA.                                                                                                                                         | 112 |
| 4.24 | TGA/DTG thermograms of zinc-aluminium-2-<br>chlorophenoxyacetate (ZA2C) together with<br>TGA/DTG thermograms of 2-chlorophenoxyacetic<br>acid and zinc-aluminium-layered double hydroxide,<br>ZAL with initial molar ratio of Zn to Al = 2. | 116 |
| 4.25 | $N_2$ adsorption-desorption isotherms of Zn-Al-2CPA synthesized by direct self-assembly method at $R_i$ = 2 and 0.2 M 2CPA.                                                                                                                 | 117 |
| 4.26 | BJH pore size distribution of Zn-Al-2CPA (ZA2C), synthesized by direct self assembly method with $R_i = 2$ and 0.2 M 2CPA.                                                                                                                  | 118 |
| 4.27 | Molecular structure of 2,4,5-trichlorophenoxyacetic acid (a) and 2,4,5-trichlorophenoxyacetate (b)                                                                                                                                          | 120 |
| 4.28 | PXRD patterns for ZATCs synthesized using various concentrations of TCPA; $0.05 - 1.6$ M, with initial Zn to Al molar ratio, $R_i = 4$ .                                                                                                    | 121 |
| 4.29 | PXRD patterns for ZATCs synthesized using 0.4 M TCPA and various initial Zn to Al molar ratio, $R_i$ =1 - 4.                                                                                                                                | 123 |
| 4.30 | FTIR spectra for ZAL, TCPA and ZATC synthesized at various concentrations of TCPA, 0.05 – 1.6 M.                                                                                                                                            | 125 |
| 4.31 | Adsorption-desorption isotherms of nitrogen gas of<br>ZAL and ZATC synthesized at 0.4 M TCPA and initial<br>Zn to Al molar ratio of 4.                                                                                                      | 128 |
| 4.32 | BJH pore size distribution of LDHs and ZATC synthesized at 0.4 M TCPA and Zn to Al molar ratio of 4.                                                                                                                                        | 128 |
| 4.33 | TGA/DTG thermograms of ZALR4 and ZATC                                                                                                                                                                                                       |     |



|      | nanohybrids together with TGA/DTG thermograms of 2,4,5- trichlorophenoxyacetic acid.                                                                                                                                                           | 131 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.34 | PXRD patterns of ZA2CAs synthesized by anion-<br>exchange method at 0.04 and 0.05 M 2CPA using LDH synthesized at $R_i = 2, 3$ and 4.                                                                                                          | 133 |
| 4.35 | PXRD patterns of ZA4CAs synthesized by anion-<br>exchange method at various concentration of 4CPA;<br>0.01-0.1 M, using LDH synthesized at R <sub>i</sub> = 3 and 4.                                                                           | 135 |
| 4.36 | PXRD patterns of ZATCA synthesized by anion-<br>exchange method at various concentrations of TCPA;<br>0.025 - 0.1 M, synthesized at R <sub>i</sub> = 4.<br>(* = unknown phase).                                                                | 137 |
| 4.37 | FTIR spectra of ZA2CA, ZA4CA and ZATCA synthesized by anion-exchanged method.                                                                                                                                                                  | 140 |
| 4.38 | TGA/DTG thermograms of ZA2CA (a) ZA4CA (b) and ZATCA (c) synthesized by anion-exchange method.                                                                                                                                                 | 144 |
| 4.39 | pH profiles of the distilled water exposed to ZA4C at various initial pH values; 3, 6.25, and 12 for 1200 min.                                                                                                                                 | 148 |
| 4.40 | Release profiles of 4CPA from ZA4C interlamellae into the aqueous solutions containing various concentrations of $Na_2CO_3$ ; 0.0001 - 0.0005 M.                                                                                               | 149 |
| 4.41 | PXRD patterns for the samples reclaimed from $Na_2CO_3$ aqueous solutions at various contact times, 0 – 48 h.                                                                                                                                  | 153 |
| 4.42 | Intensity comparison of the (003) reflections of ZA4C (opened symbol) and LDH formed (closed symbol) as a result of the ion exchange process for the samples reclaimed from the $Na_2CO_3$ aqueous solutions at various contact times, 0-48 h. | 156 |
| 4.43 | FTIR spectra for ZA4C nanocomposites reclaimed from $Na_2CO_3$ aqueous solutions at various contact times, $0.5 - 33$ h.                                                                                                                       | 157 |
| 4.44 | Release profile of 4CPA from ZA4C interlamellae into distilled water at various pHs; pH 3, 6.25 and 12.                                                                                                                                        | 159 |
| 4.45 | PXRD patterns for the samples reclaimed from distilled water at pH 6.25 at various release times, $0 - 48$ hours.<br>(o) = LDH-CO <sub>3</sub> phase.                                                                                          | 162 |



| 4.46 | PXRD patterns for the samples reclaimed from aqueous solutions at pH 3 at various release times, $0 - 48$ hour. (o) = LDH-CO <sub>3</sub> <sup>2-</sup> phase.                                            | 163 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.47 | PXRD patterns for the samples reclaimed from aqueous solutions at pH 12 at various release times, $5 - 30$ min. (o) = LDH-CO <sub>3</sub> <sup>2-</sup> phase, (*) = ZnO phase.                           | 165 |
| 4.48 | Fitting of the data to the zeroth, first order kinetics and Bhaskar equation for 4CPA released into the aqueous solutions containing various concentrations of $Na_2CO_3$ ; 0.0001, 0.00025 and 0.0005 M. | 168 |
| 4 40 | Tritting of the data to the constitution of an                                                                                                                                                            |     |
| 4.49 | kinetics and Bhaskar equation for 4CPA released into distilled water at various pHs.                                                                                                                      | 169 |
| 4.50 | Release profile of 2CPA from ZA2C interlamellae into the aqueous solutions at various pHs.                                                                                                                | 171 |
| 4.51 | Release profile of TCPA from ZATC interlamellae into the aqueous solutions at various pHs.                                                                                                                | 171 |
| 4.53 | Fitting the data of the release of phenoxyherbicides<br>from their nanohybrids into distilled water using<br>pseudo-second order kinetic and parabolic diffusion<br>at pHs = 3, 6.25 and 12 for ZA2C.     | 175 |
| 4.54 | Fitting the data of the release of phenoxyherbicides                                                                                                                                                      |     |
|      | pseudo-second order kinetics and parabolic diffusion<br>at pHs = 3, 6.25 and 12 for ZATC.                                                                                                                 | 176 |
| 4.55 | Release profile of 2CPA from the interlamellae of the ZA2C into 0.0005 M Na <sub>2</sub> CO <sub>3</sub> , Na <sub>2</sub> SO <sub>4</sub> and NaCl.                                                      | 178 |
| 4.56 | Release profile of 4CPA from the interlamellae of the ZA4C into 0.0005 M Na <sub>2</sub> CO <sub>3</sub> , Na <sub>2</sub> SO <sub>4</sub> and NaCl.                                                      | 178 |
| 4.57 | Release profile of TCPA from the interlamellae of the ZATC into 0.0005 M Na <sub>2</sub> CO <sub>3</sub> , Na <sub>2</sub> SO <sub>4</sub> and NaCl.                                                      | 179 |
| 4.58 | Comparison of release profile of 2CPA, 4CPA and TCPA from ZA2C, ZA4C and ZATC into 0.0005 M $Na_2CO_3$ .                                                                                                  | 181 |
| 4.59 | Comparison of release profile of 2CPA, 4CPA and                                                                                                                                                           |     |



|      | TCPA from ZA2C, ZA4C and ZATC into 0.0005 M $Na_2SO_4$ .                                                                                                                                                                         | 181 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.60 | Comparison of release profile of 2CPA, 4CPA and TCPA from ZA2C, ZA4C and ZATC into 0.0005 M NaCl                                                                                                                                 | 182 |
| 4.61 | Fitting the release data of 2CPA from ZA2C nanohybrid into various media (Na <sub>2</sub> CO <sub>3</sub> , Na <sub>2</sub> SO <sub>4</sub> and NaCl) using pseudo-second order kinetic and parabolic diffusion models.          | 188 |
| 4.62 | Fitting the release data of 4CPA from ZA4C nanohybrid<br>into various media (Na <sub>2</sub> CO <sub>3</sub> , Na <sub>2</sub> SO <sub>4</sub> and NaCl) using<br>pseudo-second order kinetic and parabolic diffusion<br>models. | 189 |
| 4.63 | Fitting the release data of TCPA from ZATC nanohybrid<br>into various media (Na <sub>2</sub> CO <sub>3</sub> , Na <sub>2</sub> SO <sub>4</sub> and NaCl) using<br>pseudo-second order kinetic and parabolic diffusion<br>models. | 190 |
| 4.64 | PXRD patterns of the ZA2C nanocomposites reclaimed from $0.0005 \text{ M} \text{ Na}_2\text{CO}_3$ aqueous solution at various release times, 0-24 hours.                                                                        | 192 |
| 4.65 | PXRD patterns for the ZA4C samples reclaimed from $0.0005 \text{ M} \text{ Na}_2\text{CO}_3$ aqueous solution at various release times, 0-48 h.                                                                                  | 193 |
| 4.66 | PXRD patterns of the ZA2C samples reclaimed from $0.0005 \text{ M} \text{ Na}_2\text{SO}_4$ aqueous solutions at various release times, 0 - 0.3 hours.                                                                           | 194 |
| 4.67 | PXRD patterns for the ZA4C samples reclaimed from $0.0005M$ Na <sub>2</sub> SO <sub>4</sub> aqueous solutions at various release times, $0 - 72$ hours.                                                                          | 195 |
| 4.68 | PXRD patterns for the ZA2C samples reclaimed from 0.0005 M NaCl aqueous solution at various releases times, 0 – 6 days.                                                                                                          | 196 |
| 4.69 | PXRD patterns for the ZA4C samples reclaimed from 0.0005 M NaCl aqueous solutions at various release times, 0 – 6 days.                                                                                                          | 197 |
| 4.70 | Intensity comparison of the (003) reflections of ZA2C and Zn-Al-LDH from the samples reclaimed after the release process at various release times in $Na_2CO_3$ (a) $Na_2SO_4$ (b) and $NaCl$ (c).                               | 198 |



| 4.71 | Intensity comparison of the (003) reflections for the ZA4C and Zn-Al-LDH from the samples reclaimed after the release process at various release times in $Na_2CO_3$ (a) $Na_2SO_4$ (b) and $NaCl$ (c).                                                        | 199 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.72 | PXRD patterns for ZATC samples reclaimed from $0.0005 \text{ M} \text{ Na}_2\text{CO}_3$ aqueous solution at various release times, $0 - 3.5$ days. $0.001 \text{ M} = \text{ZATC}$ put in contact with $0.001 \text{ M} \text{ Na}_2\text{CO}_3$ for 1 d.     | 202 |
| 4.73 | PXRD patterns for the ZATC samples reclaimed from $0.0005 \text{ M} \text{ Na}_2 \text{SO}_4$ aqueous solution at various release times, $0 - 20 \text{ h}$ . $0.001 \text{ M}$ = ZATC put in contact with $0.001 \text{ M} \text{ Na}_2 \text{SO}_4$ for 1 d. | 203 |
| 4.74 | PXRD patterns for the ZATC samples reclaimed from $0.0005$ M NaCl aqueous solution at various releases times, $0 - 6$ days. $0.1$ M = ZATC put in contact with 0. 1 M NaCl for 1 d.                                                                            | 204 |
| 4.75 | Intensity comparison of the (003) reflections of the ZATC from samples reclaimed after the release process at various release times in $Na_2CO_3$ (a) $Na_2SO_4$ (b) and NaCl (c).                                                                             | 205 |
| 4.76 | FTIR spectra for the ZA4C samples reclaimed from $0.0005 \text{ M} \text{ Na}_2\text{CO}_3$ aqueous solution at various release times, $0.5 - 33$ hours.                                                                                                       | 207 |
| 4.77 | FTIR spectra for the ZA4C samples reclaimed from $0.0005 \text{ M} \text{ Na}_2\text{SO}_4$ aqueous solution at various release times; 10 min to 72 h.                                                                                                         | 208 |
| 4.78 | FTIR spectra for the ZA4C samples reclaimed from 0.0005 M NaCl aqueous solution at various release times, 5 min to 6 d.                                                                                                                                        | 209 |
| 4.79 | PXRD patterns of the Zn-Al-2CPA nanocomposites<br>synthesized at various aging times (0-18 h) using<br>anion-exchange method.                                                                                                                                  | 212 |
| 4.80 | PXRD patterns of the Zn-Al-4CPA nanocomposites<br>synthesized at various aging time (0-18 h) using<br>anion-exchange method.                                                                                                                                   | 213 |
| 4.81 | PXRD patterns of the Zn-Al-TCPA nanocomposites synthesized at various aging time (0-18 h) using                                                                                                                                                                |     |



|      | anion-exchange method.                                                                                                                                                                                                                                                                                       | 214 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.82 | Intensity comparison of the (003) reflections of ZA2CA,<br>ZA4CA and ZATCA nanocomposites synthesized<br>by anion-exchange method at various aging time<br>ranging from 0.1-18 hours.                                                                                                                        | 218 |
| 4.83 | Percentage intercalation of 2CPA, 4CPA and TCPA<br>into Zn-Al-LDH at various aging times for the<br>formation of Zn-Al-2CPA (a) Zn-Al-4CPA (b) and<br>Zn-Al-TCPA (c) by anion-exchange method<br>determined using UV-visible technique.                                                                      | 223 |
| 4.84 | Release profile of 2CPA, 4CPA and TCPA from their respective nanocomposites synthesized by anion-exchange method into 0.0005 M Na <sub>2</sub> CO <sub>3</sub> aqueous solution.                                                                                                                             | 224 |
| 4.85 | Comparison of release profiles of<br>phenoxyherbicides nanohybrids synthesized by anion-<br>exchange method at 18 hour aging time (AE) and direct<br>self-assembly method (DM) of 2CPA (a), 4CPA (b) and<br>TCPA (c) from their respective nanocomposite into<br>0.0005 M sodium carbonate aqueous solution. | 225 |
| 4.86 | Fitting the data to the zeroth-, first-, pseudo-<br>second order kinetics and parabolic diffusion for the<br>release of 2CPA, 4CPA and TCPA into 0.0005 M<br>sodium carbonate aqueous solution.                                                                                                              | 230 |
| 4.87 | PXRD patterns of the material obtained by<br>simultaneous intercalation of 4CPA and TCPA using<br>anion-exchange method at various aging times;<br>0.1 – 18 h. '0 h' indicates ZALR4 phase.                                                                                                                  | 233 |
| 4.88 | Intensity plots of the (003) reflections of ZA4CA and<br>ZATCA in the material obtained from simultaneous<br>intercalation of 4CPA and TCPA into ZALR4 by anion-<br>exchange method at various aging times; 0.1-18 h.                                                                                        | 234 |
| 4.89 | Moles of 4CPA and TCPA intercalated<br>simultaneously into ZALR4 by anion-exchange<br>method at various aging times, 0-18 hours.                                                                                                                                                                             | 235 |
| 4.90 | PXRD patterns of the material obtained by<br>simultaneous intercalation of 2CPA and TCPA<br>at various ageing times; 0.25 to 18 h.<br>'0' h indicate ZALR4 phase.                                                                                                                                            | 238 |

