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Ideas from topology have played a major role in physics especially to describe and 

explain exotic quantum phenomena. There has been a considerable interest among 

physicists who are working on string theory and quantum gravity to use ideas and results 

from topology to explain their work. However, often one is limited to the choice of 

spaces with relatively simpler topologies e.g. sphere, torus etc because more complex 

spaces are difficult to be characterized or even distinguished. It is our particular interest 

to consider singularities (i.e. having one or several punctures on it) as a tool to generate 

a family of complex two-dimensional configuration surfaces. These surfaces may find 

applications in to mathematical models of quantum chaos, cosmology, particle physics, 

condensed matter, quantum gravity and string theory. 

 

Extensive mathematical studies have been carried out for punctured surfaces but their 

literature in physics are scarce. Most have tackled the case of quantum mechanical 
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systems on punctured torus with respect to its scattering and chaotic behavior. Of 

particular interest in the present work are the quantum mechanical systems of singly 

punctured two-torus and triply punctured two-sphere. They both have two generators 

and three possible non-contractible loops. Both surfaces can be generated from the same 

parent generators of the modular group Γ , which is a discrete subgroup of linear 

fractional transformations of the upper half complex plane H (the universal cover of the 

punctured surfaces). In this dissertation, we construct both surfaces of singly punctured 

two-torus and triply punctured two-sphere stepwise using these generators. 

 

The main aim however is to construct the energy eigenequation for particle on surfaces 

of singly punctured two-torus and triply punctured two-sphere. For that purpose, we first 

identify the configuration space explicitly by considering the tessellation of the upper 

half-plane and the required surfaces are determined. Next, by using the Fourier 

expansions, finite Fourier transform of the energy eigenequation is performed to give 

rise to a sought standard relation for generating the eigenfunction.  

 

It is known that the eigenfunction on a punctured system exhibit both discrete and 

continuous energy spectra. The discrete energy spectrum will correspond to the 

computation of a countable number of Maass cusp forms while for the continuous 

spectrum, it is spanned by the Eisenstein series. In this work, we present the expressions 

for the Maass cusp forms of the singly punctured two-torus and triply punctured two-

sphere and the expression of the Eisenstein series for the singly punctured two-torus.  
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At the end of this thesis a unified treatment of the Maass cusp forms and the Eisensteins 

series for the singly punctured two-torus and the triply punctured two-sphere are 

presented. The importance of each technique used on the formation of the energy 

eigenequation are explained in a more physical approach. 
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Idea daripada topologi memainkan peranan yang besar dalam bidang fizik terutamanya 

untuk memerihal dan menerangkan fenomena aneh kuantum. Terdapat sejumlah besar 

kecenderungan di kalangan ahli fizik yang berminat dalam kajian ke atas teori tetali dan 

graviti kuantum yang menggunakan idea-idea dan keputusan-keputusan daripada 

topologi untuk menerangkan kajian mereka. Walaubagaimanapun, kebiasaan pilihan 

ruang-ruang adalah terhad kepada contoh topologi mudah seperti sfera, torus dan 

sebagainya kerana ruang-ruang yang lebih kompleks adalah sukar untuk dikategorikan 

mahupun untuk dipastikan. Penjurusan minat kami adalah mengambilkira keadaan 

singulariti (iaitu mempunyai satu atau beberapa juring di atasnya) sebagai satu cara 

untuk menghasilkan sekeluarga permukaan konfigurasi dua dimensi yang kompleks. 

Permukaan-permukaan ini mampu mempunyai aplikasi-aplikasi dalam model matematik 

kelang-kabutan kuantum, kosmologi, fizik zarah, bahan terkondensasi, graviti kuantum 

dan teori tetali. 
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Banyak penyelidikan matematik yang dihasilkan untuk permukaan-permukaan juring 

tetapi bilangan literatur dalam fizik amatlah kurang. Kebanyakannya telah mengkaji kes 

sistem mekanikal kuantum ke atas torus berjuring yang merujuk kepada sifat serakan 

dan kelang-kabutan. Menjadi tumpuan penyelidikan di sini adalah sistem mekanik 

kuantum atas torus satu juring dan sfera tiga juring. Kedua-duanya mempunyai dua 

penjana kumpulan dan tiga kemungkinan gelungan yang tidak mengecut. Kedua 

permukaan ini boleh dijana daripada penjana kumpulan modular Γ  yang sama, yang 

juga merupakan subkumpulan diskrit kepada transformasi linear pecahan bagi separuh 

satah kompleks atas H (litupan universal permukaan berjuring). Dalam penulisan ini, 

kami membina permukaan torus satu juring dan sfera tiga juring dengan menggunakan 

penjana-penjana ini, langkah demi langkah. 

 

Tujuan utama walaubagaimanapun adalah untuk menghasilkan persamaan eigen tenaga 

bagi zarah atas permukaan torus satu juring dan sfera tiga juring. Bagi tujuan tersebut, 

pertamanya kami mengenalpasti konfigurasi ruang secara eksplisit dengan 

mengambilkira penjubinan separuh satah atas dan permukaan yang ditentukan. 

Kemudian, dengan menggunakan pengembangan Fourier, jelmaan Fourier terhingga 

bagi persamaan eigen tenaga diguna untuk mendapatkan hubungan piawai bagi 

menghasilkan fungsi eigen. 

 

Telah diketahui bahawa fungsi eigen atas sistem berjuring menghasilkan kedua-dua 

bentuk spektra tenaga yang diskrit dan selanjar. Spektrum tenaga diskrit akan 

berpadanan bilangan bentuk juring Maass manakala bagi spektrum selanjar, ia dijana 
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 viii

oleh siri Eisenstein. Dalam hasil kerja ini, kami beri ungkapan untuk bentuk juring 

Maass bagi torus satu juring dan sfera tiga juring dan juga ungkapan siri Eisenstein 

untuk torus satu juring. 

 

Di akhir tesis ini, satu kaedah tergabung untuk bentuk juring Maass dan siri Eisenstein 

bagi torus satu juring dan sfera tiga juring diperihalkan. Kepentingan setiap teknik yang 

digunakan dalam pembentukan persamaan eigen tenaga berkaitan diterangkan dengan 

pendekatan fizik. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction  

 

Topology is the branch of mathematics that studies the qualitative properties of spaces, 

as opposed to the more delicate and refined geometric or analytic properties. The term 

comes from the Greek word topos for place and logos for study (Chinn and Steenrod, 

1966). Topology begins with a consideration of the nature of space, investigating both its 

fine structure and its global structure. The ideas and results of topology have placed it a 

central role in mathematics, connecting to almost all other areas of mathematics. While 

there are earlier results on topology, the beginning of the subject as a separate branch of 

mathematics dates to the work of H. Poincare (Balachandran, 1993) during 1895-1904.  

 

Recently, topological methods have played increasingly important roles not only in wide 

area of mathematics but also in various studies of physics (Nakahara, 1990). Particle 

physicists for example are among the first to witness an increasing inclusion of 

topological ideas into their discipline. The initial development is in soliton and 

monopole physics (Balachandran, 1993) and in investigations on the role of topology in 

quantum physics. Particle theorists have come to appreciate the importance of topology 

in both classical and in quantum domain over the years (Balachandran, 1993). Presently, 

the role of topology in physics has been uncovered in other areas of physics as well. The 

subject is highly important in studies like mathematical models of quantum chaos (Then, 

2004A; Then, 2004B; Gutzwiller, 1983; Guztwiller 1990 and Gutzwiller, 1993), 
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cosmology (Then, 2004A; Aurich et al., 2004), general relativity (Giulini, 1993 and 

Geroch, 1967), detecting defects in condensed matter physics (Mermin, 1979), quantum 

field theory (Kim, 1999), quantum gravity (Klosch and Strobl, 1997) and string theory 

(Rey, 1999).  

 

In research, it is common to begin with spaces with simpler topologies such as a sphere 

and torus, whose topological properties are well-known for quantum theory on such 

surfaces and is available in the literature. Lesser known however are those with 

punctures (in which our case are removed points, also known as cusps or leaks) so that 

their topological properties become more complex. These properties are often encoded 

in the symmetries associated to motion on the spaces.  

 

In this work, we consider two punctured spaces namely the singly punctured two-torus 

and the triply punctured two-sphere. Using their topological properties and group 

theoretic structures, we construct the corresponding energy eigenequation for a particle 

that move on such surfaces. 

 

These introduced surfaces are known to have two generators and three possible non-

contractible loops. However, they are considerably different geometrically with different 

genus and different number of punctures. Nevertheless, both surfaces do share similar 

initial construction condition according to the group structure. This is due to the fact 

that, they are generated from the same parent generators of the modular group. The 

properties of the modular group itself will give advantages in our current analysis and 

later it may be used to distinguish between such surfaces topologically.  
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1.2 Objectives of Research 

 

Present research is meant to provide an explicit construction of energy eigenequation for 

the singly punctured two-torus and the triply punctured two-sphere giving due 

consideration of their topological and geometrical properties. Of particular interest is the 

group structure for both surfaces whose representations should classify the available 

quantum states of particles moving on the surfaces.  

 

We start from constructing the configuration space explicitly by considering the 

tessellation of group plus the boundary conditions in representing the two surfaces, then 

determining the periodicity of function in the surfaces. Next, by using the Fourier 

expansion with finite Fourier transforms, a standard relation of energy eigenequation for 

both systems will be established. The equation obeys an automorphy condition which 

corresponds to the symmetry properties due to the surfaces’ group structure. The real 

analytic solution of the energy eigenequation will then correspond to the so-called Maass 

cusp forms.  

 

We will analytically compute the Maass cusp forms of singly punctured two-torus and 

triply punctured two-sphere. The results will correspond to the energy spectrum for both 

the discrete and continuous parts. For the continuous part, one should later consider to 

compute the Eisenstein series analytically. In this work however, the computation of 

Eisenstein series is with respect to the case of singly punctured two-torus only. Later, 

results for the analytic computation of Maass cusp forms and Eisenstein series of the 

singly punctured two-torus will be discussed.             
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In principle, the energy spectra can be worked out using the constructed eigenequations 

but this is beyond the score of the present work. Nevertheless, it is still hoped that this 

report will serve as a guideline for further research on other physical properties of the 

chosen topology and provide input on related topics like group-theoretic quantization for 

particle on more general surfaces in the future. 

 

 

1.3 Outline of the Thesis 

 

There are six chapters in this thesis. We started with the main introduction and 

objectives of the present research. Later, in Chapter Two we presented selected related 

literatures which inspired and rejuvenated our interest on this particular topic. This 

chapter is divided into three subtopics which include the configuration surfaces namely 

the singly punctured two-torus and the triply punctured two-sphere, the Maass 

waveforms, and Maass cusp forms. It will also include the scattering states which utilises 

the Eisenstein series. 

 

Chapter Three explains on the elementary notations and definitions, mostly from the 

study of discrete groups (more specifically, principal congruence subgroups) and 

hyperbolic geometry. More of the theoretical background needed to understand the rich 

structure of the space of Maass waveforms, Maass cusp forms and the closed 

relationship to the Eisenstein series will then be introduced. We started from giving a 

basic understanding of the upper half-plane model  and hyperbolic geometry, some 
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definitions of the modular group Γ , principal congruence subgroup, the understanding of 

fundamental domain or region, the concept of tessellation, the subject of quotient spaces, 

definition on automorphic forms, modular forms and a review on the Fourier series with 

the finite Fourier transform.  

 

The methodology of the present research is presented in Chapter Four. We begin from 

the singly punctured two-torus and triply punctured two-sphere. From there, we deal 

with the identification of the surfaces, and later compute its Maass cusp forms 

analytically using the standard Laplacian and automorphy conditions. The algorithm for 

determining the K-Bessel function will be presented for the computation of the Maass 

cusp forms together with the Eisenstein series. 

 

In Chapter Five, every single detail of the results will be shown and explicitly explained. 

They included the construction of singly punctured two-torus and triply punctured two-

sphere, their fundamental regions, the algorithm for computing the Maass cusp forms 

analytically and some remarks on the scattering states  (i.e. the Eisenstein series of 

singly punctured two-torus). A unified treatment of both Maass cusp forms and the 

Eisenstein series of those surfaces will be emphasized in a more physical approach. 

 

The final chapter provided the conclusion of this work and also discussion on further 

directions of the  research that can be taken. The significant impact of the present 

findings are highlighted and suggestions are given with regards to present research. 
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