

UNIVERSITI PUTRA MALAYSIA

EXPERIMENTAL INVESTIGATION AND NUMERICAL SIMULATION OF OHMIC HEATING FOR LIQUID FOOD PASTEURIZATION UNDER LAMINAR CONDITION

ELZUBIER AHMED SALIH ELFAKIE

FK 2008 22

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

EXPERIMENTAL INVESTIGATION AND NUMERICAL SIMULATION OF OHMIC HEATING FOR LIQUID FOOD PASTEURIZATION UNDER LAMINAR CONDITION

By

ELZUBIER AHMED SALIH ELFAKIE

May 2008

Chairman: Thomas Choong Shean Yaw, PhD

Faculty: Engineering

Pasteurization of liquid food - guava juice and soymilk by continuous ohmic heating within a temperature range of 30-90 0 C, was performed in a 3-D non – axisymmetric ohmic heater. (Three stripe electrodes positioned along the walls and oriented 120⁰ to the axis of the pipe), using 3-phase 50-60 Hz alternative voltages, with Delta connection.

A mathematical model describing the flow and thermal behavior of guava juice and soymilk solution in a continuous ohmic heating unit was developed. The equations for conservation of mass, momentum and energy and electric field distributions including temperature dependent electrical conductivities, thermo physical and rheological properties were solved using a commercial Computational Fluid Dynamics (CFD) software package (FLUENT 6.1) which was based on finite volume method of analysis. User defined functions (UDF's)

employed in the original platform (FLUENT 6.1), were used for the solution of scalar equations - electrical field model.

Thermo-physical and rheological properties of soymilk and guava juice were measured. Soymilk was found to be Newtonian and guava juice a Non Newtonian (power law n = 0.0.5978 and k = 0.117 Pa sⁿ). Measurements of electrical conductivities at various temperatures for guava juice and soymilk were carried out. These properties were then used as inputs for the CFD modelling.

The numerical calculation results have provided reasonable information for optimizing the design of ohmic heating cell geometry to improve the uniformity of the electrical and thermal fields across the heating cell in order to avoid over and under-processing of liquid foods.

The heating rate of soymilk was found to be higher than that of guava juice. The current density of both guava juice and soymilk was found to exceed the critical value. However, experimentally the soymilk, a protein solution, was found to rapidly deposit on the surface of the electrodes. No ohmic heating was conducted thereafter with the soymilk.

Temperature, flow pattern, electrical field distribution and the slowest heating zone (SHZ) during ohmic heating of both liquid foods (3D) were predicted. Experimental and simulated temperatures were in good agreement at different

locations along the ohmic heating axis for guava juice, thus validating the CFD model and simulation.

The pasteurization calculations were done for guava juice $(3.8^{0} brix)$ and soymilk $(7.8\pm0.02^{0} brix)$ using the pathline of the highest velocity simulated from the CFD, and pasteurisation was adequately and rapidly achieved.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doctor Falsafah

PEMERIKSAAN EKSPERIMEN DAN SIMULASI BERANGKA BAGI PEMANASAN OHMIC UNTUK PEMPASTEURAN MAKANAN CECAIR DIBAWAH KEADAAAN LAMINER

Oleh

ELZUBIER AHMED SALIH ELFAKIE

Mei 2008

Pengerusi: Thomas Choong Shean Yaw, PhD

Fakulti: Kejuruteraan

Pempasteuran makanan cecair - jus buah jambu batu dan susu kacang soya melalui pemanasan *ohmic* berterusan di dalam julat suhu 30-90^oC , dapat disimulasi dan disahkan dengan penggunaan model 3-dimensi bukan simetrik (Tiga elektrod jejalur yang disusun sepanjang dinding dengan orientasi 120^o ke arah paksi paip), menggunakan voltan-voltan alternatif tiga fasa antara 50-60Hz, menerusi sambungan Delta.

Satu model matematik, yang dapat menggambarkan aliran dan ciri termo jus buah jambu batu dan susu kacang soya dalam unit pemanasan *ohmic* berterusan, telah dibangunkan. Persamaan-persamaan keabadian bahan, tenaga dan momentum, dan penyebaran medan elektrik termasuk konduktiviti elektrik yang bergantung kepada suhu, sifat – sifat termofisik dan reologi dapat di selesaikan dengan

penggunaan pakej perisian komersial, iaitu *Computational Fluid Dynamics* (FLUENT 6.1) yang berasaskan keadah analisa isipadu makluk.

Fungsi-fungsi yang didefinisikan oleh pengguna dan tersediaada dalam landasan FLUENT 6.1, digunakan untuk penyelesaian persamaan *scalar* - model medan elektrik.

Sifat-sifat termofisik dan reologi bagi susu kacang soya dan jus buah jambu batu telah di ukur. Didapati susu kacang soya adalah *Newtonian* manakala jus buah jambu batu adalah bukan Newtonian (perundangan kuasa n = 0.0.5978 dan k = 0.117 Pa sⁿ). Pengukuran konduktiviti elektrik pada pelbagai suhu bagi jus buah jambu batu dan susu soya telah juga dijalankan. Sifat-sifat ini seterusnya digunakan untuk pemodelan CFD.

Keputusan perkiraan berangka telah memberi maklumat mengcukupi bagi tujuan mengoptimakan rekabentuk geometri sel pemanasan *ohmic* untuk meningkatkan keseragaman medan-medan elektrik serta termo diseberang sel pemanasan supaya dapat mengelakkan pemprosesan makanan cecair berlebihan atau berkurangan.

Kadar pemanasan susu kacang soya didapati lebih tinggi berbanding dengan jus buah jambu. Batu. Ketumpatan aliran bagi kedua-dua jus buah jambu batu dan susu kacang soya didapti melebihi nilai kritikal. Walaubagaimanapun, diperhatikan dalam eksperimen bahawa susu soya, satu cecair protein, memendap pada permukaan elektrod-elektrod dengan cepat. Selepas itu , tiada pemanasan ohmic dijalankan pada susu soya .

Semasa pemanasan *ohmic* bagi kedua-dua jenis makanan cecair, ciri-ciri suhu, corak aliran, pengedaran medan elektrik dan zon pemanasan paling pelahan dapat diramalkan dalam 3-dimensi. Persetujuan antara suhu-suhu eksperimen dan simulasi didapati baik pada lokasi-lokasi berbeza sepanjang paksi pemanasan ohmic bagi jus buah jambu batu, maka dapat mengesahkan model CFD dan simulasi.

Perkiraan-perkiraan pempasteuran bagi jus buah jambu batu (3.8 ⁰brix) dan susu soya (7.8±0.02 ⁰brix) dibuat mengikut garisan simulasi kelajuan tertinggi dari CFD, dan proses pempasteuran dapat dijayakan dengan memadai dan cepat.

ACKNOWLEDGEMENT

IN THE NAME OF ALLAH, THE BENEFICENT, THE MERCIFUL

Thanks are to Allah, Lord of the worlds, the Creator and Sustainer of the world. To Him, we belong and to Him, we will return. He can never be thanked enough and for giving me the strength and the patient to let this work be finished. I would like to take this opportunity to extend my thanks to all my main advisors: Dr. Ibrahim Omer Mohammed, Dr. Sergey Spotar, Assoc. Prof. Dr Thomas Choong Shean Yaw, member of my advisory committee Dr. Wan Abdullah Haj Wan, and Dr Chin Nyuk Ling for their cooperation and support. I am also grateful to them for assistance and guidance in completing this research. Acknowledgement is also due to Mr. Kamarulzaman (KPM), Mr. Razali, and Mr Soib from FSTM. Finally, this work could not have been completed without the love and support of my family. I thank my beloved mother, father, brothers and sisters, for their endless support. Special thanks are also extended to the University of Jezeera, Sudan for finance and support during my study and special thanks to Dr. Ismaieel Hassan Hussain (Vice chancellor of Jezeara University, Sudan) for his great help and support. Without their help after Allah S.W.T the project will not be completed. More thanks to Project Leader, Mr. Hishamuldin Jamaluddin and his Msc. student Faiza for their help in the experimental work and for purchasing the ohmic heating equipments. Finally, I would like to thank my beloved family, my wife Najat, my son Mohammed and doughter Deema, for their love, sacrifice, support, patience and encouragement throughout everything I have ever done.

APPROVAL

I certify that an Examination Committee met on 7 May 2008 to conduct the final examination of Elzubier Ahmed Salih on his Doctor of Philosophy thesis entitled "Experimental investigation and numerical simulation of ohmic heating for liquid food pasteurization under laminar condition" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Name of relevant degree).

Members of the Examination Committee are as follows: **Russly abdul Rahman, PhD** Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Siti Aslina Hussain, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Siti Mazlina Mustapa Kamal, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Mohammed Sobri Takrif, PhD

Associate Professor Ir. Faculty of engineering Universiti Kambangsan Malaysia (Independent Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:25-9-2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor Philosophy. The members of the Supervisory Committee were as follows:

Thomas Choong Shean Yaw PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Sergey Spotar, PhD

Associate Professor Faculty of Engineering Universiti Notingham Malaysia (Member)

Chin Nyuk Ling, PhD

Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 October 2008

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

ELZUBIER AHMED SALIH ELFAKIE

Date

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMET	viii
APPROVAL	ix
DECLARATION	xi
TABLE OF CONTENTS	xii
LIST OF TABLES	XV
LIST OF FIGURES	xvi

CHAPTER

NOMENCLATURE

1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Research problem	3
	1.3	Objectives of the study	6
	1.4	Thesis organization	6
2	LIT	ERATURE REVIEW	8
	2.1	Introduction	8
	2.2	Thermal processing and computer simulation	8
	2.3	Ohmic heating and aseptic processing	11
	2.4	Advantages of ohmic heating	13
	2.5	Applications of ohmic heating	15
	2.6	Design of ohmic heating	18
		2.6.1 Electrolytic effects	20
		2.6.2 Surface of electrodes	21
		2.6.3 Energy efficiency	21
	2.7	Electric conductivity	22
		2.7.1 Measurement of electrical conductivity	26
		2.7.2 Electrical conductivity of liquids	28
	2.8	Ohmic heating of fluids	30
		2.8.1 parameters affecting the performance of ohmic	
		heating	32
	2.9	Modeling of the ohmic heating process	34
		2.9.1 Simulation System	37
	2.10	different ohmic heating systems set up	37
		2.10.1 Example 1	37
		2.10.2 Example 2	39
	2.11	Residence time distributions	40
	2.12	Pasteurization	42
		2.12.1 High Temperature Short Time Pasteurization	45
		2.12.2 Microbial death kinetics	49
	2.13	Soymilk	50

xxi

RHE	OLOGI	CAL AND THERMOPHYSICAL PROPE	RTIES
2.14	Guava	juice	58
	2.13.2	Microorganisms in soymilk	55
	2.13.1	Methods of thermal processing of soymilk	51

3 RHEOLOGICAL AND THERMOPHYSICAL PROPERTIES OF SOYMILK AND GUAVA JUICE

			62
3.1	Introd	luction	62
3.2	Mater	ial and Methods	62
	3.2.1	Physiochemical analysis of soymilk	62
	3.2.2	Rheological properties of soymilk	65
	3.2.3	Physiochemical analysis of guava juice	67
	3.2.4	Rheological properties of guava juice	70
3.3	Summ	ary	72

4 NUMERICAL SIMULATION AND VALIDATION OF LIQUID FOOD IN THREE-DIMENSIONAL CONTINUOUS OHMIC HEATING 73

4.1	Introdu	ction	73
4.2	Descrip	otion of continuous ohmic heating system	73
4.3	Experi	nental procedure	78
4.4	Experir	nental conditions	78
4.5	Model	verification	79
4.6	Govern	ing equations	85
4.7	Assum	ptions	92
4.8	Bounda	ary conditions	93
4.9	Initial c	condition	94
4.10	Compu	tational Fluid Dynamics	94
	4.10.1	Simulation technique	95
	4.10.2	Grid construction	95
	4.10.3	Solution procedure	97
	4.10.4	User defined functions (UDF's)	101
	4.10.5	Solution steps	107
4.11	Results	and discussion of guava juice	107
	4.11.1	Solution convergence	108
	4.11.2	Temperature profiles distributions	111
	4.11.3	Velocity profiles distributions	117
	4.11.4	Current density distributions	123
	4.11.5	Electric field distribution	129
	4.11.6	Joule heating rate	130
	4.11.7	Voltage distribution	134
	4.11.8	Effect of L and A on heating rate	136
	4.11.9	Comparison of simulated with experimentally	
		measured temperature	136
	4.11.10	General discussions	139
4.12	Results	and discussion for soymilk	142
	4.12.1	Temperature profiles distributions	142
	4.12.2	Velocity profiles distributions	146

		4.12.3	Current density distributions	152
		4.12.4	Electric field distribution	156
		4.12.4	Joule heating rate	157
		4.12.5	Voltage distribution	160
	4.13	Pasteur	ization calculations	162
		4.13.1	Guava juice pasteurization value	162
		4.13.2	Lethality calculations	163
		4.13.3	Soymilk pasteurization value	165
		4.13.4	Results and Discussion	165
		4.13.5	Summary	166
5	CON	ICLUSI	ONS AND RECOMMENDATIONS	167
REFERE	NCES	5		172
APPEND	ICES			185
BIODATA OF STUDENT			214	
LIST OF	PUBI	LICATI	ONS	215

LIST OF TABLES

Table		Page
2.1	Major benefits of ohmic heating for particulate food processes	15
2.2	Classification of electrical conductivity values of food product	25
2.3	Models proposed in literature for selection of minimum holding times in calculating holding tube sizes	42
2.4	Proximate composition of soymilk	50
2.5	Chemical and physical properties of soymilk	51
2.6	Summary of soymilk process SB = soybeans,RHHC=rapid hydration hydrothermal cooking	53
2.7	Different types of micro-organisms isolated from soymilk	57
2.8	The chemical composition of guava juice.	60
2.9	Results for proximate analysis of guava juice (10 0 brix)	60
2.10	Typical values of heat resistence of A. Acidoterrestris spores	61
3.1	Rheological and thermo physical properties of soymilk of 7.8 ± 0.02 ⁰ Brix	66
3.2	Rheological and thermophysical properties of guava juice of 3.8 ⁰ Brix	72
4.1	Pasteurization condition for guava juice	79
4.2	Experimental data of temperature of guava juice	80
4.3	The parameters used in simulation	84
4.4	The experimental and predicted temperature at different velocities for guava juice	141
4.5	Integrated lethality inside the pasteurizer for guava juice and soymilk	166

LISTS OF FIGURES

Figure		Page
2.1	Operating region of electric conductivity	25
2.2	Electrical conductivity of solids food as affected by temperature and field strength	29
2.3	Electrical conductivity of liquid food as affected by temperature and solid contents	29
2.4	laminar flow in ohmic heater	31
2.5	Diagram of the APV ohmic heater and position of Hall effect Sensors	38
2.6	Detail of the ohmic heater column	39
2.7	Continuous flow ohmic heater	40
2.8	Derivation of the D-value for a given temperature (T) from a graph of the number of surviving organisms (N) versus (t)	46
2.9	Derivation of z values from plot of thermal death rate and D value versus temperature	47
3.1	Electrical conductivity as a function of temperature for soymilk	63
3.2	Specific heat as a function of temperature for soymilk	64
3.3	Thermal conductivity as a function of temperature for soymilk	64
3.4	Density as a function of temperature for soymilk	65
3.5	Relationship between shear stress and shear rate of soymilk at temperature of 30, 40 and 50 0 C and 7.8 0 Brix	66
3.6	Thermal conductivity as function of temperature of guava juice ⁰ Brix 3.8	68
3.7	Specific heat capacity as function of temperature of guava juice ⁰ Brix 3.8	68
3.8	Density at function of temperature of guava juice ⁰ Brix 3.8	69

3.9	Electrical conductivity as a function of temperature for guava juice	69
3.10	Shear stress shear rate as a function of temperature of guava juice	70
3.11	Logarithmic relationship between shear stress and shear rate	71
3.12	The viscosity of guava juice as a function of temperature	71
4.1	A schematic representation of the experimental set-up the of ohmic heating system	75
4.2	Ohmic heating unit	76
4.3	A schematic of ohmic heating cell	77
4.4	Ohmic heating cell	77
4.5	Temperature sensors positions along the heating cell	80
4.6	Experimental data of temperature at velocity of 0.034m/sec	81
4.7	Experimental data of temperature at velocity of 0.032m/sec	82
4.8	Experimental data of temperature at velocity of 0.032m/se	83
4.9	Grids generated with GAMBIT 2.0 and read by FLUENT 6.1 for ohmic heating cell geometry	97
4.10	Basic program structure	99
4.11	Overview of the Segregated Solution Method	99
4.12	Overview of the Coupled Solution Method	100
4.13	Schematic program of implementation of pasteurization process	101
4.14	Interpreting the user defined function in FLUENT	102
4.15	loading of parabolic inlet velocity user defined function in FLUENT	103
4.16	loading the compiled user defined functions in FLUENT	105
4.17	Specifying the user defined functions used for insulated wall	105

4.18	Specifying the user defined functions used for conducted wall	106
4.19	Specifying momentum, energy and electric field user defined functions	106
4.20	An algorithm to solve the theoretical model	110
4.21	Temperature profiles of guava juice	115
4.22	3-D Temperature contour of guava juice	116
4.23	y-z plane contour of static temperature at Inlet points - 0.5 m, 0.14 m, 0.17 m, 0.23 m and outlet	116
4.24	x-y plane contour of temperature	117
4.25	x-velocity profile of guava juice	120
4.26	y-z plane contour of x-velocity at inlet, 0.5m, 0.14m, 0.17m, 0.23m, outlet	121
4.27	x-y plane x-velocity contour	121
4.28	y-z plane of velocity vectors at 0.23m	122
4.29	y-z plane of velocity vectors at 0.17m	122
4.30	y-z plane of velocity vectors at 0.05m	123
4.31	Current density distribution of guava juice	127
4.32	Current density distribution of guava juice at all locations except at 0.05 and 0.23m	127
4.33	3D current density of guava juice	128
4.34	y-z plane contour of current density at inlet, 0.5m, 0.14m, 0.17m, 0.23m, outlet	128
4.35	x-y plane contour of current density	129
4.36	Joule heating rate distribution of guava juice	132
4.37	3D of Joule heating rate of guava juice	132
4.38	y-z plane contour of joule heating rate at inlet, 0.5 m, 0.14 m, 0.17 m, 0.23 m, outlet	133

4.39	x-y plane counter of joule heating rate	133
4.40	Voltage contour of guava juice 3D	135
4.41	y-z plane contours of voltages at inlet, 0.05 m, 0.14 m, 0.17 m, 0.23 m and outlet of guava juice	135
4.42	x-y plane contour of voltages of guava juice	136
4.43	Comparison between experimental and simulated temperature of guava juice	138
4.44	Temperature of center at 0.05m, 0.17 m and 0.23 m as a function of time	139
4.45	Temperature distribution of x-y plot of soymilk	144
4.46	3 D temperature contour of soymilk	144
4.47	x-y plane of temperature contour of soymilk	145
4.48	y-z plane of temperature profiles of soymilk	145
4.49	x-velocity profile of soymilk	149
4.50	x-y plane of x-velocity contour of soymilk	149
4.51	y-z plane of x-velocity contour of soymilk	150
4.52	y-z plane at 0.23 m of x-velocity vector of soymilk	150
4.53	y-z plane at 0.17 m of x-velocity vector of soymilk	151
4.54	y-z plane at 0.05 m of x-velocity vector of soymilk	151
4.55	Current density profiles of soymilk	154
4.56	Current density profiles of soymilk excluding 0.05 m and 0.23 m	154
4.57	3D Current density contour of soymilk	155
4.58	x-y plane of current density contour of soymilk	155
4.59	x-z plane of current density contour of soymilk	156

4.60	Joule heating rate profiles of soymilk	157
4.61	Joule heating rate profiles excluding 0.3 m and 0.05 m of soymilk	158
4.62	x-y plane of Joule heating rate contour of soymilk	158
4.63	y-z plane of Joule heating rate contour of soymilk	159
4.64	3D contour of Joule heating rate of soymilk	159
4.65	3D contour of voltage of soymilk	161
4.66	x-y plane of contour of voltage of soymilk	161
4.67	y-z plane of voltage contour at inlet, 0.05 m, 0.14 m, 0.17 m, 0.23 m and outlet of soymilk	162
4.70	Various steps involved in the design and optimization of a thermal system and in the implementation of the design	171

NOMENCLATURE

The following is a list of definitions of the main symbols used in this thesis. SI units are considered in the study.

Symbol	Description	Unit
А	Cross- sectional surface area	
	of the electrodes	[m ²]
AC	Alternating current	[A]
b	The coefficient of	
	temperature dependent	
	Electrical conductivity	$[^{0}C^{-1}]$
COP	Coefficient of performance	[dimensionless]
C _p	Specific heat of liquid food	$[J kg^{-1} C^{-1}]$
D _T	Decimal reduction time	[min]
D	Diameter of the heating cell	[m]
dv _r /dr	Radial velocity gradient in	$[ms^{-1}m^{-1}]$
	the radial direction	
$dv_r/d\theta$	Radial velocity gradient in	$[ms^{-1}m^{-1}]$
	angular direction	
dv_r/dz	Radial velocity gradient in	$[ms^{-1}m^{-1}]$
	axial direction	
dv_{θ}/dr	Angular velocity gradient in	$[ms^{-1}m^{-1}]$
	radial direction	1 1
$dv_{\theta}/d\theta$	Angular velocity gradient in	$[ms^{-1}m^{-1}]$
	angular direction	- 1 1-
dv_{θ}/dz	Angular velocity gradient in	
	axial direction	r -1 -1-
dv _z /dr	Axial velocity gradient in	
1 (10	radial direction	r -1 -11
$dV_z/d\Theta$	Axial velocity gradient in	
d /d-	A vial value site and is at in	[
dv_z/dz	Axial velocity gradient in	
dT/dr	Temperature gradient in	$[^{0}Cm^{-1}]$
d 1/di	radial direction	
θ5/Τ5	Temperature gradient in	$[^{0}Cm^{-1}]$
41/40	angular direction	
zb/Tb	Temperature gradient in	$[^{0}Cm^{-1}]$
	axial direction	
dV/dr	Voltage gradient in radial	$[Vm^{-1}]$
	direction	[·]
dV/θ	Voltage gradient in angular	$[Vm^{-1}]$
	direction	
dV/dz	Voltage gradient in axial	$[Vm^{-1}]$

	direction	
$dP/d\theta$	Angular pressure gradient	$[Pam^{-1}]$
dP/dz	Axial pressure gradient	$[Pam^{-1}]$
dP/dr	Radial pressure gradient	$[Pam^{-1}]$
E	Voltage gradient or local	
	electric field intensity	$[Vm^{-1}]$
EE	Electrical energy	[W]
EE _{acum}	Accumulated electrical	
	energy	[W]
E _{loss}	Heating energy loss from	
	the system	[W]
F	Number of minutes required	
	to destroy a given number	
	of organisms at a given	
	temperature	[min]
Fo	Cumulative thermal lethality	[min]
f	frequency	[Hz]
G	Acceleration due to gravity	$[m s^{-2}]$
G _E	Acceleration due to electric	
	field	$[g_{\rm E} = {\rm E}^{-2} {\rm b} {\rm D}^{-1}]$
Н	Height of the heating cell	[m]
Ι	Current	[A]
J	Current density	$[\text{A m}^{-2}]$
K	consistency index	[Pa s ⁿ]
k	Thermal conductivity of	[]
	liquid being heated	$[w m^{-1} k^{-1}]$
ln	Natural logarism	
LTH	Low temperature holding	[⁰ C]
Le	Distance between electrodes	[m]
(L/A)	Ratio of distance between	
(2,12)	electrodes to diameter of	
	heating cell	
Lleth	Lethality at specified time	[min]
L	Electrode length	[m]
m	Volumetric flow rate	$[m^{3}s^{-1}]$
mRT	Minimum residence time	[sec]
n	Flow behavior index	[dimension]ess]
Po	power	[W]
P	Pressure	[Pa]
0	Volumetric heating	[- "]
×	generation	[w m ⁻³]
RT	Residence time	[sec]
r	Radial position from center	[]
-	line	[m]
		[111]

R T _{ref}	Resistance Reference temperature	$[\Omega]$ $[^{0}C]$
TSS	Total soluble solids	[⁰ Brix]
t	Heating time	[sec]
t _b	Time of the process	[min]
T _{in}	Inlet fluid temperature	$[^{0}C]$
N _{surviv}	Number of organism survive	
_	the heat treatment	50 mm
Т	Temperature	$[^{0}C]$
V	Voltage	[volts]
Vm	Mean velocity	$[ms^{-1}]$
$\mathbf{v}_{\boldsymbol{\theta}}$	Angular velocity	[ms ⁻¹]
Vr	Radial velocity	$[ms^{-1}]$
Vz	Axial velocity	$[ms^{-1}]$
Z	Number of ⁰ C required for	
	the thermal death time curve	
	to traverse one logarithmic	0
	cycle	$[^{0}C]$
r	Radial coordinate	[m]
Z	Axial coordinate	[m]
Dimensionless quantities		1
Pr	Prandtl number	$\left[\nu/\alpha = C_p \mu k^{-1}\right]$
Gz	Graetz number	$[\rho V_m D^2 C_p k^{-1} L^{-1}]$
Gr _{pl}	Grashot number for power	$[g\rho^2\Delta I\beta R^{-2m}V_m^2 m K^2]$
Cr	law Iluid Grashof number	$[\alpha \alpha^2 \Lambda T \beta D^3 u^{-2}]$
Gree	Electrical Grashof number	$\begin{bmatrix} g p \Delta T p D \mu \end{bmatrix}$ $\begin{bmatrix} F^2 b o^2 \Delta T \beta D^2 \mu^{-2} \end{bmatrix}$
Re	Reynolds number	$\begin{bmatrix} D & 0p & \Delta T p D & \mu \end{bmatrix}$
Greek symbols		
ρ_{ref}	Reference density	$[\text{kg m}^{-3}]$
ρ	Density of liquid	[kg m ⁻]
μ _a	Apparent viscosity	[Pa s]
τ	Shear stress	[Pa]
β	Thermal expansion	0 1
<u>^</u>	coefficient	$[{}^{0}C^{-1}]$
θ	Angular coordinate	[m]
ν	Kinematics viscosity	$[\mu\rho^{-1}]$
α	I hermal diffusivity	$[K \rho^{-1}C_{p}^{-1}]$
γ	Shear rate	$[Sm^{-1} \circ r \circ hm^{-1}m^{-1}]$
0		[SIII of onm m ²]
σ_0	Electrical conductivity of	
	the fluid food at reference	[Sm ⁻¹ or other-la-1]
	temperature	[SIII OF ONT M ⁻]

ΔT μ	Difference between inlet and out let temperature Newtonian viscosity	[⁰ C] [Pa s]
Subscripts		
ref	Reference value	
El	elctrical	
out	outlet	
pl	Power law	
m	avaraged	
e	Electrode	
in	inlet	

CHAPTER 1

INTRODUCTION

1.1 Background

Thermal processing is an important method to extend the shelf-life of foods. However, some sensory - discoloration, flavor and textural changes as well as other physical and chemical changes - over-cooking, liquefaction, vitamin loss, caramelization and Maillard reactions are undesirable effects of thermal processing. Therefore, it is necessary to achieve optimal thermal processing to ensure both quality and safety of processed food (Erdogdu, 2000; Lund, 1977; Ramesh, 1995).

Alternatively, technologies based on electric field treatments of a food product have attracted attention from both academic and industrial communities because of high durability of treated products, technical simplicity and the ability to minimize food quality deterioration (Jeyamkondan *et al.*, 1999). These technologies include (1) ohmic heating (2) pulsed electric field treatment and (3) microwave processing.

The ohmic heating concept is not new and was widely used in the 19th century to pasteurize milk. Apparently due to the lack of inert materials for the electrodes this technology was abandoned (Mizrahi *et al.*, 1975). However the technology has recently gained new interest because the treated products are of superior quality compared to those processed by conventional technologies. This is mainly

