

Provided by Universiti Putra Malaysia Institutional Repository

UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION OF FUZZY LOGIC CONTROLLERS WITH GENETIC ALGORITHM FOR TWO-PART-TYPE AND RE-ENTRANT PRODUCTION SYSTEMS

SEYED MAHDI HOMAYOUNI

FK 2008 3

OPTIMIZATION OF FUZZY LOGIC CONTROLLERS WITH GENETIC ALGORITHM FOR TWO-PART-TYPE AND RE-ENTRANT PRODUCTION SYSTEMS

By

SEYED MAHDI HOMAYOUNI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

November 2007

DEDICATION

I dedicate this thesis to my parents who support me during my studies

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

OPTIMIZATION OF FUZZY LOGIC CONTROLLERS WITH GENETIC ALGORITHM FOR TWO-PART-TYPE AND RE-ENTRANT PRODUCTION SYSTEMS

By

SEYED MAHDI HOMAYOUNI

November 2007

Chairman: Tang Sai Hong, PhD

Faculty: Engineering

Improvement in the performance of production control systems is so important that many of past studies were dedicated to this problem. The applicability of fuzzy logic controllers (FLCs) in production control systems has been shown in the past literature. Furthermore, genetic algorithm (GA) has been used to optimize the FLCs performance. This is addressed as genetic fuzzy logic controller (GFLC). The GFLC methodology is used to develop two production control architectures named "genetic distributed fuzzy" (GDF), and "genetic supervisory fuzzy" (GSF) controllers. These control architectures have been applied to single-part-type production systems. In their new application, the GDF and GSF controllers are developed to control multipart-type and re-entrant production systems. In multi-part-type and re-entrant production systems the priority of production as well as the production rate for each part type is determined by production control systems. A genetic algorithm is developed to tune the membership functions (MFs) of input variables of GDF and

GSF controllers. The objective function of the GSF controller is to minimize the overall production cost based on work-in-process (WIP) and backlog cost, while surplus minimization is considered in GDF controller. The GA module is programmed in MATLAB[®] software. The performance of each GDF or GSF controllers in controlling the production system model is evaluated using Simulink[®] software. The performance indices are used as chromosomes ranking criteria. The optimized GDF and GSF can be used in real implementations. GDF and GSF controllers are evaluated for two test cases namely "two-part-type production line" and "re-entrant production system". The results have been compared with two heuristic controllers namely "heuristic distributed fuzzy" (HDF) and "heuristic supervisory fuzzy" (HSF) controllers. The results showed that GDF and GSF controllers can improve the performance of production system. In GSF control architecture, WIP level is 30% decreased rather than HSF controllers. Moreover the overall production cost is reduced in most of the test cases by 30%. GDF controllers show their abilities in reducing the backlog level but generally production cost for GDF controller is greater than GSF controller.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENGOPTIMUMAN PENGAWAL LOGIK SAMAR DENGAN ALGORITMA GENETIK UNTUK SISTEM PENGELUARAN JENIS-DWI-BAHAGIAN DAN MASUK-SEMULA

Oleh

SEYED MAHDI HOMAYOUNI

November 2007

Pengerusi: Tang Sai Hong, PhD

Fakulti: Kejuruteraan

Penambahbaikan sistem kawalan pengeluaran begitu penting sehingga banyak bahan kajian lepas ditumpukan kepada masalah ini. Tambahan pula ia telah menunjukkan bahawa kawalan sistem pengeluaran dengan menggunakan pengawal samar logik (FLC) boleh mengatasi prestasi arkitek kawalan lain. Selain itu, genetik algoritma (GA) telah digunakan untuk mengoptimumkan prestasi FLC. Ini dikenal pasti sebagai pengawal genetik samar logik (GFLC). Dalam tesis ini, metodologi GFLC digunakan untuk membangunkan dua arkitek kawalan pengeluaran yang dinamakan pengawal "samar genetik tersebar" (GDF), dan "samar penyeliaan genetik" (GSF). Sebelum ini, arkitek kawalan ini digunakan untuk sistem pengeluaran jenis bahagian tunggal. Tetapi dalam pendekatan baharu, pengawal GDF dan GSF dibangunkan untuk mengawal sistem pengeluaran kompleks. Metodologi ini dijelaskan dan dinilai dengan menggunakan dua kajian kes; iaitu talian pengeluaran jenis dua bahagian dan sistem rangkaian pengeluaran masuk semula. Untuk pengawal jenis ini, GA digunakan untuk menalakan fungsi keahlian (MF) FLC. Fungsi objektif pengawal

GSF adalah untuk meminimumkan kos pengeluaran secara keseluruhan berdasarkan kerja dalam proses (WIP) dan kos log balik, sementara peminimuman berlebihan dipertimbangkan dalam pengawal GDF. Modul GA diprogramkan dalam perisian *MATLAB*[®]. Prestasi setiap FLC dalam mengawal model sistem pengeluaran dinilai menggunakan *Simulink*[®]. Indeks prestasi digunakan sebagai kriteria pemeringkatan kromosom. GDF atau GSF yang dioptimumkan boleh digunakan dalam pelaksanaan sebenar. Dapatannya menunjukkan bahawa pengawal GDF dan GSF dapat menambah baik prestasi sistem pengeluaran. Dalam arkitek kawalan GSF, paras WIP berkurang 30% berbanding dengan pengawal HSF. Tambahan pula, kos pengeluaran keseluruhan dikurangkan sebanyak 30% dalam kebanyakan kes ujian. Pengawal GDF menunjukkan keupayaannya dalam mengurangkan paras log balik tetapi secara umumnya kos pengeluaran bagi pengawal GDF adalah lebih tinggi berbanding dengan pengawal GDF.

ACKNOWLEDGEMENTS

Allah, the dominion of the heavens and the earth belongs to him. No son has he been gotten nor has he a partner in his dominion. It is he who created all things and ordered them in due proportions (Holly Quraan 25:2)

I would like to express my sincere gratitude to my parents who encourage and support me to do my researches. This goal has not been reached without their everlasting love.

I would like to express my deepest gratefulness to Dr. Tang Sai Hong for his patient direction, encouragement, cooperation, full support and close consultation throughout the research and thesis writing. In addition, special thanks are due to Assoc. Prof. Dr. Napsiah Ismail for her invaluable comments, guidance, consultation and support throughout the thesis.

Finally, for those people who are not listed above but have given me a hand or advice, I would also like to say a word of thanks for their support.

Your nice help, I would never forget.

I certify that an Examination Committee met on 21st November 2007 to conduct the final examination of Seyed Mahdi Homayouni on his Master degree thesis entitled "optimization of fuzzy logic controllers with genetic algorithm for two-part-type and re-entrant production systems" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the student be awarded the relevant degree. Members of the Examination Committee were as follows:

Megat Mohamad Hamdan Megat Ahmad, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Wong Shaw Voon, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Faieza Abdul Aziz, PhD Lecturer Faculty of Engineering

Universiti Putra Malaysia (Internal Examiner)

Awaluddin Mohamed Shahraoun, PhD

Professor Faculty of Engineering Universiti Technology Malaysia (External Examiner)

HASNAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Tang Sai Hong, PhD Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Napsiah Ismail, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 February 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SEYED MAHDI HOMAYOUNI

Date: 20 July 2008

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	X
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii

CHAPTERS 1

2

INTRODUCTION		1
1.1	Manufacturing Systems	1
1.2	Production Control	2
1.3	Problem Statement	5
1.4	Objectives of the Thesis	6
1.5	Scope of Thesis and Limitations	7
1.6	Organization of Thesis	8

LITI	ERATUI	RE REVIEW	10
2.1	Introd	uction	10
2.2	Genet	ic Algorithms	11
	2.2.1	Principles of GAs	11
	2.2.2	Fitness Function and Selection	14
	2.2.3	Crossover and Mutation	16
2.3	Fuzzy	Control Systems	19
	2.3.1	Fundamentals of Fuzzy Logic	20
	2.3.2	Fuzzy Sets and Membership Function	21
	2.3.3	Fuzzy Logic Control (FLC)	25
	2.3.4	Fuzzification and Implication	27
	2.3.5	Aggregation and Defuzzification	29
2.4	Genet	ic Fuzzy Systems	31
	2.4.1	Design of Genetic Fuzzy Systems	33
	2.4.2	Applications of GFS in the	
		Manufacturing systems	35
2.5	Produ	ction Control Systems	38
	2.5.1	Production Control Policies	39
	2.5.2	Surplus Based Production	
		Control Policy	42
	2.5.3	Fuzzy Control for Production Systems	47

2.6	Heuristic Fuzzy Production Controllers	48
	2.6.1 Heuristic Distributed Fuzzy Controllers	49
	2.6.2 Heuristic Supervisory Fuzzy Controller	53
	2.6.3 Evolutionary Optimization of	
	HDF and HSF Controllers	57
2.7	Conclusion	59
МЕТ	THODOLOGY	61
ME 3.1	THODOLOGY Introduction	61 61
		•-
3.1	Introduction GA Optimization Module	61
3.1	Introduction GA Optimization Module	61 66
3.1	Introduction GA Optimization Module 3.2.1 Constructing of the Chromosomes	61 66 66
3.1	Introduction GA Optimization Module 3.2.1 Constructing of the Chromosomes 3.2.2 Encoding and Decoding of Chromosomes	61 66 66 69

3.5 Conclusion 82

4 SIMULATION MODEL FOR PROPOSED TEST CASES

3

5

PROP	OSED TEST CASES	84
4.1	Introduction	84
4.2	Production System Test Cases	84
	4.2.1 Two-Part-Type Production Line	87
	4.2.2 Re-entrant Production System	90
4.3	Production Control Simulation Model	92
	4.3.1 Supervisory Control Module	96
	4.3.2 Surplus Bound Correction Module	97
4.4	Production System Module	99
4.5	Machine Subsystem	103
	4.5.1 Machine State Subsystem	104
	4.5.2 Sub machine Subsystem	107
	4.5.3 Production Rate Module	109
	4.5.4 Cumulative Production Module	112
4.6	Validation of Simulation Model	113
4.7	Conclusion	118

RES	ULTS AND DISSCUSION	120
5.1	Introduction	120
5.2	Two-Part-Type Production Line	122
5.3	Re-entrant Production System	130
5.4	Discussion on Obtained Results	132
5.5	Conclusion	137

CONCLUSION AND RECOMMENDATIONS 138 6 Introduction 6.1 138

- Summary and Conclusion 6.2 138 143
- 6.3 Recommendations for Further Researches

REFERENCES	144
APPENDICES	155
BIODATA OF THE AUTHOR	181
LIST OF PUBLICATIONS	182

LIST OF TABLES

Table		Page
3.1	Sample chromosome for proposed GSF controller	68
3.2	Decoding formulas for constructing the MFs of GSF or GDF controller	70
4.1	Processing time for different machines in re-entrant production system test case	91
4.2	List of abbreviations used in figure 4.4	94
5.1	Cost analysis for various demands, WIP and backlog unit costs for GSF and HSF control architectures	126
5.2	Cost analysis for various demands for GDF and HDF control architectures	128
5.3	Comparative production cost for GDF and GSF control architectures	128

LIST OF FIGURES

Figure

Page

2.1	The Route Map of Binary Genetic Algorithm	13
2.2	Biased Roulette Wheel Selection Schema	16
2.3	Single-Point Crossover	17
2.4	Single Mutation	18
2.5	General Flowchart of a Binary GA	20
2.6	Comparison of a Crisp Set and a Fuzzy Set	22
2.7	Various Types of Membership Functions	23
2.8	Zadeh Operators for Fuzzy Logic versus Operators for Crisp Sets	24
2.9	Various Steps of Fuzzy Inference System	27
2.10	Fuzzification Result for Annual Performance at Point Three	27
2.11	Result of Fuzzy Operator Application for Third Rule	28
2.12	Implication of the Antecedent to the Consequent	28
2.13	Aggregation of All Fuzzy Rules Truncated Output Function	29
2.14	Defuzzification of Aggregated Outputs	30
2.15	Soft Computing and Learning Process in Fuzzy Systems	31
2.16	Genetic Fuzzy Systems Framework	32
2.17	Some Parameterized Fuzzy MFs	35
2.18	Sample HDF Controller in Transfer Line Production System	50

2.19	Supervisory Control Architecture	54
2.20	Production Surplus Decision Areas	57
2.21	ESF Control Architecture	58
2.22	EDF Control Architecture	58
3.1	Main Framework for Tuning the Fuzzy Controllers	63
3.2	Different Steps of GFLCs for Production Control Architecture	65
3.3	Parameters for Trapezoidal Shape of MFs	67
3.4	Chromosome Created by the MFs	67
3.5	GA for Optimized GSF construction in <i>MATLAB</i> [®] Software	72
3.6	Mean WIP for Two-Part-Type Production System with Various Simulation Time Units	74
3.7	Three Point Crossover Operator for a Sample Chromosome	76
3.8	HDF Controller Interface in <i>MATLAB</i> [®] for Transfer Line Module	79
3.9	Membership Function Interface for HDF Controllers in <i>MATLAB</i> [®] for Transfer Line Module	80
3.10	Rule Base Viewer Interface for HDF Controllers in <i>MATLAB</i> [®] for Transfer Line Production Module	81
4.1	Two-Part-Type Production System and GSF Control Architecture	86
4.2	Re-entrant Multi-Part-Type Production Test Case	90
4.3	Hierarchical Layers of Supervisory Production Control	92
4.4	Main Level of Production Control Model	94
4.5	Supervisory Control Module Contents	95
4.6	Bounds Correction Module	97
4.7	Two-Part-Type Production System Module	99

4.8	WIP Statistics Subsystem	101
4.9	Surplus Statistics Subsystem	101
4.10	Sample Machine Module	103
4.11	Machine State Subsystem	104
4.12	Failure Generator Module	105
4.13	Sub machine Subsystem	107
4.14	Surplus Normalization Subsystem	108
4.15	Production Rate Module for Two-Part-Type Production Line	110
4.16	Cumulative Production Rate Module	112
4.17	Rout Map for Mathematical Model of Production Simulation	115
5.1	WIP Level of First Part Type versus Various Demands for Different Buffer Capacities in First Test Case	122
5.2	WIP Level of First Part Type versus Various Demands for Different Failure Rates in First Test Case	123
5.3	Backlog Level of First Part Type versus Various Demands for Different Buffer Capacities in First Test Case	124
5.4	Backlog Level of First Part Type versus Various Demands for Different Failure Rate in First Test Case	124
5.5	WIP Level of First Part Type versus Various Demands for Different Buffer Capacities in First Test Case (using GDF)	127
5.6	WIP Level versus Demands for First Part Type in Re-entrant Production system for Various Buffer Capacities	130
5.7	WIP Level for Various Part Types in Re-entrant Production System for GDF and GSF Controllers	130
5.8	Heuristic and Genetically Optimized MFs for Mean Final Surplus Variable of GSF Controller	136

LIST OF ABBREVIATIONS

Abbreviation	Description
AGV	Automated Guided Vehicle
BL	Mean Backlog
DB	Data Base
DBL	Downstream Buffer Level
DEM	Demand
DMP	Downstream Machine Production
DVWIP	Work In Process Error
EA	Evolutionary Algorithm
EDD	Earliest Due Date
EDF	Evolutionary Distributed Fuzzy
EP	Evolutionary Programming
ES	Evolutionary Strategies
ESF	Evolutionary Supervisory Fuzzy
FLC	Fuzzy Logic Controller
FPR	Fuzzy Production Rate
FSC	Fuzzy Surplus Correction
FSCF	Fuzzy Surplus Correction Factors
FSRP	Final Product Surplus
GA	Genetic Algorithm
GDF	Genetic Distributed Fuzzy
GDP	Gross Domestic Production

Genetic Fuzzy Logic Controller
Genetic Fuzzy System
Genetic Supervisory Fuzzy
Heuristic Distributed Fuzzy
Hierarchy Genetic Fuzzy System
Heuristic Supervisory Fuzzy
Initial Buffer Level
Just In Time
Knowledge Base
Multi-product Aggregate Production Planning
Mean Backlog
Membership Function
Mean Final Surplus
Material Requirements Planning
Production Rate
Rule Base
Surplus
Upstream Buffer Level
Mean Work In Process
Work In Process

CHAPTER 1

INTRODUCTION

1.1 Manufacturing Systems

The word "manufacturing" derives from two Latin word roots meaning "hand" and "make" (Harrington, 1984). Manufacturing is the act of converting raw materials into desired final products. Materials, labor, technology and capital are required to make the products (Mok, 2001). Desired products (with specific characteristics) and wastes are the outputs of manufacturing systems. A set of decisions are made at various levels of the manufacturing, to smooth the production processes, stabilizing the production rate and maintain the quality of final product.

There is a set of disturbances which lead every manufacturing system into instability. Demand and market fluctuations, competition, equipment failures, government policies and labor problems are some of these disturbances (Viswanadham, 1999). So predicting the future of manufacturing systems and planning for different related requirements (such as raw material, production rate, developing new products and etc.) is too difficult due to its instability. Globalization, higher customers' awareness, volatility of consumer preferences, new communication gate ways and global competition forced manufacturing to decrease the wastes and increase their performances. These reasons made manufacturing scheduling a complex function. Customers are seeking for lower prices and better qualities, even zero defects. In this situation if one company neglects improving itself, there are lots of competitors to do it, and increase their market share.

Manufacturing industries in most of the developed and developing countries have a brilliant role in the economy. Fifteen to thirty percent of gross domestic production (GDP) in these countries is produced by manufacturing industries, which are one of the few ways for creating wealth (Mok, 2001). Due to the important role of manufacturing systems, many of the literatures in the field of industrial engineering and production management introduced new approaches to improve performance of manufacturing systems. Some of the most important techniques and technologies introduced through past decades are: flexible manufacturing systems (Rezaie and Ostadi, 2007), group technology (Andres *et al.*, 2005), just-in-time (Polito and Watson, 2006), lean manufacturing (Holweg, 2007), and mass customization (Duray *et al.*, 2000 and Silveira *et al.*, 2001).

1.2 Production Control

Manufacturing systems consists of several functions and modules. These modules include: procurement department, information technology department, business department, financial management and the most important one, production department (Mok, 2001). The production function is the set of activities directly involved in the physical handling and converting of raw materials into finished products in accordance with designs received from the development department and with directives from the management function.

The focal point in the conversion of materials into finished products is production control. The production control of manufacturing systems is at the heart of the whole manufacturing process. A set of on time decisions for various production states

should be made by control systems. Improving the effectiveness of production control systems cause improvement in the scheduling of production systems. Production scheduling manages the flow of materials or components through the manufacturing system (Tsourveloudis *et al.*, 2007). Too many theories and control architectures were introduced in past decades. According to Gershwin (2000) "Time-based", "token-based" and "surplus-based" methods are three main classifications of control policies (these policies are briefly introduced in chapter two, section 2.5).

The procedure of control system is quite simple. The system state is mapped onto a set of possible control actions. State variables define the system state. These variables determine the overall specifications of the manufacturing system in each time period. This information consists of number of part types, inventories in hand, and the status of a machine and so on. Control actions are responsible to change the system state in order to satisfy the overall goal of system.

To construct a control system, three things need to be identified: the system state, the possible control actions, and the mapping between the system state and the control actions. Through these system specifications, the method of mapping the system state to control action usually has been created on human observation and experience basis (Passino and Yurkovic, 1998). To transform this human knowledge to an automated control system, one may use rule-based control system. Rules are of the form: IF a set of conditions THEN perform these control actions. If the first phrase is true then the second statement is implemented to make decisions.

The major problem arises with rule-based control is the difficulty in developing good rules. One of the most used kinds of rule-based controllers is fuzzy logic controllers (FLCs) (Mamdani, 1977; Passino and Yurkovic, 1998 and Pedrycz, 1995). FLCs use heuristic information to make their rule base and membership functions. Such heuristic information may come from an operator who acts as a "human-in-the-loop" controller for a process. In fact, FLCs emulate the decision-making process of the operator (Passino and Yurkovic, 1998). Optimal design of the FLC knowledge base (membership functions and rule base) is central to the performance of the FLC. The rule base reflects the human expert's knowledge expressed as linguistic variables, while the membership functions represent expert interpretation of those same variables.

In the absence of such knowledge, commonly trial and error is used to reach the desired performance of system. If the number of decision variables or system status is too large, this approach is not practical. In this case tuning or learning process is more useful. Genetic algorithm (GA) is one of the tools in learning process (Gen and Cheng, 1997; Haupt and Haupt, 2004). GAs are robust, numerical search methods that mimic the process of natural selection. Parameters of fuzzy membership functions are used to make chromosomes for GAs. The fittest chromosomes based on performance of FLC are chosen to mate a new generation. Crossover and mutation operators are used to make offspring. The new population consists of offspring and parents. This population is evaluated in next cycle of algorithm. The algorithm stops after a pre-defined number of generations or convergence of performance indices of chromosomes. This process is called genetic fuzzy logic controller (GFLC) (Cordon *et al.*, 2004; Velasco and Magdalena, 1995 and Mattelan *et al.*, 1998).

In multi-part-type production system more than one part type can be processed. In reentrant production systems one part type is processed more than one time by a specific machine. Controlling these production systems is proven to be difficult (Srivatsan and Dallery, 1998). Controllers should consider the priority of production of part types and set the proper production rate for each part type. In this thesis, control is the set of activities determining the detailed allocation of available resources to particular tasks for the immediate time period at hand.

1.3 Problem Statement

As mentioned in the previous section (1.2), production control system is vital for companies, and the performance of control system is so important that many of researches in the field of production management has been dedicated to this subject. Heuristic distributed fuzzy (HDF) controller (Tsourveloudis *et al.*, 2000) was proposed to control the production systems based on local data for each machine. This control architecture has been applied to single-part-type and multi-part-type production systems. Ioannidis *et al.* (2004) proposed heuristic supervisory fuzzy (HSF) controllers where it can be used to improve performance of HDF controllers. Multi-part-type production line and re-entrant production network, single-part-type production line and network, were examined with supervisory fuzzy controller Tsourveloudis *et al.* (2005, 2006 and 2007) used GFLSc to optimize the performance of supervisory and distributed fuzzy (GDF) controller were introduced by them. Tsourveloudis *et al.* (2005, 2006 and 2007) used their new approach to control a single-part-type production line and network.

