

UNIVERSITI PUTRA MALAYSIA

LOCATING SUITABLE ZONES FOR BEEKEEPING IN SELANGOR, **MALAYSIA**

NISFARIZA BT MOHD NOOR

ITMA 2007 4

LOCATING SUITABLE ZONES FOR BEEKEEPING IN SELANGOR, MALAYSIA

Ву

NISFARIZA BT MOHD NOOR

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfilment of the Requirements for the Degree of Master of Science

March 2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

LOCATING SUITABLE ZONES FOR BEEKEEPING IN SELANGOR MALAYSIA

Ву

NISFARIZA MOHD NOOR

March 2007

Chairman: Professor Shattri b. Mansor, PhD

Institute: Institute of Advanced Technology

Modern beekeeping has been established in Malaysia since 1981 under the collaborative research and development of the Malaysian Beekeeping Research and Development Team (MBDRT), which was funded by International Dutch Research Council (IDRC). During MBDRT research several findings on the of beekeeping implementation in Malaysia have been compiled such as the list of bee plants, prospect ability of the industry and modernisation of beekeeping techniques. Although type of bee plant that supply nectar and pollen which are favourable to honeybees has been identified, the location of the source has not been identified yet and there is no map for suitable beekeeping location or zones especially using GIS and multi-criteria decision analysis technique. This research demonstrates the application of Geographical Information System (GIS) and Multi-Criteria

Decision Analysis (MCDA) technology as a tool to aid decision-making process with particular case study of locating a beekeeping zone in the state of Selangor. In this research land suitability analysis is carried out with respect to the bee's biotic needs and some other important factors in apiary management. The results of the two techniques for AHP with GIS analysis namely refereed VBA Macro in ArcGIS and prominent Weighted Overlay function are presented, compared and discussed with verification of ground truth data. The integration of AHP model with GIS provides zones of Non-Suitable, Most Suitable, Moderately Suitable and Suitable areas for beekeeping activity in Selangor. The total of Non Suitable Area (NS) is 34.73%, leaving the balance of potential areas of 65.27%. The remaining are the Most Suitable Area (S1) 13.72 %, Suitable Area (S2) of 27.24% and Moderately Suitable Area of 24.32 %.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

MENENTUCARI ZON PERLEBAHAN DI SELANGOR MALAYSIA

Oleh

NISFARIZA MOHD NOOR

March 2007

Pengerusi: Profesor Shattri b. Mansor, PhD

Institut: Institut Teknologi Maju

Pemeliharaan lebah secara moden telah dimulakan di Malaysia sejak 1981 lagi di bawah kerjasama penyelidikan dan pembangunan Malaysian Beekeeping Research and Development Team (MBDRT), yang ditaja dibawah dana International Dutch Research Council (IDRC). Walaupun penubuhan MBDRT telah menjangkau lebih dari 20 tahun, namun perlebahan moden secara haif berpindah tidak dapat diperhatikan dengan jelas di Malaysia. Ini adalah kerana kekurangan kemahiran dan pengetahuan teknikal di dalam industri perlebahan secara komersil. Semasa kajian oleh MBDRT dijalankan, beberapa penemuan telah diperolehi seperti senarai pokok pakan lebah, prospek industri lebah dan modernisasi teknik-teknik perlebahan. Walaupun jenis pokok-pokok pakan lebah telah diketahui, lokasi sumber tersebut tidak dapat ditentukan dan masih belum ada maklumat tentang zon kesesuaian untuk pemeliharaan lebah, terutamanya dengan

menggunakan GIS dan teknik multi-kriteria. Kajian ini mendemonstrasikan aplikasi Sistem Maklumat Geografi (GIS) dan teknologi Analisa Keputusan Multi-Kriteria (MCDA) sebagai alat bagi membantu proses membuat keputusan khususnya dalam kajian untuk menentukan zon kesesuian perlebahan di Selangor. Dalam kajian ini analisa kesesuaian tanah dibuat dengan mengambilkira keperluan biotik lebah dan beberapa factor penting dalam pengurusan apiari. Hasil daripada dua teknik analisis GIS dan AHP iaitu VBA Macro untuk ArcGIS dan Weighted Overlay dipersembahkan, dibandingkan dan dibincangkan dengan verifikasi cerapan data di lapangan. Integrasi model AHP dan GIS menghasilkan zon Tidak Sesuai, Paling Sesuai, Sesuai dan Sederhana Sesuai bagi aktiviti perlebahan di Selangor. Jumlah kawasan yang Tidak sesuai (NS) ialah 34.73%, dengan baki kawasan berpotensi sebanyak 65.27% iaitu kawasan Paling Sesuai (S1) sebanyak 13.72 %, Sesuai (S2) sebanyak 27.24% dan Sederhana Sesuai (S3) sebanyak 24.32 %.

DEDICATION

To my parents, Mohd Noor Maris and Zairah Idris this thesis is especially dedicated to you. My beloved and understanding husband, Mohamad Azhan Ismail and children, Mohamad Danish Irfan and Damia Irdina you are my greatest motivation. To all family members and friends who have given full support all the way on this journey.

ACKNOWLEDGEMENTS

First and foremost, I thank god Allah Almighty for Hi xxs blessing that gave me chance and courage to continue my study. My deepest gratitude goes to my supervisor committee chairperson, Professor Dr. Shattri b. Mansor for his persistence guidance, encouragement and strong support that inspired me during the research period. To my co-supervisors, Dr. Helmi Zulhaidi M. Shafri and Dr Laili Nordin, thank you for your commitment, support and motivation and throughout the preparation of the thesis. I appreciate both of yours persistence interest in the research. Without your precious view and opinion this research may not be completed.

I would also like to extend my gratitude to Professor Mahadzir Mardan (UPM), Encik Fadhil bin Encik Jamian Dahlan (DOA Officer, Sungai Burong), Hj Hamzah (MARDI, Serdang) and for all the cooperation given to complete the research. Your willingness to spend your valuable time towards the research progress is most appreciated.

To my research colleague, Shamsul Abu Bakar and Hazley Halim thanks for all the support and overwhelming help during our research discussion. Last but not least, I would like to thank the Department of Geography and University of Malaya for sponsoring my study and also to everybody who contributes towards the completion of this research.

I certify that an Examination Committee met on 13 March 2007 to conduct the final examination of Nisfariza Mohd Noor on her Master of Science thesis entitled "Locating Suitable Zones for in Selangor, Malaysia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Chairman, PhD

Professor Name of faculty/institute Universiti Putra Malaysia (Chairman)

Examiner 1, PhD

Professor Name of faculty/institute Universiti Putra Malaysia (Member)

Examiner 2, PhD

Professor Name of faculty/institute Universiti Putra Malaysia (Member)

Independent Examiner, PhD

Professor Name of faculty/institute Universiti Putra Malaysia (Independent Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the Degree of Master of Science. The members of the Supervisory Committee are as follows:

Shattri Mansor, PhD

Professor Institute of Advance Technology Universiti Putra Malaysia (Chairman)

Helmi Zulhaidi M Shafri, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Laili Nordin, PhD

Head Image, Processing & Application Division Malaysian Centre of Remote Sensing (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 JUNE 2007

DECLARATION

I	hereby	declare	that	the	thesis	is	based	on	my	original	work	except	for
q	uotation	s and cit	tation	s wł	nich ha	ve	been d	uly	ackr	nowledge	ed. I a	lso dec	lare
tŀ	nat it has	s not bee	n pre	eviou	isly or o	con	current	ly s	ubm	itted for	any ot	her deg	gree
a	t LIPM o	r other in	nstitut	ions	· ·								

NISFARIZ <i>A</i>	MOHD NOOR
Date :	

LIST OF TABLES

Table		Page
2.1	The Division of Duties of Worker Bees	17
2.2	Beekeepers in Peninsular Malaysia	33
2.3	Beekeepers of Apis cerana in the State of Selangor	33
2.4	Some of Malaysian Plant Visited by Honeybees'	34
2.5	Hectareage of Industrial Crops by Districts and Types of Crops, Selangor 1998	41
2.6	Volume And Sugar Content of Nectar From Extra-Floral Nectarines of Selected Clones of Rubber	42
2.7	Preference Scale of AHP	54
2.8	An Example of Pairwise Comparison Matrix	54
2.9	Summary of Criteria Factor for Suitable Beekeeping Zone	57
3.1	Description of Classification of Nectar and Pollen	62
3.2	Description of Criteria	66
4.1	Criterion Factor of Suitable Beekeeping Zone	73
4.2	Normalised Value of Weight	91
4.3	Results of Linear Transformation	92
4.4	Final Weight for GIS Analysis	93
4.5	Sieved Landuse Categories	94
4.6	Classification of Bee Plants According to Nectar and Pollen	95
4.7	Classes Defined for Nectar Class Criteria	96
4.8	Classes Defined for Pollen Class Criteria	98
4.9	Classes Defined for Hydrology Criteria	100

4.10	Classes Defined for Road Network Criteria	102
4.11	Classes Defined for Topography Criteria	104
5.1	Preference Matrix Generated from AHP Tool	109
5.2	Result of Weight Analysis	110
5.3	Percentage of Suitability (AHP Tool)	114
5.4	Percentage of Weight	115
5.5	Percentage of Suitability (Weighted Overlay)	119
5.6	Comparison of Results	120
5.7	Comparison of Weight	121
5.8	Site Verification Data	123

LIST OF FIGURES

Figur	e	Page
1.1	Geographic Location of the Study Area	12
2.1	Figure 2.1: Queen (A), Drone (B) and Worker (C)	16
2.2	Foraging Distance of Honeybees	19
2.3	Honey Production, Pollination and Movement of Migratory Beekeepers in USA	24
2.4	Beekeeping as a Cottage Industry in Malaysia	30
2.5	Floral Calendars in Peninsular Malaysia	37
2.6	Land Use Sustainability	44
2.7	Three Major Steps of AHP	51
2.8	Analytical Hierarchy Process	52
2.9	Three Steps of Pairwise Comparison Method	53
3.1	Research Methodology	60
4.1	Average Monthly Rainfall of Selangor	75
4.2	Rainfall Observation Station of Selangor	76
4.3	Rainfall Distribution Map of Selangor	77
4.4	Hierarchical Structure of AHP	79
4.5	Hierarchical View of AHP Structure in Expert Choice Software	80
4.6	Relative Importance of Nectar Class	81
4.7	Consistency Index for Criteria Nectar Class	81
4.8	Relative Importance of Pollen Class	82
4.9	Consistency Index for Criteria Pollen Class	83
4.10	Relative Importance of Hydrology Features	84

4.11	Consistency Index for Criteria Hydrology Feature	84
4.12	Relative Importance of Road Network	85
4.13	Consistency Index for Criteria Road Network	86
4.14	Relative Importance of Topography	86
4.15	Consistency Index for Criteria Topography	87
4.16	Overall Relative Importance of Criteria	88
4.17	Tree View of Final Weight	89
4.18	Overall Consistency Ratio	90
4.19	Classified Nectar Class	96
4.20	Ranked Nectar Class	97
4.21	Classified Pollen Class	98
4.22	Ranked Pollen Class	99
4.23	Classified Hydrology	100
4.24	Ranked Hydrology	101
4.25	Classified Road Networks	102
4.26	Ranked Road Networks	103
4.27	Classified Topography	104
4.28	Ranked Topography	105
5.1	Defining the Rasterised Criteria	107
5.2	Determining Preference Value	107
5.3	Preference Values	108
5.4	Weight Calculated by AHP Tool	108
5.5	Report Generated from AHP Tool	109
5.6	Suitability Result Using AHP Tool	111

5.7	Beekeeping Suitability Zone Classification Using AHP Tool	112
5.8	Model for Generating Beekeeping Suitability Zone	116
5.9	Weighted Overlay Function	117
5.10	Suitability Result Using Weighted Overlay	118
5.11	Beekeeping Suitability Zone Classification Using Weighted Overlay	119
5.12	Apiary Centre in Sungai Burong	122
5.13	Bees Kept under Natural Surroundings	124
5.14	Hundreds of Hives	125
5.15	Mardi Migratory Beekeeping Project	126
5.16	Apiaries Location in Suitability Map	127

LIST OF ABBREVIATIONS/GLOSSARY OF TERMS

AHP Analytical Hierarchy Process

CI Consistency Index

CR Consistency Ratio

DOA Department of Agriculture

FAO Food and Agriculture Organisation

IDRC International Dutch Research Council

GIS Geographical Information System

MARDI Agricultural Research Development Institute

MBRDT Malaysian Beekeeping and Research and Development

Team

MCDA Multi-Criteria Decision Analysis

MCDM Multi-Criteria Decision Making

RISDA Malaysian Industry Small-holders Development Authority

RRIM Malaysian Rubber Research Institute Malaysia

SAW Simple Additive Weighting Methods

UPM Universiti Putra Malaysia

UM University of Malaya

WLC Weighted Linear Combination

Apiary The location of a number of colonies.

Apiculture The science and art of bees and beekeeping.

Apis The genus to which honeybees belong.

Apis cerana An Asian species of honeybee that can be kept inside hives.

Apis dorsata The giant or rock honeybee, indigenous to Asia.

Apis florea A species of honeybee indigenous to some parts of Asia

and the Middle East. It nests in the open and cannot be kept

in- side hives.

Apis mellifera The honeybee species indigenous to Africa, Europe and the

Middle East. European races have been widely introduced to other areas, including the Americas, Asia, Australasia and the Pacific. African races have been introduced to South America and have spread to Central America and the

United States.

Beeswax Wax produced by honeybees, secreted by special glands on

the underside of the abdomen, and used to build comb.

Brood All stages of immature honeybees: eggs, larvae and pupae.

Cell A single hexagonal wax compartment, the basic unit of a

comb. Each honeybee develops in a cell. Honey and pollen

are stored in cells.

Colony Honeybees are social insects; they live only as part of a

colony and not individually. Each colony of honeybees contains one queen bee who is the female parent of the colony, a few hundred drone bees and thousands of worker

bees.

pollination

Comb The wax structure made of hexagonal cells in which honey-

bees rear young and store food.

Cross- The transfer of pollen between flowers of different plants of

the same species. Plants that are not self-fertilizing must be cross-pollinated before they can develop seeds. Many crops

depend on cross-pollination by insects.

Drone A male honeybee. Drones undertake no work within the

hive: their sole function is to fertilize the queen.

Forage Flowering plants that provide nectar and pollen for bees.

Forager A worker honeybee that collects pollen, nectar, water or

propolis for the colony.

Hive Any container provided by people within which bees can

build their nest.

Honey Nectar or plant sap ingested by bees, concentrated by them

and stored in combs.

Honeybees Species of bees belonging to the genus Apis. All are social

bees that store significant quantities of honey.

Movableframe hive A hive containing frames.

Nectar A sweet liquid secreted by flowers. It is a watery solution of

various sugars.

Pollen The fine dust-like substances that are the male reproductive

cells of flowering plants. Collected by bees as a food

source.

Pollination The transfer of pollen from the anther of a flower to the

stigma of the flower, or the stigma of another flower.

Pollination agent

Bees act as pollination agents when they transfer pollen from one flower to another. Apart from insects, other agents that may bring about the transfer of pollen are wind, gravity,

nectar-seeking birds and bats.

Propolis Plant resins collected by honeybees and used by them to

seal cracks and gaps in the hive.

Queen The female parent of the colony; the only sexually

developed female.

Sustainable development

Development that meets the needs of the present without compromising the ability of future generations to meet their own needs - as defined by the Rio Declaration on

Environment and Development at the 1992 United Nations

Earth Summit.

Traditional

hive

This usually means a hive made according to local tradition.

Most traditional hives are fixed-comb hives.

TABLE OF CONTENTS

				Page
AB DE AC AP DE LIS	PROVAL CLARAT ST OF TA ST OF FIG	EDGEMENTS ON BLES	GLOSSARY OF TERMS	ii iv vi vii viii x xi xiii
СН	APTER			
1	INTR	ODUCTION		
	1.1	Background		1
	1.2	Issues and Problem Statem	ent	3
		1.2.1 Historical Experience	Э	3
		1.2.2 Needs More than Su	ipply	5
		1.2.3 Need for Multi-Criter	ia Decision Making	7
	1.3	Significance of Study		8
	1.4	Research Aim		9
	1.5	Objectives of the Study		9
	1.6	Research Scope		10
	1.7	Study Area		11
	1.8	Structure of Thesis		12
2	LITE	RATURE REVIEW		
	2.1	Apiculture		14
		2.1.1 Honeybee Colony		15
		2.1.2 Bee Behaviour and I	Veeds	17
		2.1.3 Environment, Climat	e and Beekeeping	19
		2.1.4 Bees as Pollinator		21
		2.1.5 Concept of Migratory	/ Beekeeping	22
		2.1.6 Site Selection and A Zone	ssessment of Beekeeping	26
		2.1.7 Beekeeping in Malay	/sia	28

		2.1.8	Malaysian Bee Plants	31
		2.1.9	Floral Calendars	35
		2.10	Beekeeping under Rubber Plantations	38
		2.11	Prospect of Beekeeping under Rubber in Malaysia	39
	2.2	GIS fo	or Land Suitability Analysis	43
	2.3	Multi (Criteria Decision Making (MCDM)	46
		2.3.1	Analytical Hierarchy Process	51
		2.3.2	Pairwise Comparison Method	53
	2.4	Summ	nary of the Review	56
3		MATE	ERIALS AND METHODOLOGY	
	3.1	Introd	uction	58
	3.2	Materi	ials	59
	3.3	Metho	od of Research	59
	3.4	Evalua	ation Criteria	61
		3.4.1	General Beekeeping Site Selection	61
	3.5	Data A	Acquisition	65
	3.6	Datab	ase Construction	65
	3.7	Analyt	tical Hierarchy Process (AHP)	66
		3.7.1	Deriving Commensurate Criterion Maps	67
	3.8	Manip	oulation and Analysis	69
	3.9	Gener	ration of Suitability Zone	70
	3.10	Groun	nd Truthing	70
	3.11	Summ	nary	71

4 WEIGHT DETERMINATION AND SITE SELECTION ANALYSIS

	4.1	Introduction	72
	4.2	Criterion Factor	72
		4.2.1 Rainfall Analysis	73
	4.3	AHP Weight Analysis using Expert Choice Software	78
		4.3.1 AHP for Nectar Class Criteria	80
		4.3.2 AHP for Pollen Class Criteria	82
		4.3.3 AHP for Hydrology Feature	83
		4.3.4 AHP for Road Network	85
		4.3.5 AHP for Topography	86
		4.3.6 Overall Result	87
		4.3.7 Linear Transformation	90
		4.3.8 Data Preparation for Available Area	93
		4.3.9 Data Conversion and Ranking	95
5	RES	ULTS DISCUSSION AND COMPARISON	
	5.1	Introduction	106
	5.2	Suitability Analysis – AHP Extension for ArcGIS	106
		5.2.1 Preference Matrix	109
		5.2.2 AHP Results (Numerical)	109
		5.2.3 AHP And GIS Result (Visual)	111
	5.3	Suitability Analysis – Weighted Overlay	114
	5.4	Comparison of Results	120
	5.5	Ground Truthing	122
	5.6	Site Verification	126
	5.7	Discussions	128
6	CON	CLUSION AND RECOMMENDATIONS	
	6.1	Introduction	131
	6.2	Conclusions	131

6.3	Recor	mmendation for Further Studies	133	
	6.3.1	Large Scale Analysis	133	
	6.3.2	Integration with Remote Sensing	134	
	6.3.3	Applying to other States – for Migratory Beekeeping	135	
	6.3.4	Use of Other Ranking Techniques	135	
	6.3.5	Beekeeping Research and Information Centre	136	
REFERENCES/BIBLIOGRAPHY APPENDICES BIODATA OF THE AUTHOR				

CHAPTER 1

INTRODUCTION

1.1 Background

Beekeeping is an important component of agriculture and rural development programmes in many Asian countries. Honeybees are natives to the IndoMalaya region where diverse floral sources are available throughout the year. The role of beekeeping in providing nutritional, economic and ecological security to rural communities in Asia cannot be overlooked as it has always be linked with their cultural and natural heritage (Matsuka, 1998).

Gentry (1982) stated that beekeeping is an activity that fits well with the concept of small-scale agricultural development. It is a labour-intensive undertaking, which can be easily integrated into larger, agricultural or forestry projects. Bees not only aid in the pollination of some crops used in such projects, but they make use of otherwise unused resources - nectar and pollen.

Bees play a key role in the functioning of agricultural ecosystems as pollinators of crops and flowers. Malaysian Ministry of Agriculture & Agro-Based Industry have started the *'Honeybee Project'* to encourage the honeybee industry in the farmers' family as a main/side income exploiting the existing resources of main plantation. The honeybee industry is expanding and profitable for commercial industry and side income for farmers. Prospect

to expand this industry is bright in Malaysia considering the request of the bee product in our country and worldwide has increased.

Mardan (2006) and Atim et. al (1981) explained that beekeeping applies usually in the agricultural areas which have a supply of nectar and pollen such as coconut, palm oil, rubber, durian, gelam (mangrove), star fruit, acacia, banana, mango, papaya, rambutan and others.

The potential areas for beekeeping in Malaysia which consists of potential bee plants as identified by the Malaysian Ministry of Agriculture & Agro-Based Industry are in Selangor (Tanjong Karang, Kuala Selangor & Sabak Bernam), Johor (Pontian dan Batu Pahat), Perak (Bagan Datok), Melaka (Merlimau), Trengganu (Kuala Trengganu, Marang & Besut), Negeri Sembilan & Kelantan.

Beekeeping is high revenue agricultural industries for the commercial practitioners. Malaysia being located in the tropics offers highly suitable conditions for beekeeping with the tropical climate that promote varsities of flowers and plants that supplies pollen and nectar ready to be foraged.

