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In this dissertation, the design and development of the multiwavelength Brillouin-

Erbium fiber laser (BEFL) sources operating in the L-band transmission window is 

presented and characterized. Four different laser designs have been successfully 

demonstrated using a combination of stimulated Brillouin scattering effect in optical 

fiber and Erbium-doped fiber (EDF) amplification. The experimental results obtained 

from the characterization and optimization of these laser structures are the threshold 

power, number of the Stokes signals generated, Stokes signals power, self-lasing 

oscillation and the tuning range. The results are taken from the studies which have 

been carried out to analyze the effects of 1480 nm pump power, Brillouin pump (BP) 

power, BP wavelength and single mode fiber (SMF) length.  

 

The first laser structure is an efficient multiwavelength L-band BEFL pumped by a 

1480 nm pump laser in a linear cavity configuration with direct BP injection into 

SMF. The issue of low gain efficiency of the L-band in the EDF lasers is resolved 

 ii



with the efficient linear cavity structure and the 1480 nm pumping scheme. The 

proposed laser structure exhibits a low threshold power of 18 mW and a maximum 

number of 26 stable output channels with 0.089 nm (10.5 GHz) channels spacing.  

 

The second and third laser structures are focused on the enhanced multiwavelength 

BEFL, in which the BP power is pre-amplified before entering the SMF within the 

laser cavity. The BP pre-amplification techniques - single pass and double pass 

represent a new mode of operation of multiwavelength BEFL’s. This intra-cavity BP 

pre-amplification provided by the EDF has created higher intensity of Brillouin 

Stokes signals generated in the single-mode fiber that leads to the homogenous gain 

saturation. This effect is able to suppress the built-up of the self-lasing cavity modes 

in a wider wavelength range and the number of output channels is also enhanced as 

compared to the conventional BP direct injection. Output of more than 33 laser 

channels is achieved and the tuning range is almost doubled than that of the 

conventional BP direct injection technique.  

 

Finally, for the fourth laser configuration, the multiwavelength BEFL incorporates 

either the amplified fiber loop mirror (AFLM) or non-linear amplified fiber loop 

mirror filter (AFLMF). Fifty-four stable output channels, with 0.089 nm channels 

spacing, have been achieved. A non-linear AFLMF which induces wavelength-

dependent cavity loss and serves as an amplitude equalizer is employed to shift and 

flatten the EDF gain spectrum. Two control mechanisms have been demonstrated to 

shift and flatten the EDF gain profile through the adjustment of the polarization 

controller in the AFLMF.  Therefore, the multiwavelength BEFL could be tuned over 

 iii
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 the whole L-band window from 1570 nm to 1610 nm with the average number of 24 

output channels. In addition, flattening the EDF laser oscillation overcomes the 

requirements of the BP wavelength tuning, in conjunction with the adjustment of the 

polarization controllers in the fiber loop. 
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Di dalam disertasi ini, rekacipta dan pembangunan laser gentian optik jenis pelbagai 

panjang-gelombang Brillouin-Erbium (BEFL) yang beroperasi dalam tingkap 

penghantaran jalur L dipersembahkan dan dicirikan. Empat jenis rekacipta laser telah 

berjaya dihasilkan dengan menggabungkan kesan perserakan Brillouin teransang di 

dalam gentian optik dan kesan penguat gentian-optik terdop Erbium (EDF). 

Keputusan eksperimen yang diperolehi dari pencirian dan pengoptimuman struktur 

laser ini adalah kuasa ambang, jumlah isyarat Stokes yang dijanakan, kuasa isyarat 

Stokes, kitaran laser sendiri dan julat talaan. Hasil yang diperolehi daripada kajian 

ynag dilaksanakan adalah untuk menganalisa kesan kuasa laser pengepam 1480 nm, 

kuasa laser pengepam Brillouin (BP), panjang gelombang BP dan panjang gentian 

optik satu mod (SMF).  
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Struktur laser yang pertama adalah sebuah BEFL pelbagai panjang gelombang jalur 

L yang efisyen dengan menggunakan laser pengepam 1480 nm dalam sebuah kaviti 

linear dan pengepam Brillouin yang dimasukkan terus ke dalam SMF. Isu kadar 

penguatan yang rendah dalam jalur L dalam laser EDF dapat diatasi dengan 

menggunakan kaviti linear yang efisyen dan skima pengepaman 1480 nm. Struktur 

laser yang dicadangkan mempamerkan kuasa ambang yang rendah iaitu 18 mW dan 

26 saluran maksima yang stabil dengan jarak antara saluran 0.089 nm (10.5 GHz).  

 

Struktur laser yang kedua dan ketiga adalah berfokuskan kepada struktur termaju 

BEFL pelbagai panjang gelombang, di mana pengepam Brillouin dikuatkan terlebih 

dahulu sebelum memasuki SMF dalam kaviti laser. Teknik pra-penguatan BP satu 

aliran dan dua aliran adalah merupakan satu mod baru dalam operasi BEFL pelbagai 

panjang gelombang. Pra penguatan BP di dalam kaviti ini dihasilkan oleh EDF, dapat 

menghasilan kekuatan Stoke Brillouin yang lebih tinggi. Kesan ini dapat 

mengurangkan penghasilan laser sendiri mod kaviti dalam julat panjang gelombang 

yang lebih besar dan jumlah saluran keluar juga dapat ditambah berbanding dengan 

kaedah biasa pengepaman terus BP. Hasil keluaran yang melebihi 33 saluran dapat 

dicapai dan julat talaan yang hampir dua kali ganda berbanding dengan kaedah biasa 

pengepaman terus BP. 

 

Akhirnya, konfigurasi laser yang ke-empat, BEFL pelbagai panjang gelombang 

menggunakan sama ada penguat gentian optik lingkungan balik (AFLM) atau 

penguat gentian optik lingkungan balik tidak linear (AFLMF). Sebanyak 54 saluran 

keluaran dengan jarak antara saluran sebanyak 0.089 nm telah berjaya dicapai. 

AFLMF yang mengakibatkan kehilangan kaviti berkait dengan panjang gelombang 
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dan berperanan sebagai penyama-rata amplitud digunakan untuk mengalih panjang 

gelombang dan meratakan kekuatan spektra EDF. Dua kaedah kawalan telah 

ditunjukkan untuk mengalih dan meratakan profil kekuatan EDF dengan merubah 

pengawal polar dalam AFLMF. Oleh itu, BEFL pelbagai panjang gelombang ini 

dapat ditala secara keseluruhan dalam tingkap jalur L antara 1570 nm dan 1610 nm 

dengan bilangan purata sebanyak 24 saluran keluaran. Tambahan pula, perataan 

kitaran laser EDF dapat mengatasi keperluan untuk penalaan panjang gelombang BP, 

dengan pelarasan pengawal polar dalam gentian optik lingkungan balik. 
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