

UNIVERSITI PUTRA MALAYSIA

ALL-OPTICAL GENERATION OF MULTIWAVELENGTH BRILLOUINERBIUM FIBER LASER IN LONG-WAVELENGTH BAND

MOHAMMED HAYDER AL-MANSOORI

FS 2008 45

TABLE OF CONTENTS

Page
ii
V
viii
ix
xi
XV
xvi
XXV

CHAPTER

1

INTRODUCTION					
1.1	Background	1			
1.2	Problem Statement	5			
1.3	Research Objectives	7			
1.4	Scope of Work	7			
1.5	Organization of the Dissertation	9			

2 LITERATURE REVIEW AND THEORETICAL BACKGROUND

2.1	Introduction	11			
2.2	Principles of Fiber Lasers				
2.3	Review of the Multi-wavelength Fiber Laser Sources	15			
2.4	Critical Review of the Multiwavelength BEFL's	19			
2.5	Scattering Phenomena in Optical Fibers	32			
2.6	Stimulated Brillouin Scattering	33			
	2.6.1 Principles of SBS in Optical Fibers	34			
	2.6.2 Stimulated Brillouin Scattering Gain	37			
	2.6.3 Stimulated Brillouin Scattering Threshold	39			
2.7	Erbium Doped Fiber Amplifier	41			
	2.7.1 Principles of Optical Amplification in EDFA	42			
	2.7.2 Two-levels Atomics Rate Equation in EDFA	45			
2.8	Summary	48			

3 RESEARCH METHODOLOGY

3.1	Introduction	49
3.2	Flow Chart of the Research Methodology	50
3.3	Design of the Multiwavelength BEFL with 1480 nm Pumping	52
	Scheme	
3.4	Design of the Multiwavelength BEFL with Pre-amplified BP	53
	Techniques	
3.5	Design of the Multiwavelength BEFL with Fiber Loop Mirror	54
3.6	Characterization of the Multiwavelength BEFL Source	55
	3.6.1 Threshold Power	55

	3.6.2	Conversion Efficiency	58
	3.6.3	Channels Peak Power and Total Output Power	58
	3.6.4	Number of Output Channels	59
	3.6.5	Self-lasing Cavity Modes	60
	3.6.6	Tuning Range	62
3.7	Analy	tical Evaluation of BEFL	62
	3.7.1	Analytical Evaluation of Brillouin Gain and Stokes Signal	63
		Power	
	3.7.2	Evaluation of Erbium-doped Fiber Gain	68
	3.7.3	Threshold Power Modeling of a Linear Cavity BEFL	72
3.8	Sumn	nary	75

4 MULTIWAVELENGTH BEFL WITH 1480 nm PUMPING SCHEME

4.1	Introduction			
4.2	Experimental Setup	77		
4.3	Principle of Operation	78		
4.4	Performance Parameters of BEFL	80		
	4.4.1 BEFL Threshold Power	81		
	4.4.2 Number of Output Channels	87		
	4.4.3 Total Stokes Signals Power	100		
	4.4.4 Self-Lasing Oscillation and Stability	103		
	4.4.5 Tuning Range	106		
4.5	Summary	111		

5 MULTIWAVELENGTH BEFL WITH INTRA-CAVITY PRE-AMPLIFIED BRILLOUIN PUMP TECHNIQUE

5.1	Introduction	112
5.2	Experimental Setup	113
5.3	Principle of Operation	115
5.4	Results and Discussion	116
	5.4.1 Pump Power Effect on BEFL System Performance	117
	5.4.2 Brillouin Pump Wavelength Effect on BEFL System	137
	Performance	
	5.4.3 Brillouin Pump Power Effect on BEFL System Performance	139
	5.4.4 Comparisons between Direct, SP and DP Pre-Amplified BP Injection	152
5.5	Summary	162

6 MULTIWAVELENGTH BEFL WITH AMPLIFIED FIBER LOOP MIRROR

6.1	Introduction	164
6.2	Fiber Loop Mirror	165
6.3	Amplified Fiber Loop Mirror	171
6.4	Multiwavelength BEFL with Amplified Fiber Loop Mirror	176
	6.4.1 Principle of Operation	177
6.5	Experimental Results and Discussion	178

	6.5.1	Chara	cterizati	on of EDFA i	n the FLM			179
	6.5.2	Chara	cterizati	on of Multiwa	velength BEF	L Utilizi	ng AFLM	181
	6.5.3	Optin	nization	of Multiwavel	ength BEFL w	ith AFL	Μ	194
	6.5.4	Multi	wavelen	gth BEFL wit	h Nonlinear Al	FLMF		195
6.6	Summ	ary						209
CON	CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE							
WO	WORK							

7.1 Conclusions		211
7.2	Recommendations for Future Work	215
REFER	ENCES	216
BIODA	TA OF STUDENT	228
LIST OF PUBLICATIONS		229

7

ALL-OPTICAL GENERATION OF MULTIWAVELENGTH BRILLOUIN-ERBIUM FIBER LASER IN LONG-WAVELENGTH BAND

MOHAMMED HAYDER AL-MANSOORI

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2008

ALL-OPTICAL GENERATION OF MULTIWAVELENGTH BRILLOUIN-ERBIUM FIBER LASER IN LONG-WAVELENGTH BAND

By

MOHAMMED HAYDER AL-MANSOORI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2008

In the Name of God, Most Gracious, Most Merciful

Dedication

To my parents, for their support and encouragement. To my beloved sons, my brother and my friends for their encouragement and love.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ALL-OPTICAL GENERATION OF MULTIWAVELENGTH BRILLOUIN-ERBIUM FIBER LASER IN LONG-WAVELENGTH BAND

By

MOHAMMED HAYDER AL-MANSOORI

May 2008

Chairman: Associate Professor Mohd Adzir Mahdi, PhD

Faculty: Engineering

In this dissertation, the design and development of the multiwavelength Brillouin-Erbium fiber laser (BEFL) sources operating in the L-band transmission window is presented and characterized. Four different laser designs have been successfully demonstrated using a combination of stimulated Brillouin scattering effect in optical fiber and Erbium-doped fiber (EDF) amplification. The experimental results obtained from the characterization and optimization of these laser structures are the threshold power, number of the Stokes signals generated, Stokes signals power, self-lasing oscillation and the tuning range. The results are taken from the studies which have been carried out to analyze the effects of 1480 nm pump power, Brillouin pump (BP) power, BP wavelength and single mode fiber (SMF) length.

The first laser structure is an efficient multiwavelength L-band BEFL pumped by a 1480 nm pump laser in a linear cavity configuration with direct BP injection into SMF. The issue of low gain efficiency of the L-band in the EDF lasers is resolved

with the efficient linear cavity structure and the 1480 nm pumping scheme. The proposed laser structure exhibits a low threshold power of 18 mW and a maximum number of 26 stable output channels with 0.089 nm (10.5 GHz) channels spacing.

The second and third laser structures are focused on the enhanced multiwavelength BEFL, in which the BP power is pre-amplified before entering the SMF within the laser cavity. The BP pre-amplification techniques - single pass and double pass represent a new mode of operation of multiwavelength BEFL's. This intra-cavity BP pre-amplification provided by the EDF has created higher intensity of Brillouin Stokes signals generated in the single-mode fiber that leads to the homogenous gain saturation. This effect is able to suppress the built-up of the self-lasing cavity modes in a wider wavelength range and the number of output channels is also enhanced as compared to the conventional BP direct injection. Output of more than 33 laser channels is achieved and the tuning range is almost doubled than that of the conventional BP direct injection technique.

Finally, for the fourth laser configuration, the multiwavelength BEFL incorporates either the amplified fiber loop mirror (AFLM) or non-linear amplified fiber loop mirror filter (AFLMF). Fifty-four stable output channels, with 0.089 nm channels spacing, have been achieved. A non-linear AFLMF which induces wavelengthdependent cavity loss and serves as an amplitude equalizer is employed to shift and flatten the EDF gain spectrum. Two control mechanisms have been demonstrated to shift and flatten the EDF gain profile through the adjustment of the polarization controller in the AFLMF. Therefore, the multiwavelength BEFL could be tuned over

the whole L-band window from 1570 nm to 1610 nm with the average number of 24 output channels. In addition, flattening the EDF laser oscillation overcomes the requirements of the BP wavelength tuning, in conjunction with the adjustment of the polarization controllers in the fiber loop.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor of Falsafah

PENJANAAN PELBAGAI PANJANG GELOMBANG LASER GENTIAN OPTIK BRILLOUIN-ERBIUM DALAM JALUR PANJANG GELOMBANG PANJANG

Oleh

MOHAMMED HAYDER AL-MANSOORI

Mei 2008

Pengerusi: Profesor Madya Mohd Adzir Mahdi, PhD

Fakulti: Kejuruteraan

Di dalam disertasi ini, rekacipta dan pembangunan laser gentian optik jenis pelbagai panjang-gelombang Brillouin-Erbium (BEFL) yang beroperasi dalam tingkap penghantaran jalur L dipersembahkan dan dicirikan. Empat jenis rekacipta laser telah berjaya dihasilkan dengan menggabungkan kesan perserakan Brillouin teransang di dalam gentian optik dan kesan penguat gentian-optik terdop Erbium (EDF). Keputusan eksperimen yang diperolehi dari pencirian dan pengoptimuman struktur laser ini adalah kuasa ambang, jumlah isyarat Stokes yang dijanakan, kuasa isyarat Stokes, kitaran laser sendiri dan julat talaan. Hasil yang diperolehi daripada kajian ynag dilaksanakan adalah untuk menganalisa kesan kuasa laser pengepam 1480 nm, kuasa laser pengepam Brillouin (BP), panjang gelombang BP dan panjang gentian optik satu mod (SMF).

V

Struktur laser yang pertama adalah sebuah BEFL pelbagai panjang gelombang jalur L yang efisyen dengan menggunakan laser pengepam 1480 nm dalam sebuah kaviti linear dan pengepam Brillouin yang dimasukkan terus ke dalam SMF. Isu kadar penguatan yang rendah dalam jalur L dalam laser EDF dapat diatasi dengan menggunakan kaviti linear yang efisyen dan skima pengepaman 1480 nm. Struktur laser yang dicadangkan mempamerkan kuasa ambang yang rendah iaitu 18 mW dan 26 saluran maksima yang stabil dengan jarak antara saluran 0.089 nm (10.5 GHz).

Struktur laser yang kedua dan ketiga adalah berfokuskan kepada struktur termaju BEFL pelbagai panjang gelombang, di mana pengepam Brillouin dikuatkan terlebih dahulu sebelum memasuki SMF dalam kaviti laser. Teknik pra-penguatan BP satu aliran dan dua aliran adalah merupakan satu mod baru dalam operasi BEFL pelbagai panjang gelombang. Pra penguatan BP di dalam kaviti ini dihasilkan oleh EDF, dapat menghasilan kekuatan Stoke Brillouin yang lebih tinggi. Kesan ini dapat mengurangkan penghasilan laser sendiri mod kaviti dalam julat panjang gelombang yang lebih besar dan jumlah saluran keluar juga dapat ditambah berbanding dengan kaedah biasa pengepaman terus BP. Hasil keluaran yang melebihi 33 saluran dapat dicapai dan julat talaan yang hampir dua kali ganda berbanding dengan kaedah biasa pengepaman terus BP.

Akhirnya, konfigurasi laser yang ke-empat, BEFL pelbagai panjang gelombang menggunakan sama ada penguat gentian optik lingkungan balik (AFLM) atau penguat gentian optik lingkungan balik tidak linear (AFLMF). Sebanyak 54 saluran keluaran dengan jarak antara saluran sebanyak 0.089 nm telah berjaya dicapai. AFLMF yang mengakibatkan kehilangan kaviti berkait dengan panjang gelombang dan berperanan sebagai penyama-rata amplitud digunakan untuk mengalih panjang gelombang dan meratakan kekuatan spektra EDF. Dua kaedah kawalan telah ditunjukkan untuk mengalih dan meratakan profil kekuatan EDF dengan merubah pengawal polar dalam AFLMF. Oleh itu, BEFL pelbagai panjang gelombang ini dapat ditala secara keseluruhan dalam tingkap jalur L antara 1570 nm dan 1610 nm dengan bilangan purata sebanyak 24 saluran keluaran. Tambahan pula, perataan kitaran laser EDF dapat mengatasi keperluan untuk penalaan panjang gelombang BP, dengan pelarasan pengawal polar dalam gentian optik lingkungan balik.

ACKNOWLEDGEMENTS

First of all, I would like to express my greatest gratitude to Allah the almighty, for his help and support during the course of life and moment of truth. Alhamdullilah.

I would like to express my deepest gratitude to my supervisor, Associate Professor Dr. Mohd Adzir Mahdi. I feel privilege to have him as my advisor. I am profoundly grateful for his tremendous support, prompt decision, encouragement, quick response and mentoring through my research.

My special thanks go to my committee members, Professor Dr. Mohamad Khazani Abdullah and Dr. Syed Javaid Iqbal for their valuable assistance, wise council, guidance, and encouragements during this period.

Appreciation also to the assistance rendered by the respective lecturers, staff, and all friends in the Photonic and Fiber Optics System Laboratory of the Faculty of Engineering who has contributed to the successful completion of this study.

Last, but definitely not least, I would like to thank my father and my mother-the best that anybody could have-for their unconditional love and continual support that made me strong in completing this dissertation. Also, I would like to thank my wife, my family, my friends Talib, Ousama, Hany and Ammar, and my brothers Abas and Ali for their constant support and encouragement throughout my life.

I certify that an Examination Committee has met on 8 May 2008 to conduct the final examination of Mohammed Hayder Al-Mansoori on his Doctor of Philosophy thesis entitled "All-Optical Generation of Multiwavelength Brillouin-Erbium Fiber Laser in Long-Wavelength Band" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Examination Committee were as follows:

Borhanuddin Mohd Ali, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Sudhansh Shekar Jamuar, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Wan Mahmood Mat Yunus, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Shabudin Shaari, PhD

Professor Institute of Nanoelectric and Micro Engineering Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:22-07-2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

Mohd Adzir Mahdi, PhD

Associates Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Khazani Abdullah, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Syed Javaid Iqbal, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 August 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it is not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MOHAMMED HAYDER AL-MANSOORI

Date:

LIST OF TABLES

Table		Page
2.1	Principal results published on L-band BEFL	31
3.1	Parameters for the EDF and SMF	74
6.1	EDFA gain at different 1480 nm pump power	180

LIST OF FIGURES

Figure		Page
1.1	Scope of research work	8
2.1	Two level laser system representing the process of absorption and emission between energy level E_1 and E_2 : (a) absorption (b) spontaneous emission (c) stimulated emission	12
2.2	Schematic Diagram of Fabry-Perot Resonator	14
2.3	Schematic diagram of the BEFL utilizing a ring cavity configuration	21
2.4	Multiwavelength BEFL output spectra taken from published report by [Stepanov and Cowle, 1997].	22
2.5	Multiwavelength BEFL output spectra taken from published report by [Lim <i>et al.</i> , 1998b]	24
2.6	Schematic diagram of BEFL with complex internal feedback	25
2.7	Multiwavelength BEFL output spectra taken from published report by [Park <i>et al.</i> , 2000].	26
2.8	Multiwavelength BEFL output spectra taken from published report by [Oh <i>et al.</i> , 2002].	26
2.9	Measured output spectrum of the L-band BEFL for various 980 nm pump power, [Andy <i>et al.</i> , 2003]	29
2.10	Diagram of the process of stimulated Brillouin scattering in optical fibers	35
2.11	Relevant energy levels of E^{3+} in silica glasses	43
2.12	Fluorescence spectrum of an EDFA at 100 mW of 1480 nm pump power	45
2.13	Energy level of two-level system	46
3.1	Flow chart of the research methodology	51
3.2	Schematics linear cavity BEFL configuration	52

3.3	Working principles of the BEFL system with linear Erbium gain and nonlinear Brillouin gain	56
3.4	(a) Total output power with respect to the EDF pump power indicating its threshold power, (b) Output spectrum of the first Stokes signal at the threshold pump power	57
3.5	Self-lasing EDFL cavity modes at 50 mW of the EDF pump power	61
3.6	Flowchart of the analytical evaluation of BEFL	63
3.7	Double-pass EDFA configuration	69
4.1	Experimental setup of multiwavelength Brillouin-Erbium fiber laser with direct BP injection technique	78
4.2	BEFL threshold power against SMF lengths at different BP power, BP wavelength is set at the EDF peak gain	82
4.3	Output spectrum of the 1 st , 2 nd and 3 rd Brillouin Stokes signal for the BP wavelength at 1605 nm and the BP power was fixed at 3.5 mW	84
4.4	Total output power of Brillouin Stokes signals with respect to the 1480 nm pump power for BP power of 3.5 mW at 1605 nm	85
4.5	Threshold power of Stokes signals (1480 nm pump power) for different BP powers of 1.1 and 3.5 mW; its wavelength is set at 1605 nm	86
4.6	Output spectrum at 3.5 mW of BP power with BP wavelength at 1606 nm, and the 1480 nm pump power of 100 mW, 0.1 km of SMF length	88
4.7	Number of output channels against SMF lengths, 1480 nm pump power at 100 mW, BP power at 3.5 mW and BP wavelength was set at the EDF peak gain	89
4.8	Output spectrum at 3.5 mW of BP power and 100 mW of 1480 nm pump power for a) 1 km, 1606.1 nm, b) 4.7 km, 1605 nm, c) 6.8 km, 1605 nm, d) 12.8 km,1603 nm	90
4.9	Number of output channels against 1480 nm pump power at different SMF lengths and BP wavelength was set at 1606 nm with power of 3.5 mW	91

4.10	Number of output channels generated against pump power at different BP power, BP wavelength at 1605 nm	92
4.11	Output spectrum when no mode competitions at 60 mW of 1480 nm pump power (point A), BP wavelength at 1605 nm with power of 0.54 mW	93
4.12	Output spectrum shows the presence of free-running cavity modes together with the Stokes signals at 100 mW of 1480 nm pump power (point B), BP wavelength at 1605 nm with power of 0.54 mW	93
4.13	Number of output channels generated against 1480 nm pump power at different BP wavelength, BP power set at 1.1 mW	94
4.14	Output spectrum when the presence of EDFL cavity modes at the EDF peak gain, BP wavelength detuned away from the EDF peak gain at 1608 nm with power of 1.1 mW	95
4.15	Output spectrum when the presence of EDFL cavity modes at the EDF peak gain, BP wavelength detuned away from the EDF peak gain at 1602 nm with power of 1.1 mW	95
4.16	Number of output channels against BP power at 100 mW 1480 nm pump power and at BP wavelength of 1605 nm	97
4.17	Output spectrum at 2.2 mW of BP power with BP wavelength at 1605 nm, and 1480 nm pump power was set at 100 mW	98
4.18	Output spectrum of L-band BEFL at 1604 nm BP wavelength with power of 3.5 mW and 1480 nm pump power was set at 120 mW	99
4.19	Total Stokes signals power against 1480 nm pump power at different BP wavelength and BP power was set at 3.5 mW; 6.8 km SMF	100
4.20	Total Stokes signals power against 1480 nm pump power at different BP power and BP wavelength was set at 1605 nm; 6.8 km SMF	101
4.21	Total Stokes signals power against 1480 nm pump power at different SMF length and BP wavelength was set at 1606 nm with power of 3.5 mW	102
4.22	Free-running EDFL cavity modes at 25 mW, 50 mW and 100 mW of 1480 nm pump power (PP)	104

 4.24 Presence of the free-running EDFL cavity modes with the Brillouin Stokes signals at 120 mW pump power, 1606 nm and a small-injected BP power of 0.54 mW 4.25 Tuning range of the output spectra for 1480 nm pump power fixed to 50 mW and the BP power was set at 3.5 mW 4.26 Tuning range and the average number of output channels generated against 1480 nm pump power at 3.5 mW BP power 4.27 Tuning range of the linear cavity BEFL against SMF length at different 1480 nm pump power BP power was set at 3.5 mW 4.28 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 50 mW; 6.8 km SMF 4.29 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 100 mW; 6.8 km SMF 5.1 Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP, b) Double pass pre-amplified BP 5.2 Free-running EDFL cavity modes at different 1480 nm pump power (PP) 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	4.23	Presence of the free-running EDFL cavity modes together with the Brillouin Stokes signals at 120 mW pump power, 1603 nm and a small-injected BP power of 0.54 mW	105
 4.25 Tuning range of the output spectra for 1480 nm pump power fixed to 50 mW and the BP power was set at 3.5 mW 4.26 Tuning range and the average number of output channels generated against 1480 nm pump power at 3.5 mW BP power 4.27 Tuning range of the linear cavity BEFL against SMF length at different 1480 nm pump power BP power was set at 3.5 mW 4.28 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 50 mW; 6.8 km SMF 4.29 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 100 mW; 6.8 km SMF 5.1 Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP, b) Double pass pre-amplified BP 5.2 Free-running EDFL cavity modes at different 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	4.24	Presence of the free-running EDFL cavity modes with the Brillouin Stokes signals at 120 mW pump power, 1606 nm and a small-injected BP power of 0.54 mW	106
 4.26 Tuning range and the average number of output channels generated against 1480 nm pump power at 3.5 mW BP power 4.27 Tuning range of the linear cavity BEFL against SMF length at different 1480 nm pump power BP power was set at 3.5 mW 4.28 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 50 mW; 6.8 km SMF 4.29 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 100 mW; 6.8 km SMF 5.1 Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP 5.2 Free-running EDFL cavity modes at different 1480 nm pump power (PP) 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	4.25	Tuning range of the output spectra for 1480 nm pump power fixed to 50 mW and the BP power was set at 3.5 mW	107
 4.27 Tuning range of the linear cavity BEFL against SMF length at different 1480 nm pump power BP power was set at 3.5 mW 4.28 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 50 mW; 6.8 km SMF 4.29 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 100 mW; 6.8 km SMF 5.1 Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP, b) Double pass pre-amplified BP 5.2 Free-running EDFL cavity modes at different 1480 nm pump power (PP) 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	4.26	Tuning range and the average number of output channels generated against 1480 nm pump power at 3.5 mW BP power	108
 4.28 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 50 mW; 6.8 km SMF 4.29 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 100 mW; 6.8 km SMF 5.1 Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP, b) Double pass pre-amplified BP 5.2 Free-running EDFL cavity modes at different 1480 nm pump power (PP) 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 5.5 Output spectrum for DP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	4.27	Tuning range of the linear cavity BEFL against SMF length at different 1480 nm pump power BP power was set at 3.5 mW	109
 4.29 Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 100 mW; 6.8 km SMF 5.1 Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP, b) Double pass pre-amplified BP 5.2 Free-running EDFL cavity modes at different 1480 nm pump power (PP) 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 5.5 Output spectrum for DP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	4.28	Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 50 mW; 6.8 km SMF	110
 5.1 Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP, b) Double pass pre-amplified BP 5.2 Free-running EDFL cavity modes at different 1480 nm 115 pump power (PP) 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 5.5 Output spectrum for DP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	4.29	Tuning range characteristic of the Brillouin Stokes signals without any free-running EDFL cavity modes at 3.5 mW BP power and the 1480 nm pump power is set at 100 mW; 6.8 km SMF	110
 5.2 Free-running EDFL cavity modes at different 1480 nm 115 pump power (PP) 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 5.5 Output spectrum for DP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	5.1	Schematic diagram of a linear cavity multiwavelength BEFL with a) Single pass pre-amplified BP, b) Double pass pre-amplified BP	114
 5.3 Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power 5.4 Output spectrum for SP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 5.5 Output spectrum for DP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	5.2	Free-running EDFL cavity modes at different 1480 nm pump power (PP)	115
 5.4 Output spectrum for SP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 5.5 Output spectrum for DP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW 	5.3	Number of the output channels against 1480 nm pump power for SP and DP configuration at 1605 nm BP wavelength and different BP power	118
5.5 Output spectrum for DP pre-amplified BP configuration at 119 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW	5.4	Output spectrum for SP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW	119
	5.5	Output spectrum for DP pre-amplified BP configuration at 120 mW of 1480 nm pump power and BP wavelength was set at 1605 nm with power of 0.54 mW	119

- 5.6 Number of the output channels against 1480 nm pump 121 power at 0.54 mW BP power and different BP wavelength for SP and DP configuration
- 5.7 Number of the output channels against 1480 nm pump 121 power at 3.5 mW BP power and different BP wavelength for SP and DP configuration
- 5.8 Output spectrum at 1603 nm BP wavelength with power of 123
 3.5 mW and 150 mW 1480 nm pump power for a) SP preamplified BP, b) DP pre-amplified BP
- 5.9 Output spectra of the multiwavelength BEFL at 180 mW 124 of 1480 nm pump power and 1.7 mW of BP power at 1604 nm wavelength
- 5.10 Number of the output channels against 1480 nm pump 125 power for SP and DP configuration at 0.5 km SMF length and different BP power
- 5.11 Output spectrum at 0.5 km SMF and 170 mW 1480 nm 126 pump power, BP wavelength was set at 1606 nm with power of 0.54 mW for a) SP configuration, b) DP configuration
- 5.12 Total output power against 1480 nm pump power at 128 different BP power; BP wavelength was set at 1605 nm for a) SP configuration, b) DP configuration
- 5.13 Presence of the self-lasing cavity modes effecting the 130 Brillouin Stokes signals at small injected BP of 0.28 mW and different pump power of a)90 mW, b)100 mW, c)120 mW and d)150 mW
- 5.14 Minimum BP power required to suppress the EDFL cavity 131 modes at 1603 nm and 1605 nm BP wavelengths for both SP and DP configurations
- 5.15 Minimum BP power required to suppress the EDFL cavity 132 modes and the number of output channels against 1480 nm pump power DP configuration at 1600 nm and 1608 nm BP wavelengths
- 5.16 Tuning range characteristics of SP and DP pre-amplified 133 BP against 1480 nm pump power at 0.54 mW BP power
- 5.17 Tuning range characteristics of the output spectra for BP 135 power fixed to 3.5 mW and different 1480 nm pump laser for a) SP configuration, b) DP configuration

5.18	Number of output channels and tuning range a against	136
	1480 nm pump power at 3.5 mW BP power and 1603 nm	
	wavelength for both SP and DP configurations	

- 5.19 Impact of BP wavelengths on the generation of output 137 channels at 3.5 mW BP power with the 1480 nm pump power was set at 120 mW for SP and DP
- 5.20 Tuning characteristic of the output channels without any 139 free-running EDFL cavity modes at 3.5 mW BP power and 120 mW pump power for a) SP configuration, b) DP configuration
- 5.21 Output spectrum of the linear cavity fiber laser with and 141 without BP at 20 mW pump power, the BP power is fixed to 1.1 mW
- 5.22 Threshold power with respect to BP power for SP and DP 142 configuration at different SMF length; 0.5 km and 6.7 km
- 5.23 Number of output channels versus BP power at 1603 nm 145 BP wavelength and different 1480 nm pump power for a) SP configuration, b) DP configuration
- 5.24 Output spectrum for SP configuration at 30 mW of 1480 147 nm pump power and different BP power of a) 3.5 mW, b) 0.54 mW, c) 0.09 mW, and d) 0.035 mW
- 5.25 Output spectrum for DP configuration at 30 mW of 1480 147 nm pump power and different BP power of a) 3.5 mW, b) 0.54 mW, c) 0.09 mW, and d) 0.035 mW
- 5.26 Output spectrum for DP configuration at different 1480 nm 148 pump and BP powers of a) 20 mW and 0.016 mW, b) 25 mW and 0.022 mW, c) 30 mW and 0.028 mW, and d) 40 mW and 0.035 mW
- 5.27 Output spectrum at 0.09 mW of BP power and different 150 1480 nm pump power of a) 40 mW, b) 50 mW, c) 60 mW, and d) 80 mW
- 5.28 Output spectrum of multiwavelength BEFL at 50 mW of 151 1480 nm pump power and 1603 nm BP wavelength with power of 0.042 mW
- 5.29 Threshold power of Brillouin Stokes signals at different BP 153 powers for DR, SP and DP pre-amplified BP; its wavelength is set at 1603 nm

5.30	(a) Present of EDFL cavity modes at the EDF peak gain;DR injection of BP, (b) Suppression of cavity modes utilizing a pre-amplified BP technique	154
5.31	Tunability of output channels at 120 mW pump power and 3.5 mW BP power for a) DR BP injection, b) SP pre-Amplified BP, c) DP pre-Amplified BP	156
5.32	Number of output channels versus BP wavelengths at 120 mW EDF pump power and 3.5 mW BP power for the three structures	157
5.33	Tuning range a against 1480 nm pump power at 3.5 mW BP power for SP, DP pre-amplifies and DR injection of BP power	158
5.34	Number of output channels against 1480 nm pump power at 1603 nm BP wavelength with power of 1.1 mW for direct injection DR, SP and DP structures	160
5.35	Number of output channels against 1480 nm pump power at 1605 nm BP wavelength with power of 1.1 mW for direct injection DR, SP and DP structures	160
5.36	Number of output channels against 1480 nm pump power at 1605 nm BP wavelength with power of 2.2 mW for DR injection, SP and DP pre-amplification BP structures; 0.5 km SMF-28	162
6.1	Basics structure of a fiber loop mirror	166
6.2	Experimental setup to characterize the FLM	167
6.3	Measure the reflected (Op1) and transmitted (Op2) signal of the FLM with an input signal at port 1 (IP1) of the 3-dB coupler	168
6.4	Measure the reflected signal from the FLM	168
6.5	Measure the transmitted signal from the FLM	169
6.6	Basics structure of the amplified fiber loop mirror	171
6.7	Experimental setup to characterize the AFLM formed by 3- dB coupler	174
6.8	Transmitted and reflected signal of the AFLM as a function of input signal power at 50 mW EDF pump power	174

