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Pasteurization of liquid food - guava juice and soymilk by continuous ohmic 

heating within a temperature range of 30-90 0C, was performed in a 3-D non – 

axisymmetric ohmic heater. (Three stripe electrodes positioned along the walls 

and oriented 1200 to the axis of the pipe), using 3-phase 50-60 Hz alternative 

voltages, with Delta connection.  

 

A mathematical model describing the flow and thermal behavior of guava juice 

and soymilk solution in a continuous ohmic heating unit was developed. The 

equations for conservation of mass, momentum and energy and electric field 

distributions including temperature dependent electrical conductivities, thermo 

physical and rheological properties were solved using a commercial 

Computational Fluid Dynamics (CFD) software package (FLUENT 6.1) which 

was based on finite volume method of analysis. User defined functions (UDF’s) 

ii 



 employed in the original platform (FLUENT 6.1), were used for the solution of 

scalar equations - electrical field model.     

  

Thermo-physical and rheological properties of soymilk and guava juice were 

measured. Soymilk was found to be Newtonian and guava juice a Non Newtonian 

(power law n = 0.0.5978 and k = 0.117 Pa sn). Measurements of electrical 

conductivities at various temperatures for guava juice and soymilk were carried 

out. These properties were then used as inputs for the CFD modelling. 

 

The numerical calculation results have provided reasonable information for 

optimizing the design of ohmic heating cell geometry to improve the uniformity 

of the electrical and thermal fields across the heating cell in order to avoid over 

and under-processing of liquid foods. 

 

 The heating rate of soymilk was found to be higher than that of guava juice.  The 

current density of both guava juice and soymilk was found to exceed the critical 

value. However, experimentally the soymilk, a protein solution, was found to 

rapidly deposit on the surface of the electrodes. No ohmic heating was conducted 

thereafter with the soymilk. 

 

Temperature, flow pattern, electrical field distribution and the slowest heating    

zone (SHZ) during ohmic heating of both liquid foods (3D) were predicted. 

Experimental and simulated temperatures were in good agreement at different 
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 locations along the ohmic heating axis for guava juice, thus validating the CFD 

model and simulation.  

 

The pasteurization calculations were done for guava juice (3.8 0brix) and soymilk 

(7.8±0.02 0brix) using the pathline of the highest velocity simulated from the 

CFD, and pasteurisation was adequately and rapidly achieved. 



 
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doctor Falsafah 

 

PEMERIKSAAN EKSPERIMEN DAN SIMULASI BERANGKA BAGI 
PEMANASAN OHMIC UNTUK PEMPASTEURAN MAKANAN CECAIR 
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Oleh 

ELZUBIER AHMED SALIH ELFAKIE 

Mei  2008 
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Fakulti: Kejuruteraan 

 
Pempasteuran makanan cecair - jus buah jambu batu dan susu kacang soya 

melalui  pemanasan ohmic berterusan di dalam julat suhu 30-900C , dapat 

disimulasi dan disahkan dengan penggunaan model 3-dimensi bukan simetrik 

(Tiga elektrod jejalur yang disusun sepanjang dinding dengan orientasi 1200 ke 

arah paksi paip), menggunakan voltan-voltan alternatif tiga fasa antara 50-60Hz, 

menerusi sambungan Delta.  

 

Satu model matematik, yang dapat menggambarkan aliran dan ciri termo jus buah 

jambu batu dan susu kacang soya dalam unit pemanasan ohmic berterusan, telah 

dibangunkan. Persamaan-persamaan keabadian bahan, tenaga dan momentum, 

dan  penyebaran medan elektrik termasuk konduktiviti elektrik yang bergantung 

kepada suhu, sifat – sifat termofisik dan reologi dapat di selesaikan dengan 
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 penggunaan pakej perisian komersial, iaitu Computational Fluid Dynamics 

(FLUENT 6.1) yang berasaskan keadah analisa isipadu makluk.  

Fungsi-fungsi yang didefinisikan oleh pengguna dan tersediaada dalam landasan 

FLUENT 6.1, digunakan untuk penyelesaian persamaan scalar - model medan 

elektrik.  

 

Sifat-sifat termofisik dan reologi bagi susu kacang soya dan jus buah jambu batu 

telah di ukur. Didapati susu kacang soya adalah Newtonian manakala jus buah 

jambu batu adalah bukan Newtonian (perundangan kuasa n = 0.0.5978 dan k = 

0.117 Pa sn).  Pengukuran konduktiviti elektrik pada pelbagai suhu bagi jus buah 

jambu batu dan susu soya telah juga dijalankan. Sifat-sifat ini seterusnya 

digunakan untuk pemodelan CFD. 

Keputusan perkiraan berangka telah memberi maklumat mengcukupi bagi tujuan 

mengoptimakan rekabentuk geometri sel pemanasan ohmic untuk meningkatkan 

keseragaman medan-medan elektrik serta termo diseberang sel pemanasan supaya 

dapat mengelakkan pemprosesan makanan cecair berlebihan atau berkurangan. 

Kadar pemanasan susu kacang soya didapati lebih tinggi berbanding dengan jus 

buah jambu. Batu. Ketumpatan aliran bagi kedua-dua jus buah jambu batu dan 

susu kacang soya didapti melebihi nilai kritikal. Walaubagaimanapun, 

diperhatikan dalam eksperimen bahawa susu soya, satu cecair protein, memendap 

pada permukaan elektrod-elektrod dengan cepat. Selepas itu , tiada pemanasan 

ohmic dijalankan pada susu soya .  
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 Semasa pemanasan ohmic bagi kedua-dua jenis makanan cecair, ciri-ciri  suhu, 

corak aliran, pengedaran medan elektrik dan zon pemanasan paling pelahan dapat 

diramalkan dalam 3-dimensi. Persetujuan antara suhu-suhu eksperimen dan 

simulasi didapati baik pada lokasi-lokasi berbeza sepanjang paksi pemanasan 

ohmic bagi jus buah jambu batu, maka dapat mengesahkan model CFD dan 

simulasi. 

 

Perkiraan-perkiraan  pempasteuran bagi jus buah jambu batu (3.8 0brix) dan susu 

soya  (7.8±0.02 0brix) dibuat mengikut garisan simulasi kelajuan tertinggi dari 

CFD, dan proses pempasteuran dapat dijayakan dengan memadai  dan cepat.  
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 NOMENCLATURE 

 
The following is a list of definitions of the main symbols used in this thesis.  

SI units are considered in the study. 
 

Symbol Description                             Unit 

A Cross- sectional surface area 
of the electrodes 

                     
                            [m2] 

AC Alternating current                               [A] 
b The coefficient of 

temperature dependent 
Electrical conductivity          

                     
 

                          [0C -1]   
COP Coefficient of performance            [dimensionless] 
Cp Specific heat of liquid food                       [J kg-1 0C-1]   
DT Decimal reduction time                                     [min] 
D Diameter of the heating cell                                   [m]
dvr/dr  Radial velocity gradient in 

the radial  direction  
                      [ms-1m-1] 

dvr/dθ Radial velocity gradient in 
angular direction 

                      [ms-1m-1] 

dvr/dz Radial velocity gradient in 
axial direction 

                      [ms-1m-1] 

dvθ/dr Angular velocity gradient in 
radial direction 

                      [ms-1m-1] 

dvθ/dθ Angular velocity gradient in 
angular direction 

                      [ms-1m-1] 

dvθ/dz Angular velocity gradient in 
axial direction 

                      [ms-1m-1] 

dvz/dr Axial velocity gradient in 
radial direction 

                      [ms-1m-1] 

dvz/dθ Axial velocity gradient in 
angular direction 

                      [ms-1m-1] 

dvz/dz Axial velocity gradient in 
axial direction 

                      [ms-1m-1] 

dT/dr Temperature gradient in 
radial direction 

                         [0Cm-1]   

dT/dθ Temperature gradient in 
angular direction 

                         [0Cm-1]   

dT/dz Temperature gradient in 
axial direction           

                         [0Cm-1]   

dV/dr Voltage gradient in radial 
direction 

                          [Vm-1] 

dV/θ Voltage gradient in angular 
direction 

                          [Vm-1] 

dV/dz Voltage gradient in axial                           [Vm-1] 



 

xxii 

 
direction 

dP/dθ Angular pressure gradient                          [Pam-1] 
dP/dz Axial pressure gradient                          [Pam-1]   
dP/dr Radial pressure gradient                          [Pam-1]   
E Voltage gradient or local 

electric field intensity 
                    

                          [Vm-1] 
EE Electrical energy                                [W]

EEacum Accumulated electrical 
energy 

                     
                               [W]

Eloss Heating energy loss from 
the system  

                                
                               [W]

F                                       Number of minutes required 
to destroy a given number 
of organisms at a given 
temperature                       

                     
 
 

                           [min] 
FO Cumulative thermal lethality                              [min]   
f                                        frequency                             [Hz] 
G Acceleration due to gravity                                [m s-2]  
GE Acceleration due to electric 

field                  
            

              [gE = E-2 bD-1]   
H Height of the heating cell                              [m] 

I Current                                                                 [A] 
J Current density                                                [A m-2]
K consistency index                                             [Pa sn]   
k Thermal conductivity of 

liquid being heated  
                     
                    [w m-1 k-1] 

ln Natural logarism  
LTH Low temperature holding                               [0C] 
Le     Distance between electrodes                                  [m]   
(L/A)                                   Ratio of distance between 

electrodes to  diameter of 
heating cell                              

 

Lleth Lethality at specified time                           [min] 
L   Electrode length                              [m] 
m˙  Volumetric flow rate                           [m3s-1] 
mRT Minimum residence time                              [sec] 
n Flow behavior index            [dimensionless] 
Po power                                                                   [W] 
P Pressure                               [Pa] 
Q   Volumetric heating 

generation                        
                     

                       [w m-3]    
RT Residence time                                                   [sec]    
r Radial position from center 

line                              
                     

                              [m] 
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R Resistance                                                               [Ω]
Tref Reference temperature                                          [0C]   
TSS Total soluble solids                                           [0Brix]   
t   Heating time                                                         [sec]   
tb Time of the process                             [min] 
Tin Inlet fluid temperature                                           [0C] 
Nsurviv Number of organism survive 

the heat treatment 
 

T Temperature                             [0C]    
V Voltage                                                              [volts]
vm Mean velocity                [ms-1] 
vθ Angular velocity      [ms-1] 
vr Radial velocity                          [ms-1] 
vz Axial velocity                          [ms-1] 
Z   Number of 0C required for 

the thermal death time curve 
to traverse one logarithmic 
cycle          

                     
 
 

                            [0C]    
r Radial coordinate                                [m] 
z Axial coordinate                                [m] 
Dimensionless quantities   

Pr Prandtl number                                    [ν/ α =  Cp μk-1]  
Gz Graetz number                              [ρ Vm D2  Cpk-1 L-1]  
Grpl Grashof number for power 

law fluid 
[gρ2ΔTβR1+2nvm

2-2nK-2] 

Gr Grashof number,                              [ g ρ2 ΔT β D3μ-2] 
GrEl Electrical Grashof number          [ E2bρ2ΔTβD2μ-2]
Re Reynolds number                      [ρvmDμ-1] 
   

Greek symbols   

ρref Reference density                                         [kg m-3]    
ρ  Density of liquid                         [kg m-3]   
μa Apparent viscosity                                            [Pa s]    
τ Shear stress                                                          [Pa] 
β Thermal expansion 

coefficient                             
                     

                           [0C-1] 
θ Angular coordinate                                [m] 
ν Kinematics viscosity                                           [μρ-1]   
α Thermal diffusivity                                     [k ρ-1 Cp

-1]   
γ Shear rate                                                            [s-1]    
σ Electrical conductivity                  [Sm-1 or ohm-1m-1] 
σ0 Electrical conductivity of 

the fluid food at reference 
temperature                             

         
 
      [Sm-1 or ohm-1m-1] 



 

xxiv 

 
ΔT Difference between inlet   

and out let temperature 
 

                              [0C] 
μ  Newtonian viscosity                                           [Pa s]
   
Subscripts    
ref Reference value  
El elctrical  
out outlet  
pl Power law  
m avaraged  
e Electrode   
in inlet  
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CHAPTER 1  
 

1 INTRODUCTION 

1.1 Background    
                                                         
 

Thermal processing is an important method to extend the shelf-life of foods.  

However, some sensory - discoloration, flavor and textural changes as well as 

other physical and chemical changes - over-cooking, liquefaction, vitamin loss, 

caramelization and Maillard reactions are undesirable effects of thermal 

processing. Therefore, it is necessary to achieve optimal thermal processing to 

ensure both quality and safety of processed food (Erdogdu, 2000; Lund, 1977; 

Ramesh, 1995). 

 

 Alternatively, technologies based on electric field treatments of a food product 

have attracted attention from both academic and industrial communities because 

of high durability of treated products, technical simplicity and the ability to 

minimize food quality deterioration (Jeyamkondan et al., 1999). These 

technologies include (1) ohmic heating (2) pulsed electric field treatment and (3) 

microwave processing.  

 

The ohmic heating concept is not new and was widely used in the 19th century to 

pasteurize milk. Apparently due to the lack of inert materials for the electrodes 

this technology was abandoned (Mizrahi et al., 1975). However the technology 

has recently gained new interest because the treated products are of superior 

quality compared to those processed by conventional technologies. This is mainly 


