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Faculty: Institute of Advanced Technology 
 
 

The massive use of agrochemicals, such as herbicides has led to the 

contamination of these chemicals in the environment especially surface 

and ground-water reservoir. One approach to solve this problem is to 

develop controlled release agrochemical, in which the chemical is 

embedded into a matrix/support system, and can be released in a 

controlled manner. This study aimed at the synthesis of new controlled 

release of herbicides, namely 2-chlorophenoxyacetate, 4-chlorophenoxy-

acetate and 2,4,5-trichlorophenoxyacetate via intercalation of the 

chlorophenoxyherbicides into zinc-aluminium-layered double hydroxide 

by self-assembly and anion-exchange methods. Upon the successful 

intercalation of the herbicides, release profiles and the factors govern its 

release from their matrices into various aqueous media were determined. 

In this study, relatively phase-pure with well ordered layered nanohybrid 

materials were successfully synthesized by both methods at optimum 

condition. Expansion of basal spacing was observed from 8.9 Å in the 
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zinc-aluminium-layered double hydroxide to 18.5, 20.1 and 26.2 Å, in 

zinc-aluminium-2-chlorophenoxyacetate, zinc-aluminium-4-chlorophe- 

noxyacetate and zinc-aluminium-2,4,5-trichlorophenoxyacetate nano- 

hybrids respectively, obtained from self-assembly method, compared to 

19.6, 19.5 and 25.8 Å, respectively, in the nanohybrids synthesized by 

anion-exchange method. Controlled release study of the herbicides into 

the aqueous solutions of sodium carbonate, sodium sulfate and sodium 

chloride as well as in distilled water at pH =  3, 6.25 and 12 is in the 

order of: 2-chlorophenoxyacetate > 4-chlorophenoxyacetate > 2,4,5-

trichloro-phenoxy acetate. Release of herbicides into the aqueous media is 

in the order of: sodium carbonate > sodium sulfate > sodium chloride and 

pH 12 > pH 3 > pH 6.25. The release profiles are best described by 

pseudo-second order kinetic model as shown by the regression values of 

about 1.0. The 4-chlorophenoxyacetates anion was selectively intercalated 

into zinc-aluminium-layered double hydroxide than 2,4,5-

trichlorophenoxyacetate, with percentage anion of 35.5 and 21.0 %, for 4-

chlorophenoxyacetates and 2,4,5-trichlorophenoxyacetate, respectively 

while 2,4,5-tri-chloro-phenoxyacetate  was preferably intercalated 

compared to 2-chlorop-henoxyacetates with the percentage loading of 

57.8 and 31.4 %, respectively, for the latter and the former. This study 

shows that the zinc-aluminium-layered double hydroxide can be used as 

a matrix for controlled release formulation of chlorophenoxyacetic acid 

herbicides. The release of chlorophenoxyherbicides from the matrix was 

found to be controlled by the concentration and the anion in the release 

aqueous solution as well as the pH of the release media.  
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Penggunaan bahan agrokimia  seperti herbisid secara meluas telah 

menyebabkan pencemaran alam sekitar terutama air dan punca air 

bawah tanah. Satu pendekatan untuk menyelesaikan masalah ini ialah 

dengan memajukan bahan agrokimia berperlepasan terkawal di mana 

bahan kimia ini diselitkan di dalam matrik/sistem penyokong dan boleh 

dilepaskan secara terkawal. Kajian ini bertujuan untuk mensintesis 

herbisid lepasan terkawal yang baru, iaitu 2-klorofenoksiasetat, 4-

klorofenoksiasetat dan 2,4,5-triklorofenoksiasetat dengan penyisipan ke 

dalam lapisan berganda zink-aluminium hidroksida secara pemendakan 

bersama dan penukargantian anion. Setelah penyisipan herbisid berjaya 

dilakukan, kajian mengenai perlepasan terkawal dan faktor-faktor yang 

mengawal perlepasannya ke dalam berbagai media berakuaes telah 

dilakukan. Dalam kajian ini, bahan hibrid nanokomposit yang berfasa 

tulen dengan struktur yang teratur telah berjaya disintesis dengan 

kedua-dua kaedah pada keadaan optima. Pengembangan jarak lapisan 
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daripada 8.9 Å dalam lapisan hidroksida berlapis ganda zink-aluminium 

kepada masing-masing 18.5, 20.1 dan 26.2 Å, dalam nanohibrid zink-

aluminium-2-klorofenoksiasetat,  zink-aluminium-4-klorofenoksiasetat 

dan zink-aluminium-2,4,5-triklorofenoksiasetat telah dihasilkan daripada 

kaedah pemendakan bersama berbanding dengan  masing-masing 19.6, 

19.5 dan 25.8 Å, dengan kaedah penukargantian ion. Kajian perlepasan 

terkawal klorofenoksiasetat dalam larutan akuas natrium karbonat, 

natrium sulfat dan natrium klorida serta air suling pada pH = 3, 6.25 dan 

12 adalah dalam turutan: 2-klorofenoksiasetat > 4-klorofenoksiasetat > 

2,4,5-triklorofenoksiasetat. Peratus perlepasan terkawal dalam media 

berakueus adalah dalam turutan: natrium karbonat > natrium sulfat > 

natrium klorida dan pH 12 > pH 3 > pH 6.25. Profil perlepasan terkawal 

didapati mematuhi kinetik tertib pseudo-kedua dengan nilai regresi bagi 

kesemua profil hampir 1.0. 4-klorofenoksiasetat lebih mudah disisipkan 

berbanding dengan 2,4,5-triklorofenoksiasetat dengan 35.5 dan 21.0 % 

tersisip, masing-masing, bagi 4-klorofenoksi-asetat dan 2,4,5-trikloro-

fenoksiasetat sementara 2,4,5-triklorofenoksiasetat lebih cenderung 

untuk disisipkan ke dalam lapisan berganda hidroksida berbanding 2-

klorofenoksiasetat dengan masing-masing 57.8  dan 31.4 % anion 

tersisip.  Kajian ini menunjukkan hidroksida berlapis ganda zink-

aluminium boleh digunakan sebagai matrik bagi formulasi perlepasan 

terkawal herbisid asid klorofenoksiasetik. Perlepasan klorofenoksi-asetat 

daripada matriksnya didapati dikawal oleh kepekatan dan jenis anion di 

dalam larutan akuas dan juga pH media.   

 
 

 v



 
 

ACKNOWLEDGEMENT 
 

 
Glory is to Allah and all praise is to Allah. It is only with His help, 

blessings and guidance that bring to the completion of this thesis. I would 

like to express my grateful and deepest appreciations to my dedicated 

supervisor, Professor Dr. Mohd. Zobir bin Hussein for his excellent 

supervision and guidance throughout the three years of my study. Special 

thanks and appreciation are due to Associate Professor Dr. Asmah binti 

Hj. Yahaya and Professor Dr. Zulkarnain bin Zainal for their kind help 

and suggestions. I would like to thank my employer, University 

Technology MARA for the financial support and the opportunity given to 

pursue my study. Special thanks to my UiTM colleagues, Associate 

Professor Dr. Halila binti Jasmani and Dr. Seripah Awang Kecil for their 

help in the multicomponent analysis and kinetic study. Thank you to Mrs 

Zalaniah Graff for the assistance in this thesis writing. My sincere thanks 

to all the very helpful UPM officers, Mrs Sarinawani binti Abdul Ghani, 

Mrs Rosnani binti Amiruddin, Mr Zainal Abidin bin Kassim and Mdm 

Choo Chai Sam for always giving hands whenever in need. Thank you to 

the kind hearted lab-mates; Mazlina binti Musa and Mazidah binti Mamat 

who have helped me during the early days of the research.  Last but not 

least my thanks and appreciation to my husband, Nordin bin Abdul Kadir 

and childrens, Norshafiqah Hannah, Muhammad Aminuddin, 

Muhammad Ridhuan and Muhammad Muhsin for the unlimited patience 

and understanding throughout the years of my study.   

 

 vi



 
I certify that an Examination Committee met on the 23 September 2008 
to conduct the final examination of Siti Halimah binti Sarijo on her Doctor 
of Philososophy thesis entitled “Synthesis and Controlled Release 
Characterization of Zinc-Aluminium-Layered Double Hydroxide-
Chlorophenoxyacetates Nanohybrids” in accordance with Universiti 
Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian 
Malaysia (Higher Degree) Regulations 1981. The Committee recommends 
that the student be awarded the Doctor of Philosophy.  
 

Members of the Examination Committee are as follows: 

 
Sidik Silong, PhD 
Associate Professor 
Faculty of Science 
Universiti Putra Malaysia 
(Chairman) 
 
Md. Jelas Haron, PhD 
Professor 
Faculty of Science 
Universiti Putra Malaysia 
(Internal Examiner) 
 
Abdul Halim Abdullah, PhD 
Associate Professor 
Faculty of Science 
Universiti Putra Malaysia 
(Internal Examiner) 
 
Shahidan Radiman, PhD 
Professor 
Faculty of Science 
Universiti Kebangsaan Malaysia 
(External Examiner) 
 
 
 

       
       
 _________________________________ 

                            HASANAH MOHD GHAZALI, PhD 
Professor and Deputy Dean 

 School of Graduates Studies 
 Universiti Putra Malaysia 
     
 Date: 30 December 2008 
 

 vii



This thesis submitted to the Senate of Universiti Putra Malaysia and has 
been accepted as fulfillment of the requirement for the degree of Doctor of 
Philosophy. The members of the Supervisory Committee are as follows: 
 
 
 
 
MOHD. ZOBIR BIN HUSSEIN, PhD 
Professor 
Faculty of Science 
Universiti Putra Malaysia 
(Chairman) 
 
ASMAH BINTI HJ. YAHAYA, PhD 
Associate Professor 
Faculty of Science 
Universiti Putra Malaysia 
(Member) 
 
ZULKARNAIN BIN ZAINAL, PhD 
Professor 
Faculty of Science 
Universiti Putra Malaysia 
(Member) 
 
 
 
 
 
 
      
 __________________________________ 
 HASANAH MOHD. GHAZALI, PhD 
 Professor and Dean 

                                                School of Graduate Studies 
                                            Universiti Putra Malaysia 

 
                               Date: 15.1.2009 

 
 
 
 
 
 
 
 
 
 
 
 

 viii



 
DECLARATION 

 
I declare that the thesis is my original work except for quotations and 
citations, which have been duly acknowledged. I also declare it has not 
been previously and is not concurrently submitted for any other degree at 
UPM or at any other institutions. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
                                                                                  ______________________________ 

                                                                                 SITI HALIMAH BINTI SARIJO 
  
                                                            Date: 4.11.2008 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ix



 
 

TABLE OF CONTENTS 
            

Page 
 
ABSTRACT ii 
ABSTRAK iv 
ACKNOWLEDGEMENTS vi 
APPROVAL vii 
DECLARATION ix 
LIST OF TABLES xiv 
LIST OF FIGURES xvii  
LIST of ABBREVIATIONS xxvi  
 
 
 
CHAPTER 
 
1 INTRODUCTION  
 1.1 Hybrid composite 1 
 1.2 Hybrid organic-inorganic nanocomposite as control 
  release of agrochemicals 4 
 1.3 Problem statement 5 
 1.4 Objective of the research 10 
 
  
2 LITERATURE REVIEW 
 2.1 Historical background 13 
 2.2 Structure of layered double hydroxide 15 
  2.2.1 Trivalent metal ratio 17 
  2.2.2 Metal cations in the interlayer 18 
  2.2.3 Ratio of M2+/M3+ 18 
  2.2.4 Interlamellar anions 19 
 2.3 Intercalation 21 
 2.4 Synthesis of hybrid layered double hydroxides 23 
  2.4.1 Direct co-precipitation method 23 
  2.4.2 Anion-exchange reaction 25 
  2.4.3 Hydrothermal treatment method 26 
  2.4.4 Glycerol method 27 
  2.4.5 Rehydration of layered double hydroxide 28 
  2.4.6 Salt oxide method 29 
  2.4.7 Hydrolysis in polyol medium 30 
  2.4.8 Solid state reaction 30 
 
 2.5 Application of LDHs 31 
  2.5.1 Controlled release of agrochemicals 32 
  2.5.2 Controlled release of drug and biomolecules 35 
  2.5.3 Cosmetic application 38 
  2.5.4 Environmental applications 40 

 x



  2.5.5 Catalyst precursor 43 
 
 2.6 Selective intercalation 45 
 2.7 Controlled release 47 
      
 
3 METHODOLOGY  
 3.1 Synthesis of layered double hydroxide  
  3.1.1 Zinc-aluminium –layered double hydroxide 
   with nitrate as the counter anion 52 
  3.1.2 Zinc-aluminium –layered double hydroxide 
   with sulfate as the counter anion 53 
  3.1.3 Zinc-aluminium –layered double hydroxide 
   with chloride as the counter anion 53 
  3.1.4 Zinc-aluminium –layered double hydroxide 
   with carbonate as the counter anion 54 
 3.2 Synthesis of nanocomposite  
 3.2.1 Direct self-assembly method 54 
  3.2.2 Anion-exchange method 56 
 3.3 Physico-chemical analysis and characterization  
  3.3.1 Powder X-ray diffraction analysis (PXRD) 59 
 3.3.2 Fourier transform-infrared spectroscopy 60 
 3.3.3 Inductive couple plasma-atomic emission 
  spectroscopy  60  
 3.3.4 Carbon hydrogen Nitrogen Sulfur (CHNS)  
  analysis 61 
 3.3.5 Thermogravimetric and differential thermal  
  analysis 61 
 3.3.6 Surface area and porosimetry analysis 62 
 3.3.7 Scanning electron microscopy 63 
 3.3.8 Controlled release study of the anions from  
  the respective nanocomposites into various  
  media by UV-Vis spectrophotometer 63 
 3.3.9 Multicomponent analysis 64 
 3.4 Buffer effect study 66 
 3.5 Kinetics of intercalation and deintercalaton of 
  phenoxyherbicides from Zn-Al-LDH 66 

3.6 Selective intercalation of chlorophenoxyherbicides  
 into Zn-Al-LDH by anion-exchange method 67 
 
 

4 RESULTS AND DISCUSSIONS 
4.1 Physical properties 69 
4.2 Synthesis of zinc-aluminium-layered double  
 Hydroxide 69 
 
4.3 Synthesis of zinc-aluminium-4-chlorophenoxyacetate 

nanocomposite. 74 
4.3.1 Effect of concentration and initial molar 
 ratio, Ri 74 

 xi



4.3.2  Effect of pH 95 
 

 4.4 Synthesis of zinc-aluminium-2-chlorophenoxy- 
  Acetate nanocomposite. 109 
  4.4.1 X-ray diffraction analysis 109 
  4.4.2  Fourier transform infrared spectroscopy 111 
  4.4.3 Elemental analysis of organic and 
   inorganic compositions 113 
  4.4.4 Thermal properties 114 

4.5 Synthesis of zinc-aluminium-2,4,5-trichloro-  
 phenoxyacetate nanocomposite. 120 
 4.5.1 Powder X-ray Diffraction  120 
 4.5.2 Fourier transform infrared (FTIR) spectroscopy 124 
 4.5.3 Surface properties 126 
 4.5.4 Elemental analysis-organic-inorganic 
  composition 129 
 4.5.5 Thermal properties 130 
  
4.6 Synthesis of nanocomposite by anion-exchange  

method. 
4.6.1 Powder X-ray diffraction 132 
4.6.2 Fourier transform infrared (FTIR) spectroscopy 138 
4.6.3 Elemental analysis - organic-inorganic  
 composition 141 
4.6.4 Thermal properties 143 

 4.7 Buffering effect of ZA4C 146 
4.8    Controlled release study 

4.8.1 Release of 4-chlorophenoxyacetate into Na2CO3  149 
4.8.2 Release of 4-chlorophenoxyacetate into various  
 pHs: pH 3, 6.25 and 12 158 
4.8.3 Release of 2-chlorophenoxyacetates and 2,4,5- 
 trichlorophenoxyacetates from Zn-Al-2CPA and  
 Zn-Al-TCPA into various pH: pH 3, 6.25 and 12 170 

4.9 Controlled release properties of 4CPA, 2CPA and 
 TCPA  from their respective nanocomposites into  
 various aqueous solution solutions; Na2CO3,  
 Na2SO4 and NaCl 177 
 4.9.1 Release profile of the guest anion 177 
 4.9.2 Effect of the intercalated anion 180 
 4.9.3 Kinetic release 184 
 4.9.4 PXRD study on the reclaimed samples 191 
 4.9.5 FTIR spectra for the ZACs reclaimed samples 206 
4.10 Kinetic of intercalation and deintercalation  211 
 4.10.1 X-ray diffraction 211 
 4.10.2 Elemental analysis 218 
 4.10.3 Quantitative analysis of UV-visible  
   spectrophotometer data 221 
 4.10.4 Release of chlorophenoxyacetates anions 
   into 0.0005 M Na2CO3 224 
 4.10.5 Fitting of data into various kinetic models 227 

 xii



 
   
4.11 Selective intercalation of phenoxyherbicides into  
 zinc-aluminium-layered double hydroxide 232 

4.11.1  Selective intercalation of 4CPA and TCPA 
  into  Zn-Al-LDH 232 
4.11.2  Selective intercalation of 2CPA and TCPA  
  into Zn-Al-LDH 237 
4.11.3 Elemental analysis 244 
4.11.4 Release of anion into 0.0005 M Na2CO3 244 
 

5 CONCLUSIONS AND  
RECOMMENDATIONS FOR FUTURE RESEARCH 248  
 

REFERENCES         255 
APPENDICES         268  
BIODATA OF THE STUDENT       280 
LIST OF PUBLICATIONS       281 
   
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xiii



LIST OF TABLES 
 

Table           Page 
 
2.1 Chemical composition range of various LDH.  19  
 
2.2 LDHs name based on the mineral composition  20 
 
2.3 Examples of calcined LDH and their catalytic    
 applications.       45 
 
4.1 Basal spacing of LDHs with various counter anions.     69 
     
4.2 Elemental analysis of ZAL and ZA4Cs   84 
 
4.3 Physicochemical properties of Zn-Al-NO3 layered  
 double hydroxide (ZAL) and its nanocomposites  
 (ZA4Cs).        84 
 
4.4 Comparison of weight loss for ZAL and ZA4Cs  

synthesized at different concentrations of 4CPA and  
different Zn to Al molar ratios.     92 

 
4.5 Physicochemical properties of ZAL and ZA4Cs  
 synthesized at  various pH.     99 
 
4.6 Comparison of weight loss for ZAL and ZA4Cs  
 synthesized at various pH.     106 
 
4.7 Basal spacing, chemical composition, surface and 
 thermal properties of LDH and its nanocomposites;  
 ZA2C synthesized at 0.2 M 2CPA.    114 
 
4.8 Basal spacing, chemical composition, surface and  
 thermal properties of LDH and its nanocomposites; 
 ZATC synthesized at 0.4 M TCPA    129 
 
4.9 Comparison of the physicochemical properties  

and percentage release of 2CPA, 4CPA and TCPA 
 from their respective nanocomposites synthesized by  
 anion-exchange and direct self assembly method. 143 

       143 
 
4.10 Phase observed after the release of 4CPA from the 

ZA4C nanocomposite interlamellae into 0.0005 M  
Na2CO3 aqueous solution.     154 

 
4.11 Phase observed after the release of 4CPA from the 
 ZA4C nanocomposite interlamellae into the aqueous 
 solution.        164 

 xiv



 
4.12 Release of 4CPA into the aqueous solution containing  
 various concentration of sodium carbonate and  
 distilled water. The extend of 4CPA released 
 from the nanocomposites in which the zeroth,  
 first order kinetic, and Bhaskar equation give a 
 good fit is also indicated.     167 
 
4.13 Comparison of the percentage releases of 2CPA and  
 TCPA in distilled water at pH 3, 6.25 and 12  
 together with the maximum release time.   172 
 
4.14 Fitting the release data of 2CPA and TCPA from ZA2C  

and ZATC, respectively  into distilled water at various   
 pHs using zeroth-, first-, pseudo-second order  
 kinetics and parabolic diffusion models for 0-300  
 and 0-1000 min.       174 
 
4.15 Fitting the release data of 2CPA, 4CPA and TCPA from  
 ZA2C, ZA4C and ZATC nanocomposites into various 
 media using zeroth-, first-, pseudo-second order 
 kinetics and parabolic diffusion models for 0-300 
 and 0-1000 min.       186 
 
4.16 Phase observed after the anion-exchange reaction  
 of ZALR4 with 0.05 M 2CPA, 4CPA and TCPA  
 at various aging times together with the  
 respective percentage loading of 2CPA, 4CPA and  
 TCPA calculated based on the UV-visible data.  215 
 
4.17 Comparison of percentage release of 2CPA, 4CPA 
 and TCPA from their respective nanocomposites, 
  ZA2C, ZA4C and ZATC, respectively, synthesized 
 by anion-exchange and direct self assembly 
 methods.        219 
 
4.18 Fitting the release data of phenoxyherbicides 
 from their nanohybrids into 0.0005 M Na2CO3 using 
 zeroth, first, pseudo-second order and parabolic 
 diffusion models for 0-250 and 0-1200 min.  229 
 
4.19 Phase observed after the anion-exchange reaction 
 of ZALR4 with solution containing mixed of 0.05 M  
 4CPA and TCPA at various aging times together 
 with the moles and percentage intercalation of  
 4CPA and TCPA calculated by simultaneous  
 equation using UV-visible technique.   237 
 
 
 

 xv



 
 
4.20 Phase observed after the anion-exchange reaction of 
 ZALR4 with solution containing mixed of 0.05 M 2CPA 
  and TCPA at various aging times together with the 
 moles and percentage intercalation of 2CPA and 
 TCPA  calculated by simultaneous equation using  
 UV-visible technique.      242 
     
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xvi



 
 

LIST OF FIGURES 
 

 
Figure          Page 
 
1.1 Molecular structure of 2-chlorophenoxyacetic acid (a), 
 4-chloropenoxyacetic acid (b) and 2,4,5- 
 trichlorophenoxyacetic acid (c).     9 
 
2.1 Schematic view of the LDH structure.     16 
 
2.2 Possible arrangements of given species intercalated 

into the interlayer region of LDHs; oriented disposition 
of guests (a-e), the co-intercalation of two different  

 guests (f).        22 
             

3.1 Schematic diagram of preparation of zinc- 
 aluminium-layered double hydroxide by self-assembly   
 method. 57 
 
3.2 Schematic diagram of preparation of zinc- 
 aluminium-layered double hydroxide-4CPA  
 nanocomposite  by self-assembly  method.   58 
 
3.3 Schematic diagram of the procedure for the 
 selective intercalation of phenoxyacetates into LDH 
 for the formation of layered zinc-aluminium- 
 2CPA, zinc-aluminium-4CPA and zinc- 
 aluminium-TCPA nanocomposite by anion- 
 exchange method.       68 
 
4.1 PXRD patterns for layered double hydroxides  
 with various counter anions; NO3-(ZAL), Cl- (ZALCl),  
 SO42- (ZALS) and CO32- (ZALC).      70  
 
4.2 FTIR spectra for layered double hydroxides  
 synthesized with NO3- (ZAL), Cl- (ZALCl), SO42-  
 (ZALS), and CO32- (ZALC) as the counter anion.  73 
 
4.3 PXRD patterns for Zn-Al-LDH (ZAL) and ZA4Cs  
 synthesized at various concentrations of 4CPA;  
 0.1 – 1.6 M.        75 
 
4.4 PXRD patterns for ZACs synthesized using different  
 Ri values of 1- 6, at fixed concentration of 4CPA= 0.4 M. 77 
 
4.5 FTIR spectra for ZAL, 4CPA and ZA4Cs synthesized at  
 various concentrations of 4CPA ranging from 0.1–1.6 M. 80 

 xvii



 
 
4.6 FTIR spectra for ZAL, 4CPA and ZA4C synthesized at  

various Zn to Al initial molar ratio; Ri =1- 6.   81 
 
4.7 Adsorption-desorption isotherm of nitrogen gas on  
 ZAL and ZA4Cs synthesized with various  
 concentrations of 4CPA ranging from 0.1 – 1.6 M.  86 
 
4.8 Adsorption-desorption isotherms of nitrogen gas on  
 ZAL and ZA4Cs synthesized at various Zn to Al initial  
 molar ratio; Ri = 1- 6.       87 
 
4.9 BJH desorption pore size distribution for ZAL  
 and ZA4Cs synthesized at various concentrations 
 of 4CPA ranging from 0.1 to 1.6 M.    88 
 
4.10 BJH desorption pore size distribution for ZAL  
 and ZA4Cs synthesized at various Zn to Al initial  
 molar ratio; Ri = 1 to 6.      89 
 
4.11 TGA-DTG thermograms for (a) 4CPA, (b) ZAL (c) ZA4Cs  
 synthesized at 0.1 M (d) 0.2 M (e) 0.4 M (f) 0.8 M and (g)  
 1.6M 4CPA.        93 
  
4.12 TGA-DTG thermograms for  ZA4Cs synthesized using  

0.4 M 4CPA at  Ri =1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and  
6 (f).         94 

 
4.13 PXRD patterns for ZAL and ZA4Cs synthesized at various  
 pHs, (*) =ZnO phase.       95 
 
4.14 FTIR spectra for ZAL, 4CPA and ZA4Cs synthesized at  
 various pHs.        97 
 
4.15 Plot of pH against mole fraction of Al3+ substituted into 
 the LDH inorganic layers (XAl) and the amount of 4CPA 
 intercalated (% w/w) into ZA4Cs synthesized at various 
 pHs.         99 
 
4.16 Plot of xAl against BET surface area of ZA4Cs  
 synthesized at various pHs.     101 

 
4.17  Adsorption-desorption isotherm of nitrogen gas on  
  ZAL and ZA4Cs synthesized at various pHs.   103 
 
4.18 BJH desorption pore size distribution for ZAL and  

     ZA4Cs synthesized at various pHs.    104 
 
4.19 TGA-DTG hermograms for (a) ZAL, (b) 4CPA, (c) ZA4C  

 xviii



 synthesized at pH 7.5, (d) pH 8, (e) pH 9, (f) pH 10.  107 
 
4.20 Surface morphology of Zn-Al-LDH (ZAL) (a) and ZA4C  
 (b) at 15,000x magnification.     108 
 
4.21 Molecular structure of 2-chlorophenoxyacetic acid (a)  
 and 2-chlorophenoxyacetate, 2CPA  (b).        109 
 
4.22 PXRD patterns for Zn-Al-2CPA nanohybrid  
 synthesized at Zn to Al initial molar ratio of 2 and  
 various concentrations of 2CPA.     110 
 
4.23 FTIR spectra for Zn-Al-2CPA nanohybrid synthesized  
 at Ri = 2 and various concentration of 2-CPA.   112 
 
4.24      TGA/DTG  thermograms of zinc-aluminium-2- 
 chlorophenoxyacetate (ZA2C) together with  
 TGA/DTG thermograms of 2-chlorophenoxyacetic  
 acid and zinc-aluminium-layered double hydroxide,  
 ZAL with initial molar ratio of Zn to Al = 2.   116 
 
4.25 N2 adsorption-desorption isotherms of Zn-Al-2CPA 
 synthesized by direct self-assembly method  
 at Ri = 2 and 0.2 M 2CPA.      117 
 
4.26 BJH pore size distribution of  Zn-Al-2CPA (ZA2C),  
 synthesized  by direct self assembly method with Ri = 2  
 and  0.2 M 2CPA.       118 
 
4.27 Molecular structure of 2,4,5-trichlorophenoxyacetic  
 acid (a) and 2,4,5-trichlorophenoxyacetate  (b)  120 
 
4.28 PXRD patterns for ZATCs synthesized using various 
 concentrations of TCPA; 0.05 – 1.6 M, with initial  
 Zn to Al molar ratio, Ri = 4.      121 
 
4.29 PXRD patterns for ZATCs synthesized using 0.4 M  
 TCPA and various initial Zn to Al molar ratio, Ri=1 - 4. 123 
 
4.30 FTIR spectra for ZAL, TCPA and ZATC synthesized at  
 various concentrations of TCPA, 0.05 – 1.6 M.   125 
 
4.31 Adsorption-desorption isotherms of nitrogen gas of  
 ZAL and ZATC synthesized at 0.4 M TCPA and initial  
 Zn to Al molar ratio of 4.      128 
 
4.32 BJH pore size distribution of LDHs and ZATC  
 synthesized at 0.4 M TCPA and Zn to Al molar ratio of 4.  128 
 
4.33 TGA/DTG  thermograms of ZALR4 and ZATC  

 xix



 nanohybrids together with TGA/DTG thermograms  
 of 2,4,5- trichlorophenoxyacetic acid.    131 
 
4.34 PXRD patterns of ZA2CAs synthesized by anion- 
 exchange method at 0.04 and 0.05 M 2CPA using LDH  
 synthesized at  Ri = 2, 3 and 4.     133 
 
4.35 PXRD patterns of ZA4CAs synthesized by anion- 

exchange method at various concentration of 4CPA;  
0.01- 0.1 M, using LDH synthesized at Ri = 3 and 4.  135 

 
4.36 PXRD patterns of ZATCA synthesized by anion- 
 exchange method at various concentrations of TCPA;  
 0.025 – 0.1 M, synthesized at Ri  = 4.  
 (* = unknown phase).       137 
 
4.37 FTIR spectra of ZA2CA, ZA4CA and ZATCA synthesized 
 by anion-exchanged method.     140 
 
4.38 TGA/DTG thermograms of ZA2CA (a) ZA4CA (b)  and  
 ZATCA (c) synthesized by anion-exchange method.  144 
 
4.39 pH profiles of the distilled water exposed to ZA4C at  

various initial pH values; 3, 6.25, and 12 for 1200 min. 148 
 

4.40      Release profiles of 4CPA from ZA4C interlamellae into  
 the aqueous solutions containing various concentrations 
 of Na2CO3; 0.0001 - 0.0005 M.      149 
 
4.41 PXRD patterns for the samples reclaimed from Na2CO3  
 aqueous  solutions at various contact times, 0 – 48 h. 153 
 
4.42 Intensity comparison of the (003) reflections of ZA4C  
 (opened symbol) and LDH formed (closed symbol) as a  
 result of the ion exchange process for the samples  
 reclaimed from the Na2CO3 aqueous solutions at  
 various contact times, 0-48 h.      156 
 
4.43 FTIR spectra for ZA4C nanocomposites reclaimed  from  
 Na2CO3 aqueous solutions at various contact times,  
 0.5 – 33 h.        157 
 
4.44 Release profile of 4CPA from ZA4C interlamellae 
 into distilled water at various pHs; pH 3, 6.25 and 12.  159 
 
4.45 PXRD patterns for the samples reclaimed from distilled  
 water at pH 6.25 at various release times, 0 – 48 hours.  

(o) = LDH-CO3 phase.       162 
 

 xx



 
 
4.46 PXRD patterns for the samples reclaimed from  
 aqueous solutions at pH 3 at various release times,  
 0 – 48 hour. (o) = LDH-CO32- phase.    163 
 
4.47 PXRD patterns for the samples reclaimed from  
 aqueous solutions at pH 12 at various release times,  
 5 – 30 min. (o) = LDH-CO32- phase, (*) = ZnO phase.  165 
 
4.48 Fitting of the data to the zeroth, first order  
 kinetics and Bhaskar equation for 4CPA released  
 into the aqueous solutions containing various  
 concentrations of Na2CO3; 0.0001, 0.00025 and  
 0.0005 M.         168 
 
4.49 Fitting of the data to the zeroth, first order  
 kinetics and Bhaskar equation for 4CPA released into  
 distilled water at various pHs.     169 
 
4.50 Release profile of 2CPA from ZA2C interlamellae into  

 the aqueous solutions at various pHs.     171 
 

4.51 Release profile of TCPA from ZATC interlamellae into  
  the aqueous solutions at various  pHs.         171 
 
4.53 Fitting the data of the release of phenoxyherbicides  

from their nanohybrids into distilled water using  
pseudo-second order kinetic and parabolic diffusion  
at pHs = 3, 6.25 and 12 for ZA2C.    175 

 
4.54 Fitting the data of the release of phenoxyherbicides  
 from their nanohybrids into distilled water using  
 pseudo-second order kinetics and parabolic diffusion  
 at pHs = 3, 6.25 and 12 for ZATC.    176 
 
4.55 Release profile of 2CPA from the interlamellae of the  
 ZA2C into 0.0005 M Na2CO3, Na2SO4 and NaCl.   178 
 
4.56 Release profile of 4CPA from the interlamellae of the   
 ZA4C into 0.0005 M Na2CO3, Na2SO4 and NaCl.   178 
 
4.57 Release profile of TCPA from the interlamellae of the  
 ZATC into 0.0005 M Na2CO3, Na2SO4 and NaCl.   179 
 
4.58 Comparison of release profile of 2CPA, 4CPA and  
 TCPA from ZA2C, ZA4C and ZATC into 0.0005 M  
 Na2CO3.         181 
 
4.59 Comparison of release profile of 2CPA, 4CPA and 

 xxi



 TCPA from ZA2C, ZA4C and ZATC into 0.0005 M  
 Na2SO4.          181 
 
4.60 Comparison of release profile of 2CPA, 4CPA and  
 TCPA from ZA2C, ZA4C and ZATC into 0.0005 M NaCl.  182 
 
4.61 Fitting the release data of 2CPA from ZA2C  
 nanohybrid into various media (Na2CO3, Na2SO4  
 and NaCl) using pseudo-second order kinetic and  
 parabolic diffusion models.      188 
 
4.62 Fitting the release data of 4CPA from ZA4C nanohybrid  
 into various media (Na2CO3, Na2SO4 and NaCl) using  
 pseudo-second order kinetic and parabolic diffusion  
 models.         189 
 
4.63 Fitting the release data of TCPA from ZATC nanohybrid 
 into various media (Na2CO3, Na2SO4 and NaCl) using  
 pseudo-second order kinetic and parabolic diffusion  
 models.         190 
 
4.64 PXRD patterns of the ZA2C nanocomposites reclaimed  
 from 0.0005 M Na2CO3 aqueous solution at various  
 release times, 0-24 hours.      192 
 
4.65 PXRD patterns for the ZA4C samples reclaimed from  
 0.0005 M Na2CO3 aqueous solution at various release 
 times, 0-48 h.        193 
 
4.66 PXRD patterns of the ZA2C samples reclaimed from  
 0.0005 M Na2SO4 aqueous solutions at various release  
 times, 0 - 0.3 hours.       194 
 
4.67 PXRD patterns for the ZA4C samples reclaimed from  
 0.0005M Na2SO4 aqueous solutions at various release  
 times, 0 – 72 hours.       195 
 
4.68 PXRD patterns for the ZA2C samples reclaimed from  
 0.0005 M NaCl aqueous solution at various releases 
 times, 0 – 6 days.       196 
 
4.69 PXRD patterns for the ZA4C samples reclaimed from  
 0.0005 M NaCl   aqueous solutions at various release  
 times, 0 – 6 days.       197 
 
4.70 Intensity comparison of the (003) reflections of ZA2C  
 and Zn-Al-LDH from the samples reclaimed after the  
 release process at various release times in Na2CO3 (a)  
 Na2SO4 (b) and NaCl (c).      198 
 

 xxii



 
 
4.71 Intensity comparison of the (003) reflections for the  
 ZA4C and Zn-Al-LDH from the samples reclaimed after 
 the release process at various release times in Na2CO3 (a)  
 Na2SO4 (b) and NaCl (c).      199 
 
4.72 PXRD patterns for ZATC samples reclaimed from  
 0.0005 M Na2CO3 aqueous solution at various release 
 times, 0 – 3.5 days. 0.001 M = ZATC put in contact  
 with 0.001 M Na2CO3 for 1 d.     202 
 
 
4.73 PXRD patterns for the ZATC samples reclaimed from  
 0.0005 M Na2SO4 aqueous solution at various release 
 times, 0 – 20 h. 0.001 M= ZATC put in contact with 
 0.001 M  Na2SO4 for 1 d.      203 
 
4.74 PXRD patterns for the ZATC samples reclaimed from  
 0.0005 M NaCl aqueous solution at various releases  
 times, 0 – 6 days. 0.1 M = ZATC put in contact with  
 0. 1 M NaCl for 1 d.       204 
 
4.75 Intensity comparison of the (003) reflections of the  
 ZATC from samples reclaimed after the release process  
 at various release times in Na2CO3 (a) Na2SO4 (b) and  
 NaCl (c).         205 
 
4.76 FTIR spectra for the ZA4C samples reclaimed from  
 0.0005 M Na2CO3 aqueous solution at various release  
 times, 0.5 – 33 hours.      207 
 
4.77 FTIR spectra for the ZA4C samples reclaimed from  
 0.0005 M Na2SO4 aqueous solution at various release  
 times; 10 min to 72 h.      208 
 
4.78 FTIR spectra for the ZA4C samples reclaimed from  
 0.0005 M NaCl aqueous solution at various release  
 times, 5 min to 6 d.       209 
 
4.79 PXRD patterns of the Zn-Al-2CPA nanocomposites  
 synthesized at various aging times (0-18 h) using  
 anion-exchange method.      212 
 
4.80 PXRD patterns of the Zn-Al-4CPA nanocomposites  
 synthesized at various aging time (0-18 h) using  
 anion-exchange method.      213 
 
4.81 PXRD patterns of the Zn-Al-TCPA nanocomposites  
 synthesized at various aging time (0-18 h) using 

 xxiii



 anion-exchange method.      214 
 
4.82 Intensity comparison of the (003) reflections of ZA2CA,  
 ZA4CA and ZATCA nanocomposites synthesized  
 by anion-exchange method at various aging time  
 ranging from 0.1-18 hours.      218 
 
4.83 Percentage intercalation of 2CPA, 4CPA and TCPA  
 into Zn-Al-LDH at various aging times for the  
 formation of Zn-Al-2CPA (a) Zn-Al-4CPA (b) and  
 Zn-Al-TCPA (c) by anion-exchange method  
 determined using UV-visible technique.    223 
 
4.84 Release profile of 2CPA, 4CPA and TCPA from their  
 respective nanocomposites synthesized by anion- 
 exchange method into 0.0005 M Na2CO3 aqueous  
 solution.         224 
 
4.85 Comparison of release profiles of  
 phenoxyherbicides nanohybrids synthesized by anion- 
 exchange method at 18 hour aging time (AE) and direct  
 self-assembly method (DM) of 2CPA (a),  4CPA  (b) and 
 TCPA (c) from their respective nanocomposite into 
 0.0005 M sodium carbonate aqueous solution.  225 
 
4.86 Fitting the data to the zeroth-, first-, pseudo- 
 second order kinetics and parabolic diffusion for the 
 release of 2CPA, 4CPA and TCPA into 0.0005 M 
 sodium carbonate aqueous solution.    230 
 
4.87 PXRD patterns of the material obtained by  

simultaneous intercalation of 4CPA and TCPA using 
 anion-exchange method at various aging times; 
 0.1 – 18 h. ‘0 h’ indicates ZALR4 phase.    233 
 
4.88 Intensity plots of the (003) reflections of ZA4CA and  
 ZATCA in the material obtained from simultaneous  
 intercalation of 4CPA and TCPA into ZALR4 by anion- 
 exchange method at various aging times; 0.1-18 h.    234 
 
4.89 Moles of 4CPA and TCPA intercalated  

simultaneously into ZALR4 by anion-exchange   
 method at various aging times, 0-18 hours.   235 
 
4.90 PXRD patterns of the material obtained by  

simultaneous intercalation of 2CPA and TCPA 
 at various ageing times; 0.25 to 18 h.   
 ‘0’ h indicate ZALR4 phase.      238 
 
 

 xxiv


