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the requirement for the degree of Doctor of Philosophy 

 
AEROELASTIC TAILORING OF WOVEN CANTILEVERED GLASS-EPOXY 

PLATE-LIKE AIRCRAFT WING 

By 

DAYANG LAILA BT. ABANG HAJI ABDUL MAJID 

June 2008 

Chairman:  Professor ShahNor Basri, PhD 

Faculty    : Faculty of Engineering 

 

The application of uni-directional composites in aeroelastic tailoring has long been 

established due to their highly directional properties. However, the use of woven, bi-

directional textile composite in this area is practically nil due to their lower strength and 

stiffness, although this class of material is generally cheaper and more conforming. 

Therefore, the current work presents a new prospect for this type of material in the 

aeroelastic tailoring of aircraft wings.  

 

The aeroelastic flutter and divergence behaviour of rectangular, woven glass/epoxy 

cantilevered plates with varying amount of bending and torsion stiffness coupling is 

investigated in subsonic flow. To do so, a range of tailored plate configurations with 

various stacking sequence having 6-plies thickness were considered. The ply orientation 

was varied from -450 to 450 to provide the widest range of negative and positive bend-

twist coupling. Test plates without stiffness coupling were first constructed and 

subjected to static and dynamic testing in order to characterize the elastic and dynamic 
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behaviour of the plate. Secondly, tailored configurations with varying stiffness coupling 

were fabricated and tested for flutter in wind tunnel tests. Numerical analyses were also 

conducted using MSc.Nastran structural analysis in conjunction with ZAERO’s flutter 

program to verify the mechanical and dynamic properties as well as predict the 

occurrence of flutter and divergence.   

 

Results from the extensive experimental and computational works had successfully 

shown that flutter speed can be optimized by tailoring the woven composite laminates. It 

was found that the torsional stiffness and bend-twist coupling play a major role in the 

aeroelastic behaviour of the woven laminate as compared to the bending stiffness. The 

bend-twist flutter that occurred was dominated by the torsion mode, thus explained the 

significant effect it has on the flutter speed. The numerical calculations predicted a 37% 

improvement whereas the experimental results are more understated at 29%. This 

improvement is remarkable considering that the configurations are symmetric. Both 

agreed well in terms of the optimized configuration that gave the maximum flutter speed. 

The flutter frequency and flutter mode shape was shown to be highly dependent on the 

coupled structural modes. In addition, divergence occurred when the plate-like wing is 

swept forward.  
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PENYESUAIAN AEROELASTIK UNTUK SAYAP KAPAL TERBANG MIRIP 

PLAT DARI KOMPOSIT KACA-EPOKSI BERTENUN 

Oleh 

DAYANG LAILA BT. ABANG HAJI ABDUL MAJID 

June 2008 

Pengerusi :  Professor ShahNor Basri, PhD 

Fakulti     : Fakulti Kejuruteraan 

 

Aplikasi komposit searah dalam penyesuaian aeroelastik telah lama diketahui 

berdasarkan sifatnya yang amat terarah. Walau bagaimanapun, penggunaan komposit 

kain bertenun dwi-arah dalam bidang ini adalah tidak praktikal memandangkan kekuatan 

dan kekakuannya adalah lebih rendah walaupun ia adalah lebih murah dan senang 

dibentuk. Oleh itu, kajian berikut bertujuan untuk menghasilkan satu prospek baru untuk 

bahan ini dalam bidang penyesuaian aeroelastik sayap kapal terbang.  

 

Perlakuan aeroelastik kibaran dan capahan untuk plat segi empat tepat kaca/epoksi tenun 

berjulur tuas dengan nilai kekakuan hasil gandingan lenturan dan kilasan yang berubah 

telah dikaji untuk aliran subsonik. Untuk melakukannya, julat konfigurasi-konfigurasi 

plat berketebalan 6 lapis yang diubahsuai dari segi jujukan tindanan telah 

dipertimbangkan. Orientasi lapisan telah diubah dari -450 to 450 agar julat terbesar 

gandingan lentur-kilas negatif ke positif boleh dihasilkan. Plat-plat ujikaji tanpa 

gandingan kekakuan telah di bina dan dikenakan ujian statik dan dinamik bagi 
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mencirikan perlakuan elastik dan dinamik plat tersebut. Kemudian, plat-plat terubah suai 

dari segi gandingan kekakuan di bina dan diuji untuk kibaran dalam ujian terowong 

angin. Kajian numerikal juga dijalankan menggunakan analisis struktur MSc.Nastran 

berserta program kibaran ZAERO untuk memastikan sifat mekanik dan dinamik serta 

meramal kejadian kibaran dan capahan. 

 

Keputusan dari eksperimen dan komputasi telah berjaya menunjukkan penyesuaian 

aeroelastik sayap kapal terbang menggunakan komposit bertenun adalah tidak mustahil 

terutamanya untuk kapal terbang berhalaju rendah. Didapati kekakuan kilasan dan 

gandingan lentur-kilas lebih memainkan peranan utama dalam mencirikan perlakuan 

aeroelastik laminat bertenun jika dibandingkan dengan kekakuan lenturan. Kibaran 

lentur-kilas yang terjadi didominasi oleh mod kilas, sebab itu kesannya tinggi terhadap 

halaju kibaran. Kiraan numerikal meramalkan pembaikan 37% manakala keputusan 

eksperimen adalah lebih rendah pada 29%. Pembaikan ini adalah menakjubkan 

memandangkan konfigurasi telah dikekalkan simetri. Kedua-dua keputusan telah 

memberikan konfigurasi optimum yang sama yang akan menghasilkan halaju kibaran 

maksima. Frekuensi kibaran dan mod kibaran amat bergantung kepada mod-mod yang 

berganding. Selain itu, capahan berlaku apabila sayap mirip plat ini adalah sapu ke 

depan.  

 

 

 

 

 

 vi



 ACKNOWLEDGEMENTS 

 

Bismillahhirrahmannirrahhim. Alhamdulillah, praise to Allah s.w.t. on the completion of 

this thesis.  

 

First, I would like to express my gratitude for the wonderful support and guidance given 

by Prof. Ir. Dr. ShahNor Basri, my main supervisor. Also thank you to my co-

supervisors, Dr. Mohamed Saleem and Dr.Prasetyo Edi. To my wonderful colleagues, 

guys, you are the best people I have the pleasure of working with.  

 

Secondly, to my hubby, Hazidi Baharum, my children, family and close friends, this 

achievement would not have been possible without your love and constant 

encouragement. I love you all very much. The past three years have indeed been filled 

with lots of happy and sad moments, wonderful triumphs and failures. InsyaAllah, I 

hope all these will make me a better person.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 

 vii



 
I certify that an Examination Committee has met on date of viva to conduct the final 
examination of DAYANG LAILA BT ABANG HAJI ABDUL MAJID on her Doctor of 
Philosophy thesis entitled “AEROELASTIC TAILORING OF WOVEN 
CANTILEVERED GLASS/EPOXY PLATE-LIKE WING” in accordance with 
Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian 
Malaysia (Higher Degree) Regulations 1981. The Committee recommended that the 
candidate be awarded the relevant degree. Members of the Examination Committee are 
as follows: 
 
 
 
Chairman 1, PhD 
Professor, 
Faculty of Graduate Studies  
Universiti Putra Malaysia 
(Chairman) 
 
Examiner 1, PhD, 
Professor,  
Faculty of Graduate Studies 
Universiti Putra Malaysia 
(Internal Examiner) 
 
 
Examiner 2, PhD, 
Professor,  
Faculty of Graduate Studies 
Universiti Putra Malaysia 
(Internal Examiner) 
 
Independent Examiner, PhD, 
Professor,  
Faculty of Graduate Studies 
Universiti Putra Malaysia 
(Independent Examiner) 
 
 
 
 
      _____________________________ 
      HASANAH MOHD GHAZALI, PhD 
      Professor/Deputy Dean 
      School of Graduate Studies 
      Universiti Putra Malaysia 
      Date:  

 viii



 
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted 
as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of 
the Supervisory Committee are as follows: 
 
 
 
ShahNor Basri, PhD 
Professor, 
Faculty of Graduate Studies  
Universiti Putra Malaysia 
(Chairman) 
 
Co-Supervisor, PhD, 
Professor,  
Faculty of Graduate Studies 
Universiti Putra Malaysia 
(Member) 
 
 
Co-Supervisor, PhD, 
Professor,  
Faculty of Graduate Studies 
Universiti Putra Malaysia 
(Member) 
 
 
 
 
 
 
 
 
 
 
 
 
  

____________________________ 
       AINI IDERIS, PhD 
       Professor/Dean 
       School of Graduate Studies 
       Universiti Putra Malaysia 
 
       Date:  
 
 

 ix



 
DECLARATION 

 
 
 
I declare that the thesis is based on my original work except for quotations and citations 
which have been duly acknowledged. I also declare that it has not been previously and is 
not concurrently submitted for any other degree at UPM or at any other institution.  

 
 
 

 
 
 
 
 
 
 
               _________________________________________ 
               DAYANG LAILA BT ABANG HJ ABD MAJID 

 
               Date: 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 x



TABLE OF CONTENTS 
 

  Page 
 

DEDICATION                 ii 
ABSTRACT                 iii 
ABSTRAK                  v 
ACKNOWLEDGEMENTS              vii 
APPROVAL SHEETS             viii 
DECLARATION FORM                x 
LIST OF TABLES              xiv 
LIST OF FIGURES                      xvi 
LIST OF ABBREVIATIONS                       xxi 

 
CHAPTER 
 
1. INTRODUCTION                1 
 

1.1. Introduction                 1 
1.2. Aeroelastic tailoring                                                             3       
1.3. Tailoring of textile composites              5 
1.4. Objective of research                6 
1.5. Thesis outline                 7 
 

2. LITERATURE REVIEW               8 
 

2.1. Recent development in composite technology            8 
2.2. Background on textile composites            12 

2.2.1. Woven fabrics              14 
2.2.2. Analysis and modeling of two-dimensional fabric composites       15 

2.3. Aeroelastic tailoring trend studies            17 
2.4. Thin plate postflutter behaviour            30 
2.5. Closure               31 
 

3. THEORY                33 
 

3.1. The mechanics of composite laminate           33 
3.1.1   The Classical Laminated Plate Theory          34 

3.2. Static analysis              40 
3.3. Modal analysis              44 
3.4. Aeroelastic analysis              45 

3.4.1. Aeroelastic equation of motion           46 
3.4.2. Unsteady aerodynamics            48 
3.4.3. Flutter equation of motion            50 

3.5. Closure               51 
 

 xi



 
4. MATERIAL CHARACTERIZATION OF FABRIC LAMINATES       52 
 

4.1. Textile composite structure             53 
4.2. Woven laminate fabrication             56 

4.2.1. Hand lay-up              57 
4.3. Characterization of laminate properties           59 

4.3.1. Tensile test              60 
4.3.2. Static test              62 
4.3.3. Modal test              64 

4.4. Test results               66 
4.4.1. Tensile results – determination of elastic properties         66 
4.4.2. Static test results             74  
4.4.3. Natural modes              80  

4.5. Closure               84 
 

5. EXPERIMENTAL SETUP              85 
 

5.1. Test material               85 
5.2. Flutter experiment set-up             88 

5.2.1. UPM subsonic wind tunnel            89 
5.2.2. Side-wall mount test rig            89 
5.2.3. Test sample preparation            91 
5.2.4. Data acquisition system             92 

5.3. Wind tunnel air speed calibration            94 
5.4. Wind tunnel flutter test procedure            95 
5.5. Flutter results for baseline configurations           97  
5.6. Limitation of experiment           103 
5.7. Closure             103 
 

6. COMPUTATIONAL ANALYSIS          105 
  

6.1. Wing structural model           106 
6.2. Modal analysis            107 

6.2.1    The Lanczos solution algorithm         109 
6.2.2    The Lanczos solution procedure         111 

6.3. Flutter analysis            114 
6.3.1. Spline matrix            115 
6.3.2. Flutter solution           115 

6.4. Numerical validation            120 
6.4.1   Flutter validation of cantilevered aluminium plate       120 
6.4.2   Flutter validation of CWR200 laminated plate       122 

6.5. Closure             124 
 

7. RESULTS AND DISCUSSION           125 
 

7.1. Effects of ply orientation on composite stiffness        125 

 xii



7.1.1. Tailored laminates           126 
7.1.2. Single orientation laminates          131       
7.1.3. Untailored laminates with varying sweep angles       134 

7.2. Effects of ply orientation on normal modes         135 
7.2.1. Tailored laminates           136 
 7.2.1.1 Natural frequencies          136 
 7.2.1.2 Structural mode shapes         139 
7.2.2. Single orientation laminates          156 
 7.2.2.1 Natural frequencies          156 
 7.2.2.2 Structural mode shapes         158 
7.2.3. Untailored laminates with varying sweep angles       161 
 7.2.3.1 Natural frequencies          161 
 7.2.3.2 Structural mode shapes         163 

7.3. Flutter results and analysis           166 
7.3.1 Flutter results of tailored laminates           167 
7.3.2 Flutter results of single orientation laminates        174 
7.3.3 Flutter results of swept laminates         176 
7.3.4 Flutter mode shapes           177 

7.3.4.1 Tailored laminates          178 
7.3.4.2 Single orientation laminates         183 
7.3.4.3 Untailored laminates with varying sweep angles      184 

7.3.5    Discussion on the optimization of flutter in the present work     184 
7.4. Closure             193 
 

8. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK     194 
8.1 Conclusion             194 
8.2 Recommendations for future work          197 

 
REFERENCES             199 
 
APPENDICES             205 
 
BIODATA OF STUDENT            244 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xiii



LIST OF TABLES 
 
 

Table              Page 
 
2.1 Application potential of textile reinforced composite materials for              13 

Aircraft structures 
 
3.1 Illustrations of the coupling terms A16, B16, B11, B12, B66 for composite        37 
 
4.1 CWR600 and CWR200 Specifications                 57 
 
4.2 Items required for hand lay-up process                 58 
 
4.3 Tensile test parameters                   61 
 
4.4 List of items required for static test                 62 
 
4.5 Al 6061 properties                    64 
 
4.6 Equipment used in modal testing                  65 
 
4.7 Results for specimens with 00 plies aligned to the direction of loading          69 
 
4.8 Results for specimens with 900 plies aligned to the direction of loading       70 
 
4.9 Results for specimens with 450 plies aligned to the direction of loading        70 
 
4.10 Results for specimens with 00 plies aligned to the direction of loading     72 
 
4.11 Results for specimens with 900 plies aligned to the direction of loading     72 
 
4.12 Results for specimens with 450 plies aligned to the direction of loading     72 
 
4.13 Elastic properties of CWR laminates          73 
 
4.14 Comparison of static test results from theory and experiment for Al 6061     76 
 
4.15 Comparison of static test results from theory and experiment for CWR600     76 

laminate 
 
4.16 Comparison of static test results from theory and experiment for CWR200      77 

laminate 
 

4.17 Comparisons of first five natural frequencies for Al 6061       81 
 
4.18 Comparison of first five modes  for CWR600        83 

 xiv



4.19 Comparison of first five modes for CWR200          83 
 
5.1 Laminate layups with varying ply orientations at zero sweep       87 
 
5.2 Laminate configurations with varying sweep angles         88 
 
5.3 Flutter results for Al 6061            99 
 
5.4 Flutter results for CWR200 laminates        101 
 
5.5 Flutter results for CWR600 laminates        101 
 
6.1 Comparison of methods of real eigenvalue extraction      108 
 
6.2 Flutter comparison for Al 6061         121 
 
6.3 Flutter comparison for CWR200 laminate        123 
 
7.1 Stiffness values for case 1 to case 8 configurations       128 
 
7.2 Stiffness values for single orientation laminate configurations     131 
 
7.3 Comparison of stiffness with the order of the ply in the laminate     133 
 
7.4 Stiffness values for swept laminate configurations       134 
 
7.5 Type of mode shapes for the first five modes        140 
 
7.6 Summary of flutter results for case 1 to 4        169 
 
7.7 Summary of flutter results for case 5 to 8        170 
 
7.8 Summary of flutter results for single orientation laminates      175 
 
7.9 Summary of flutter results for swept laminates       177 
 
7.10 Values of Vf(α) and fv(α) for experiment and numerical       191 
 
 
 
 
 
 
 
 
 
 

 xv



LIST OF FIGURES 
 
 

Figure                  Page 
 
3.1 Unidirectional material and laminate coordinate system              34 
 
3.2 Coupled deflection shapes              39 
 
3.3 Sign conventions used for beam analysis            41 
 
3.4 Cantilevered flat plate configuration             45 
 
3.5 An idealized wing                46 
 
3.6 Aeroelastic feedback diagram              47 
 
4.1 Flow chart of research methodology      52 
 
4.2 Schematic illustration of the hierarchy of fibres, yarns and fabrics in        54  

textile processes 
 
4.3 Comparison of basic fabric structures            54 
 
4.4 Common weaves in composite materials            55 
 
4.5 Actual structure of CWR200 woven cloth           57 
 
4.6 Lay-up sequence of woven composite laminate          58 
 
4.7 CWR200 and CWR600 laminates after hand lay-up process          59 
 
4.8 Instron Universal Tensile Machine           60 
 
4.9 Sample set-up to the universal tester           61 
 
4.10 Static test set-up               63 
 
4.11 Impact testing                65 
 
4.12 Typical load-displacement curve for CWR200 glass/epoxy laminate        67 
 
4.13 Stress-strain curve with 0 degree aligned to the direction of loading         68 
 
4.14 Lateral versus axial strain for sample no.: a) 1; b) 2; c) 3; d) 4; e) 5;         68 

f) 6; g) 7 and h) 8 
 

 xvi



4.15 Typical load-displacement curve for CWR600 glass/epoxy laminate        71 
 
4.16 Bending strain vs load for Al 6061      77 
 
4.17 Tip deflection vs load for Al 6061      78 
 
4.18 Bending strain vs load for CWR600 laminate    78 
 
4.19 Tip deflection vs load for CWR600 laminate     79 
 
4.20 Bending strain vs load for CWR200 laminate    79 
 
4.21 Tip deflection vs load for CWR200 laminate     80 
 
4.22 Sample of FRF for CWR600       82 
 
4.23 Sample of FRF for CWR200       82 
 
5.1 Plate layout and direction of fibre orientation    86 
 
5.2 Side-wall mount for flutter test sample     90 
 
5.3 The side-wall mount attached to one side of the wind tunnel   91 
 
5.4 Test sample instrumented with strain gage     92 
 
5.5 The complete data acquisition set-up      93 
 
5.6 Calibration test results: wind tunnel air speed versus motor rpm  95 
 
5.7 The flutter wind tunnel testing setup      96 
 
5.8 Laminate test sample mounted to the side-wall of wind tunnel             97 
 
5.9 Time history plot for Al 6061                  98 
 
5.10 Time history plot at flutter onset for Al 6061                98 
 
5.11 Typical time history plot for CWR laminates              100 
 
5.12 Time history at flutter onset for CWR200 laminate             100 
 
5.13 Time history at flutter onset for CWR600 laminate             101 
 
6.1 Laminate definition conventions               106 
 
6.2 Structural finite element model               107 

 xvii



 
6.3 Outer level of the Lanczos procedure               112 
 
6.4 Inner level of the Lanczos procedure               113 
 
6.5 ZAERO Main Program Flow Chart               118 
 
6.6 g-method Flutter Solution Flow Chart              119 
 
6.7 Damping vs velocity for Al 6061               121 
 
6.8 Frequency vs velocity for Al 6061               121 
 
6.9 Damping vs velocity for CWR200 laminate              123 
 
6.10 Frequency vs velocity for CWR200 laminate                     123 
 
7.1 E11 variations with outer ply orientation for a) case 1 to case 4 and            129 

b) case 5 to case 8 
 
7.2 GJ variations with outer ply orientation for a) case 1 to case 4 and            129 

b) case 5 to case 8 
 
7.3 D16 variations with outer ply orientation for a) case 1 to case 4 and            130 

b) case 5 to case 8 
 
7.4 D16 variations with outer ply orientation from –450 to 450                 130 
 
7.5 E11 variations with outer ply orientation for single orientation laminates    132 
 
7.6 GJ variations with outer ply orientation for single orientation laminates    132 
 
7.7 D16 variations with outer ply orientation for single orientation laminates   133 
 
7.8 E11 variations with outer ply orientation for swept configurations           135 
 
7.9 GJ variations with outer ply orientation for swept configurations           135 
 
7.10 Variations of natural frequencies of a) mode 1; b) mode 2; c) mode 3;       137 
 d) mode 4 and e) mode 5 
 
7.11 Structural mode shapes for case 1               140 
 
7.12 Structural mode shapes for case 2                          142 
 
7.13 Structural mode shapes for case 3                  144 
 

 xviii



7.14 Structural mode shapes for case 4               146 
 
7.15 Structural mode shapes for case 5               148 
 
7.16 Structural mode shapes for case 6               150 
 
7.17 Structural mode shapes for case 7               152 
 
7.18 Structural mode shapes for case 8               154 
 
7.19 Variations of natural frequencies of a) mode 1; b) mode 2; c) mode 3;       157 
 d) mode 4 and e) mode 5 
 
7.20 Structural mode shapes for single orientation laminates            158 
 
7.21 Variations of natural frequencies of a) mode 1; b) mode 2; c) mode 3;       162 

d) mode 4 and e) mode 5 
 
7.22 Structural mode shapes for swept laminates              163 
 
7.23 Flutter speed versus outer ply angle for a) case 1; b) case 5; c) case 2;       171 
 d) case 6; e) case 3; f) case 7; g) case 4 and h) case 8 
 
7.24 Flutter frequency versus outer ply angle for a) case 1; b) case 5;           172 

c) case 2;d) case 6; e) case 3; f) case 7; g) case 4 and h) case 8 
 
7.25 Flutter speeds of single orientation laminates              175 
 
7.26 Flutter frequencies of single orientation laminates             176 
 
7.27 Flutter mode shapes for case 1               179 
 
7.28 Flutter mode shapes for case 2               179 
 
7.29 Flutter mode shapes for case 3               180 
 
7.30 Flutter mode shapes for case 4               180 
 
7.31 Flutter mode shapes for case 5               181 
 
7.32 Flutter mode shapes for case 6               181 
 
7.33 Flutter mode shapes for case 7               182 
 
7.34 Flutter mode shapes for case 8               182 
 
7.35 Flutter mode shapes for single orientation laminates             183 

 xix



 
7.36 Flutter mode shapes for swept laminates              184 
 
7.37 Stiffness (Nm2) and flutter speed (m/s)  variations with outer ply               188 

orientation for case 1 to 4 
 
7.38 Stiffness (Nm2) and flutter speed (m/s)  variations with outer ply               190 

orientation for case 5 to 8 
 
7.39 Stiffness (Nm2) and flutter speed (m/s)  variations with single                    190    

orientation laminates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xx



LIST OF ABBREVIATIONS 

 
 
E11  Longitudinal elastic modulus 

E22  Transverse elastic modulus 

G12  Major shear modulus 

Cp  pressure coefficient 

γ12  Major Poisson’s ratio 

γ21  Minor Poisson’s ratio 

ω  circular natural frequency 

fω   flutter frequency 

ϕ̂   velocity potential 

Φ   doublet singularity 

λ  eigenvalues 

sλ   shift value 

θ  fiber orientation 

1,2,3  laminate coordinate system 

x,y,z  global coordinate system 

hk  distance of ply k from centerline 

b  chord width 

k   reduced frequency 

g  damping 

t  time 

∞a   speed of sound 

 xxi



∞q   freestream dynamic pressure 

∞M   freestream Mach number 

fU   flutter velocity 

Tx, Ty, Tz translational degree-of-freedom at x, y, z direction 

Rx, Ry, Rz rotational degree-of-freedom at x, y, z direction 

[A]  Extensional matrix 

[B]  Coupling matrix 

[D]  Bending stiffness matrix 

[I]  identity matrix 

[M]  mass matrix 

[C]  damping matrix 

[K]  stiffness matrix 

[G]  spline matrix 

{N}  stress resultants 

{M}  moment resultants 

[AIC(ik)] aerodynamic influence coefficient matrix 

[ ]ψ   modal matrix 

 

{ }0ε   centerline strains 

{ }κ   centerline curvatures 

{ }φ   eigenvector or mode shape 

( ){ }tx   displacement vector  

 xxii



( ){ tx&& }  acceleration vector 

{h}  interpolated displacement vector at aerodynamic control point 

( ){ }tF   total aerodynamic force 

( ){ }xFa  aerodynamic force induced by structural deformation 

( ){ }tFe   external aerodynamic force 

{ }q   generalized coordinates 

{ }z   eigenvector of [T] matrix 

Q(ik)  generalized aerodynamic force 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xxiii



CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

Aeroelastic instabilities are an important factor in the design of modern, flexible aircraft 

structures. At high speeds, these instabilities can exceed beyond the structural stiffness 

of the material resulting in structural failure. The current trend is toward the creative and 

innovative use of composite to delay these instabilities. On aircraft wings in particular, it 

will bend and twist due to the structure’s interaction with the wing lift. Wing bending 

and twist will in turn change the local incidence of the wing and change the load 

distribution and stresses. The degree of load redistribution will depend on flight speed, 

altitude and sweep angle [1].  

 

Two common types of aeroelastic effects that are widely researched into are flutter and 

divergence. At a critical speed called the divergence speed, the twisting motion may 

simply diverge and cause structural failure of the wing. This is a static instability. If 

there is coupling between the bending and twisting motion, then flutter occurs, which is 

a sustained harmonic oscillation. Both will render the aircraft unstable and may result in 

catastrophic failure. Other types of aeroelastic instabilities include buffeting and 

dynamic response, which are dynamic in nature while static instabilities are such as 

control effectiveness and aileron reversal.   

 


